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ABSTRACT
Algebraic theories for modeling components and their in-
teractions offer abstraction over the specifics of component
states and interfaces. For example, such theories deal with
forms of sequential composition of two components in a man-
ner independent of the type of data stored in the states of the
components, and independent of the number and types of
methods offered by the interfaces of the combinators. Gen-
eral purpose programming languages do not offer this level
of abstraction, which implies that a gap must be bridged
when turning component models into implementations.

In this paper, we present an approach to prototyping of
component-based systems that employs so-called type-level
programming (or compile-time computation) to bridge the
gap between abstract component models and their type-safe
implementation in a functional programming language. We
demonstrate our approach using Barbosa’s model of com-
ponents as generalized Mealy machines. For this model, we
develop a combinator library in Haskell, which uses type-
level programming with two effects. Firstly, wiring between
components is computed during compilation. Secondly, the
well-formedness of the component compositions is guarded
by Haskell’s strong type system.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—Software libraries; F.1.1 [Computation by Ab-
stract Devices]: Models of Computation—Automata

General Terms
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1. INTRODUCTION
Over the last decade component-based software develop-
ment [38, 39] emerged as a promising paradigm to deal with
the ever increasing need for mastering complexity in soft-
ware design, evolution and reuse. As a paradigm it retains
from object-orientation the basic principle of encapsulation
of data and code, but shifts the emphasis from (class) inheri-
tance to (object) composition. This shift avoids interference
between the inheritance and encapsulation, paving the way
to a development methodology based on assembly of third-
party components.

From the outset, the basic motivation has been to replace
conventional programming by the composition and config-
uration of reusable off–the–shelf units, often regarded as
‘abstractions with plugs’ [29]. In this sense, a component is
a ‘black-box’ entity which both provides and requires ser-
vices, encapsulated through a public interface. Connections
are established by drawing wires, corresponding to some sort
of interfacing code.

In practice, however, software components do not fit to-
gether as easily as Lego pieces. This motivated new re-
search questions concerning component adaptation, wrap-
ping, composition and interaction. A number of answers
has been formulated to such questions, often from disparate
points of view, either technological, methodological or foun-
dational. So far, none of these approaches has emerged as
the final or predominate answer to component composition.

In particular, foundational approaches to component com-
position face the challenge of transposing proposed math-
ematical descriptions of components and their interactions
into executable programs or prototypes thereof. This re-
quires the encoding of abstract mathematical structures and
operators into the concrete constructs and libraries of general-
purpose programming languages. In this paper, we pick
up this challenge for a particular mathematical component
theory, i.e. Barbosa’s coalgebraic model of components as
generalized Mealy machines [5, 3], and for a particular pro-
gramming language, i.e. the strongly-typed functional pro-
gramming language Haskell [16].

A Mealy machine is a finite state transducer that, upon
accepting an input signal, modifies its internal state and
generates an output signal [25], which can be captured by
the following function type:
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U × I −→ U ×O

where I and O are the input and output alphabet, and U
is a finite set of states. Generalizing this idea, components
can be modeled by curried functions of the following form:

U −→ I −→ B(U ×O)

where B is a monad that captures behavioral models such
as partiality or non-determinism. These functions can be
recognized as coalgebras:

U −→ TI,OU

where

TI,OX = I −→ B(X ×O)

Here, TI,O is a datatype transformer (formally a functor).
The input and output alphabets can be recognized as n-ary
labeled sums, where the label is a signal or message, and the
summand represents the parameters of that message. The
interface of a component hides the encapsulated state, and
has a signature of the form I −→ O. Basic components
can then be created from n-ary products of state-modifying
functions. Subsequently, basic components can be composed
into complex components using component composition op-
erators, or component combinators. For example, the binary
operator ; for sequential composition accepts input of type:

(U1 −→ TI,LU1)× (U2 −→ TL,OU2)

to produce a new component over the combined state space
of type:

(U1 × U2) −→ TI,O(U1 × U2)

where L is both the output language for the first compo-
nent, and the input language for the second. In Section 2,
the theory of components as generalized Mealy machines is
recapitulated in more detail.

Haskell is a non-strict functional programming language
with a rich system of strong types. Haskell features higher-
order functions, parametric polymorphism, and ad-hoc poly-
morphism or overloading through its notion of type classes.
The standard libraries of the language include support for
a variety of monads, and special syntax is provided to sup-
port monadic programming. A commonly used language
extension, viz multi-parameter type-classes with functional
dependencies, allows static (compile-time) computations to
be expressed by logic programming on the level of types [13,
24]. This emergent capability has been exploited for in-
stance to model n-ary products, extensible records [19], func-
tions with variable length argument lists [18], and relational
databases [37]. As we will explain, this mix of features al-
lows a faithful transposition of the chosen component model.
More concretely, we will present a Haskell library of com-
binators that supports the construction of executable pro-
totypes of component compositions.

The paper is structured as follows. In Section 2, we present
as motivating example the component-based specification of
a simple electronic voting system. By means of this example,
we also provide a detailed recapitulation of the coalgebraic
model of components as generalized Mealy machines. In
Section 3, we provide background on the Haskell language

Audience with
voting pads

Operator
Ballot box

Figure 1: A simple voting system, where the audi-
ence, for example of a TV show, can press voting
pads connected to a central ballot box. The opera-
tor initiates the ballot box with the number of votes
that must be collected. When sufficient votes are
in, the status indicator of the ballot box changes.

in general, and about the technique of type-level program-
ming in particular. Our combinator library for component-
based programming is presented in Section 4, showing in
detail how the various ingredients of the theory are trans-
posed. In Section 5, we revisit the motivating example, to
show how our library can be used to turn it into an exe-
cutable prototype. Finally, Section 6 discusses related work
and concludes.

2. A THEORY OF COMPONENTS
This section recapitulates a calculus of state-based compo-
nents framed as generalized Mealy machines [5, 3]. Our
exposition is driven by a small example, used throughout
the paper, which illustrates both the sort of models we are
interested in and a number of composition operators.

The example is a highly simplified voting system, illustrated
in Figure 1. The system consists of a central unit to col-
lect the votes, i.e. a ballot box of some sort. The votes are
collected via single-button voting pads, in the hands of the
voters. An operator initiates the voting process by resetting
the ballot box with the number of votes that must be col-
lected. The voters can press their voting pad to register a
vote. When sufficient votes are in, a status indicator on the
ballot box changes. A common use of such a system can be
found in processing units for electronic opinion polls, as in
some television shows. Presumably, when enough members
of the audience have expressed their discontent by lodging
a vote, the current performers are sent off stage. A similar
system, however, can be used to count inputs from a num-
ber of sensors in, e.g., an industrial plant. Typically, such
sensors emit a number of stimuli before terminating.

In the course of this section, we will explain how the various
components of the system, i.e. the voting pads and ballot
box, are modeled as generalized Mealy machines, and how
their wiring is specified using component combinators. The
components themselves are explained in Sections 2.1, 2.2,
and 2.3. The composition operators are presented in Sec-
tion 2.4. Finally, the synthesis of the components, using



the operators, into the complete voting system is given in
Section 2.5.

2.1 Generalized Mealy machines
As indicated briefly in the introduction, software compo-
nents can be modeled as generalized Mealy machines. Driven
by our example, we will build up this view of components
in a step-wise fashion.

Let us first consider the state-changing functions that lie at
the heart of our two types of components: the voting pad
and the ballot box.

In our example each voter has a given number of votes. The
voting pad maintains, then, a natural number n ∈ N as state
information, indicating the number of stimuli remaining to
be emitted by the device. This stimuli is here represented
by the singleton (or unit) datatype 1. A single operation is
available for changing this state:

emit : N× 1 −→ (N× 1) + 1

Here, the + operator indicates the sum type, or disjoint
union. Pressing the voting pad button amounts to invok-
ing the emit function on the internal state. The presence
of the maybe monad (X + 1) in the result type indicates
that the overall behavior of this component is partial : when
the allowed number of votes has run out (n = 0), the vote
emission operation fails.

At the heart of the ballot box, on the other hand, we find
two operations over a state space of type N:

reset : N× N −→ B(N× 1)

vote : N× 1 −→ B(N× 2)

The reset operation sets the minimum number of votes re-
quired to report success, which means that the internal state
(first argument of type N) is overwritten with the argument
of the operation (second argument of type N). The vote op-
eration counts an individual vote, by decreasing the state
value (argument of type N). The output of action vote is a
boolean flag (type 2) indicating whether all votes requested
to terminate the voting process have been received. The be-
havior monad B wrappes the component’s result (explained
just bellow).

These various state-changing functions can in fact be recog-
nized as special cases of a single general pattern:

f : U × I −→ B(U ×O) (1)

In this pattern, U is the type of the internal state, I and O
are the types of the input and output signals, respectively,
and B is a strong monad1.

The monad parameter captures the behavioral model of the
state changing computation. When B is the identity monad,

1A strong monad is a monad 〈B, η, µ〉 where B is a strong
functor and both η and µ are strong natural transformations
[21]. B being strong means there exist natural transforma-
tions T(Id×−) : T×− ⇐= T×− and T(−× Id) : −×T⇐=
− × T, called the right and left strength, respectively, sub-
ject to certain conditions. Their effect is to distribute the
free variable values in the context “−” along functor B.

the general pattern reduces to the special case of Mealy ma-
chines [25], whose behavior is simply to compute an out-
put and a new state. The maybe monad, corresponding
to the behavioral model of the emit operation above, cap-
tures partial computations. As further behavioral models,
one can also think of components behaving within a certain
degree of non-determinism or following a probability distri-
bution. Thus, in general computation of an action will not
simply produce an output and a continuation state, but a
B-structure of such pairs. The monadic structure provides
tools to handle such computations. Unit (η) and multiplica-
tion (µ), provide, respectively, a value embedding and a ‘flat-
ten’ operation to reduce nested behavioral effects. Strength,
either in its right (τr) or left (τl) version, cater for context
information. Thus, the presence of B as a parameter in the
definition allows instantiation with different kinds of behav-
ior models and justifies the qualifier ‘generalized’.

We prefer to write the general pattern (1) in its curried form,
where exponent notion is used for one of the function types
2:

f : U −→ B(U ×O)I

After currying, it becomes evident that our state-changing
functions can be recognized as coalgebras [34] of the form:

U −→ TI,O U

where

TI,OX = B(X ×O)I

is the coalgebra’s datatype transformer, or functor.

2.2 Encapsulation
An alternative, ‘black box’ view hides both state and be-
havioral monad information from the components’ environ-
ments and regards each operation as a pair of input/output
ports. Such a ‘port’ signature of, e.g., the emit operation is
then given by:

emit : 1 −→ 1

Note that we have omitted from emit’s signature both the
state argument and the maybe monad in the output. Fig-
ure 2 illustrates this interface view of the voting pad VP.
In the diagram the input (respectively, output) interface is
represented by the sum of its port types (here the sum has
only one element) and depicted as an empty (respectively,
full) circle. Such a representation makes explicit the elemen-
tary interface of the voting pad component: trivial input and
output means that no special data is exchanged by this com-
ponent — simply, a button is pushed (on input) and a led
lights up (on output).

Similarly, the port signature for vote, on the ballot box BB,
is:

vote : 1 −→ 2

2We resort to the exponent notation XI for functional de-
pendency, standard in mathematics, rather than the equiv-
alent I → X, more familiar in computing, in order to em-
phasize the dependency of the possible observations X from
the input I.
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Figure 2: The interface of the voting pad VP.
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reset : N −→ 1
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Figure 3: The interface of the ballot box BB.

retaining only the output value. For reset one gets:

reset : N −→ 1

meaning that an external argument is required on activa-
tion but no visible output is produced, except for a trivial
indication of successful termination. This is illustrated in
Figure 3. The combined input type N+1 models the choice
of two functionalities, of which only one takes input of type
N.

In general, then, the interface of a component takes the form
of a function type between two n-ary sum types:

p : ΣnIi −→ ΣnOi

The two sum types are of equal length, and the respective
summands of each type correspond to the input and output
signals of the various operations supported by the compo-
nent.

2.3 Component specifications
Let us now turn to the actual behavior of the voting pad
and ballot box components. A behavioral specification of a
software component can be given by a pointed coalgebra3:

p : I −→ O = 〈up ∈ Up, ap : Up −→ B(Up ×O)I〉

where up is the initial state, often referred to as the seed of
the component computation, and ap is the curried version
of a state transition function ap, capturing the coalgebra
dynamics.

For example, the voting pad is specified as follows:

VP : 1 −→ 1 = 〈n ∈ N, emit〉
3This kind of coalgebras have a seed value, i.e. a value which
acts as an initial state for the underlying transition system.

with4:

emit 〈n, ∗〉 = (n 6= 0 → ι1 〈n− 1, ∗〉, ι2 ∗)

On the other hand, the ballot box is modelled as:

BB : N + 1 −→ 1 + 2 = 〈n ∈ N, aBB〉

where dynamics aBB = reset⊕ vote is based on actions reset
and vote:

reset 〈u, m〉 = ι1 〈m, ∗〉
vote 〈u, ∗〉 = ι1 〈u− 1, u = 1〉

Their combination reset⊕ vote is specified as follows:

U × (I1 + I2)

dr−−−−−→ (U × I1) + (U × I2)
reset+vote−−−−−−→ B(U ×O1) + B(U ×O2)

[B(id×ι1),B(id×ι2)]−−−−−−−−−−−−→ B(U × (O1 + O2))

In the first step, the state U is distributed over the sum-
mands of the input language, after which either reset or vote
is applied. The resulting alternative monadic computations
are combined into a single monadic computation of a new
state and the sum of possible output signals.

In general, a component is specified using an initial state
and an n-tuple of monadic state-changing functions:

p : ΣnIi −→ ΣnOi = 〈up ∈ Up,⊕n(Πnfi)〉

where:

fi : Up × Ii −→ B(Up ×Oi)

The operator ⊕n is the monadic, n-ary generalization of ⊕.

Thus, we have arrived at a general recipe for modelling state-
based components: input-output interfaces, an encapsulated
state and ‘black-box’ behavior ‘packed’ as a concrete pointed
coalgebra. For a given initial value of the state space, a cor-
responding ‘process’, or behavior, arises by computing its
coinductive extension5. As we will see ahead, we will use
type-level programming to capture the various n-ary type
constructors and operators that are involved in these com-
ponent specifications.

2.4 An algebra of components
From individual components, we wish to construct larger
systems in a compositional manner.

To this end, the component calculus offers an algebra of
component combinators such as pipeline (;), and three ten-
sors that capture external choice (�) as well as parallel (�)
and concurrent (�) composition. Generalized interaction
is catered through a ‘feedback’ combinator, called hook (�),
connecting a specified subset of outputs to a subset of inputs

4Recall conditional construction (p → f, g), whose meaning
is if p then f else g. ∗ is the only habitant of the 1 datatype.
5The ‘black-box’ characterization of software components
favors an observational semantics: any two internal config-
urations should be considered identical whenever indistin-
guishable by observation. This is nicely captured by taking
coalgebraic theory as the semantic framework for a compo-
nent’s algebra. For details see [3, 4].



of the same component. This allows arbitrary communica-
tion between components to be achieved by first aggregating
them via one of the tensors and then selecting the input and
output points to be connected by hook. Finally component
adaptation is captured by a wrapping combinator ([ ]).

The basic components on which these combinators operate
can be specified on the basis of an initial state and state-
changing functions, as explained above. Alternatively, an
operation of function lifting (p q) allows arbitrary functions
to be promoted to (state-less) components, after which they
can likewise be composed.

We shall restrict ourselves to the presentation of just a few
combinators, emphasizing the ones used in the voting sys-
tem example. The reader is referred elsewhere [3, 4] for the
formal definition of these combinators as well as the various
laws they obey.

2.4.1 Function lifting
A simple mechanism can be applied to promote any function
f : A −→ B to a component with trivial state 1:

pfq : A −→ B = 〈∗ ∈ 1, apfq〉

where

apfq = 1×A
id×f−−−−−→ 1×B

η(1×B)−−−−−→ B(1×B)

Such state-less functions are typically used for interface adap-
tation.

Various simple components arise by lifting standard elemen-
tary functions. For example, the lift of the null function, i.e.
the identity on the empty set, plays the role of an inert com-
ponent, unable to react to the outside world:

nil : ∅ −→ ∅ = pid∅q

A somewhat dual role is played by the idling component:

idle : 1 −→ 1 = pid1q

Note that idle will propagate an unstructured stimulus (e.g.,
pushing a button) leading to a (similarly) unstructured re-
action (e.g., exciting a led).

A general identity-lifting operator is defined as follows:

copyX : X −→ X = pidXq

A copy component copyX simply repeats its input values on
its output port.

2.4.2 Wrapping
An alternative way to introduce functions in the calculus is
provided by the wrapping combinator, which is reminiscent
of the renaming connective found in process calculi (e.g.,
[27]). Let p : I −→ O be a component and consider functions
f : I ′ −→ I and g : O −→ O′. Component p wrapped
by f and g, denoted by p[f, g] and typed as I ′ −→ O′, is
defined by input pre-composition with f and output post-

composition with g. Formally:

ap[f,g] = Up × I ′

id×f−−−−−→ Up × I
ap−−−−−→ B(Up ×O)

B(id×g)−−−−−→ B(Up ×O′)

As expected, the following properties hold:

p[f, g] ∼ pfq ; p ; pgq

(p[f, g])[f ′, g′] ∼ p[f · f ′, g′ · g]

Here, ∼ denotes bisimilarity, the meaningful notion of equiv-
alence for state-based components. Thus, wrapping a com-
ponent with a function is bisimular to pipeline composition
with the component that results from lifting the function.
Also, multiple wrappings are bisimular to a single wrapping
with composed functions.

2.4.3 Pipeline
The pipeline aggregation of two components p and q is de-
fined as a new component over the product of the two state
spaces: the output of p is passed to q in a monadic way. No-
tice that all definitions (and laws) are parametric on monad
B. Formally:

p ; q : Ip −→ Oq = 〈〈up, uq〉 ∈ Up × Uq, ap;q〉

where ap;q : Up × Uq × Ip −→ B(Up × Uq × Oq) is detailed
as follows:

Up × Uq × Ip

∼=−−−−−→ Up × Ip × Uq
ap×id
−−−−−→ B(Up ×K)× Uq

τr−−−−−→ B(Up ×K × Uq)
∼=−−−−−→ B(Up × (Uq ×K))

B(id×aq)
−−−−−−→ B(Up × B(Uq ×Op))

Bτl−−−−−→ BB(Up × (Uq ×Op))
∼=−−−−−→ BB(Up × Uq ×Op)

µ−−−−−→ B(Up × Uq ×Op)

Here, the intermediate language K = Iq = Op. Note that
the form of interaction underlying this combinator can be
made partial, in the sense that only part of the output of
one component needs to be fed as input to the other. In this
case, K = Iq ⊆ Op, the p output must be wrapped with the
morphism which makes the inclusion.

Pipeline composition has a monoidal structure up to bisim-
ulation. That is, for appropriately typed components p, q
and r:

copyI ; p ∼ p ∼ p ; copyO

(p ; q) ; r ∼ p ; (q ; r)

where copyX is the lifting of the monadic unit, as explained
above.

2.4.4 Hook
The hook operator (�Z) creates a feedback loop from the
output of a component back to its input. The hook operator
must be applied to components of type I + Z −→ O + Z,
where Z is the type of the feedback wire. The type of the
resulting component is also I + Z −→ O + Z. Figure 4
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Figure 4: The hook combinator.
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Figure 5: External choice combinator.

illustrates this. Operationally, the hooked component reacts
to input of type I + Z by producing output of type O, in
which case it terminates, or of type Z, in which case the
output is fed back into the input port of type Z. The formal
definition is as follows:

p �Z : I + Z −→ O + Z = 〈up ∈ Up, ap�Z 〉

where ap�Z : Up × (I + Z) −→ B(Up × (O + Z)) is detailed
by:

Up × (I + Z)
ap−−−−−→ B(Up × (O + Z))

Bdr−−−−−→ B(Up ×O + Up × Z)

B(id×ι1+id×ι2)−−−−−−−−−−→ B(Up × (O + Z) + Up × (I + Z))

B(η+ap)
−−−−−→ B(B(Up × (O + Z)) + B(Up × (O + Z)))

BO−−−−−→ BB(Up × (O + Z))
µ−−−−−→ B(Up × (O + Z))

Typically, the hook operator is applied to the parallel com-
position of various components, where the effect of the hook
operator is to feed the output of one component into the
input of another.

2.4.5 Tensors
Besides ‘pipeline’ composition, components can be aggre-
gated in a number of different ways, captured by tensor
products corresponding to choice, parallel and concurrent
composition. We shall only focus here external choice which,
for p : I −→ O and q : J −→ R, is depicted in Figure 5.
When interacting with p � q, the environment is allowed
to choose either to input a value of type I or one of type
J , triggering the corresponding component (p or q, respec-

tively) and producing output. Formally:

p � q = 〈〈up, uq〉 ∈ Up × Uq, ap�q〉

where ap�q is detailed as follows:

Up × Uq × (I + J)
∼=−−−−−→ Up × I × Uq + Up × (Uq × J)

ap×id+id×aq−−−−−−−−→ B (Up ×O)× Uq + Up × B (Uq ×R)
τr+τl−−−−−→ B (Up ×O × Uq) + B (Up × (Uq ×R))
∼=−−−−−→ B (Up × Uq ×O) + B (Up × Uq ×R)

[B (id×ι1),B (id×ι2)]−−−−−−−−−−−−−→ B (Up × Uq × (O + R))

The combinator satisfies a number of laws useful to reason-
ing about component-oriented design [3]. For example:

(p � p′) ; (q � q′) ∼ (p ; q) � (p′ ; q′)

copyK�K′ ∼ copyK � copyK′

(p � q) � r ∼ (p � (q � r))[a+, a+
◦]

nil � p ∼ p[r+, r+
◦] and p � nil ∼ p[l+, l+

◦]

p � q ∼ (q � p)[s+, s+]

Notice the use of wrapping, in the last few laws, to assure
the input/output interfaces of both sides of the equality are
made compatible. Note that s+ is the commutativity iso-
morphism for sum, a+ is the morphism which witnesses the
sum associative law, r+ is the function that transforms 1+A
into A and l+ transforms A + 1 into A.

The other two tensors are parallel composition p � q : I ×
J −→ O×R and concurrent aggregation p � q : I + J + I ×
J −→ O + R + O ×R. Parallel composition corresponds to
a synchronous product: both components are executed si-
multaneously when triggered by a pair of legal input values.
Note, however, that the behavior effect, captured by monad
B, propagates. For example, if B captures component fail-
ure and one of the arguments fails, the product will fail as
well. Concurrent aggregation combines choice and parallel,
in the sense that p and q can be executed independently or
jointly, depending on the input supplied.

We can generalize the binary tensors for choice and parallel
composition to n-ary versions with the following types:

�npi : ΣnIi −→ ΣnOn

�npi : ΠnIi −→ ΠnOi

An example of their use will follow below.

2.5 Component composition
The purpose of this section is to illustrate how new compo-
nents can be built from existing ones, relying on the calculus
sketched above. The example is the construction of the vot-
ing system of Figure 1 out of the ballot box component and
n voting pad components, specified in Section 2.3.

An n-voting system is assembled by aggregating n voting
pads and connecting their outputs to the ballot box with an
n-diagonal wire, as illustrated in Figure 6.

Recall that a codiagonal is a function O : A + A −→ A de-
fined as the either of two identities, i.e. O = [id, id]. This
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Figure 6: Assembling the n voting system.

binary operator can be generalized to an n-ary operator
On : ΣnA −→ A. When this function is lifted, we obtain a
component that concentrates n wires of type A into a single
wire. Thus, we begin component composition with:

Sn = (�nVP ; pOnq) � BB

which is typed as Sn : �n1 + (N + 1) −→ 1 + (1 + 2).
Thus, we now have a system with two components operating
in parallel: the combination of n voting pads with the n-
codiagonal consumes input of type �n1 and produces output
of type 1; and the ballot box which consumes N + 1 and
produces 1 + 2.

To make these parallel combinators interact, we need to use
the hook combinator. To apply hook, however, Sn has to be
wrapped to exhibit the hooked type in the correct position.
For this, Sn[a+, s+] has the right type: (�n1 + N) + 1 −→
(1 + 2) + 1. The voting system is, then, defined as

VSn = (((�nVP ; pOnq) � BB) [a+, s+])�1

which has type �n1 + N −→ 1 + 2. Thus, the actions that
are externally available correspond, respectively, to the act
of emitting one of the n votes (1) and resetting the voting
threshold (N).

Note that the architecture of VSn is independent of the con-
crete specifications of components VP and BB. It remains
valid, for example, if VP emits a value from an enumerated
type (e.g., the identifier of a candidate) and BB mantains,
as its internal state, a bag of candidate identifiers to votes
to be output when the all votes have been counted.

On the other hand, different composition patterns may be
used to convey different specifications of their joint behav-
ior. Note, for example, that in VSn each vote is dealt sepa-
rately. Replacing � by � as the ‘gluing’ combinator of the
voting pads, allows for the simultaneously counting of arbi-
trary chunks of votes. Eventually this suits reality better,
as several voting pads may be activated at the same time.

3. TYPE-LEVEL PROGRAMMING

Before setting out on a transposition of the above algebraic
theory of components to the functional language Haskell
(Section 4), we will provide the necessary background on
this programming language. We will also briefly explain the
technique of type-level programming that will prove to be
instrumental in our encoding.

3.1 The Haskell type class
Haskell is a non-strict, higher-order, typed functional pro-
gramming language [16]. One of its most popular features
is the possibility to group together functions with the same
signature, over a certain data type, into what is called a
type class. This declares an overloaded function with the
declared signature. An instantiation mechanism provides
particular implementations of such functions for particular
types. For example, the following class declares a function
show which transforms its argument into a string.

class Show a
where

show :: a → String

The following instantiates the class with the Bool data type:

instance Show Bool
where

show True = "T"

show False = "F"

3.2 Type level programming
The Haskell type class mechanism makes it possible to de-
fine functions over types. A type class with only one param-
eter (as the one in the example above) can be seen as a pred-
icate on types. Similarly, multi-parameter classes encode re-
lations. When a subset of the class parameters determines
all the others, as indicated by the notation | x y → u v
for functional dependencies among type parameters, type
classes can be seen as functions on the level of types [13].
The following class can be seen as a function which computes
type b from type a.

class Convert a b | a → b where
convert :: a → b

The interesting part to note is that this computation is
performed by the type checker, that is, at compile time.
The arguments and results of type level functions are types
that model values, sometimes designated as type-level val-
ues. The following example models natural numbers on the
level of types:

data Zero
zero = ⊥ :: Zero

data Succ n
succ = ⊥ :: n → Succ n

class Natural n

instance Natural Zero

instance Natural n ⇒ Natural (Succ n)

Types Zero and Succ generate type-level values of type-level
type Natural , which is a class. We can define now the sum



operator over naturals:

class Add x y z | x y → z
where

add :: x → y → z

instance Add x Zero x
where

add x y = x

instance Add x y z ⇒ Add x (Succ y) (Succ z )
where

add x y = succ (add x (pred y))

pred :: Succ x → x
pred = ⊥

Note that class Add is a type-level function that models ad-
dition on naturals, whereas add adds naturals at the values
level.

3.3 Heterogeneous collections
Kiselyov et al. use type level programming to model n-ary
products, or heterogeneous lists as they call them [19]. Such
lists are based on the following declarations:

data HNil = HNil

data HCons e l = HCons e l

class HList l

instance HList HNil

instance HList l ⇒ HList (HCons e l)

With data types HNil and HCons one may construct empty
and non-empty heterogeneous lists, respectively.

The HList class establishes a well-formedness condition on
heterogeneous lists, i.e. they are constructed with successive
applications of the HCons constructure and end with HNil .
ex1 is an example of a well formed list with different type
elements:

ex1 = HCons "foo" (HCons 2 (HCons True HNil))

The HList library has a number of useful operations avail-
able. For example, appending two heterogeneous lists:

class HAppend l l ′ l ′′ | l l ′ → l ′′ where
hAppend :: l → l ′ → l ′′

Zipping two lists into a list of pairs and vice-versa:

class HZip l l ′ l ′′ | l l ′ → l ′′, l ′′ → l l ′ where
hZip :: l → l ′ → l ′′

hUnzip :: l ′′ → (l , l ′)

Infix operators to build lists are also provided (as synonyms)
as syntax sugar:

type (:∗:) e l = HCons e l

e .∗. l = HCons e l

These infix operators on type and value level are closer to the
mathematical notation for the n-ary products (A1×. . .×An)

that can be modeled by them.

4. THE COMPONENT LIBRARY
We will now proceed to transpose the component calculus
of Section 2 into a Haskell combinator library for compo-
nent prototyping. The library is based on type-level pro-
gramming. We will both present our Haskell component
model (Section 4.2) and the suite of component combina-
tors (Section 4.3). But first, we provide a key extension to
the repertoire of type-level utility functions, viz a Haskell
encoding of n-ary sum types.

4.1 N-ary sums
As mentioned above, the HList library offers n-ary products,
i.e. arbitrary length tuples. For our component library, we
will also need an encoding of the dual concept of n-ary sums
types. The following data type constructors form the basis
of the encoding:

data HEither e l = HLeft e | HRight l

data HVoid

The basic idea is to construct sums types as left-associated
applications of the HEither type constructor, terminated
by HVoid , which represents the empty sum type. Thus,
A + B + C will be represented as:

HEither A (HEither B (HEither C HVoid))

The well-formedness of n-ary sums is guarded by the follow-
ing class and instances:

class HSum s
instance HSum HVoid
instance HSum s ⇒ HSum (HEither e s)

Thus, the HSum class plays the same role for n-ary sums as
the HList class for n-ary products.

Labeled sums types can be encoded as special cases of sum
types where the summands are pairs of labels and element
types. For example, the input language of our ballot box
component has the following labeled sum type:

HEither (Vote,Either One Nat)
(HEither (Reset ,Either One Nat) HVoid)

The message of resetting the ballot box with argument value
20 is constructed by HRight (HLeft (⊥ :: Reset ,Right 20)).
Such construction of values of labeled sums can get quite
cumbersome when sum types get larger. For more conve-
nience, we have defined overloaded injection and selection
functions:

class Sum l s x | l s → x
where

select :: l → s → Maybe x
inject :: l → x → s

With these functions, we can construct the above value with:

vote20 = inject (⊥ :: Reset) (Right 20)



To retrieve the value 20 from the constructed sum type
value, we would invoke select (⊥ ::Reset) vote20 . The select
operation is partial because it is possible that a non-existent
value in the sum is been asked for. In that case the function
will return Nothing .

instance (TypeEq l l ′ b,Sum ′ b l (HEither (l ′, x ) xs) x ′)
⇒
Sum l (HEither (l ′, x ) xs) x ′

where
select l s = select ′ b l s where b = typeEq l (⊥ :: l ′)

inject l x = inject ′ b l x where b = typeEq l (⊥ :: l ′)

The class Sum is instantiated via a helper class Sum ′:

class Sum ′ b l s x | b l s → x
where

select ′ :: b → l → s → Maybe x
inject ′ :: b → l → x → s

instance Sum ′ HTrue l (HEither (l , x ) xs) x
where

select ′ (HLeft ( , x )) = Just x
inject ′ l x = HLeft (l , x )

instance (Sum l ys y)
⇒
Sum ′ HFalse l (HEither lx ys) y

where
select ′ b l (HRight ys) = select l ys
inject ′ b l y = HRight (inject l y)

Thus, the sole instance of Sum is constructed using the aux-
iliary class Sum ′ which has the same type of Sum plus an ex-
tra type-level boolean as argument. This boolean expresses
whether the labels l and l ′ are the same, i.e. whether the in-
jected or selected type is present at the left-most summand.
This type level boolean is the result of the typeEq function
from the TypeEq class, which is offered by the HList library
for determining type-level equality.

4.2 Type of components
The first step to define a component’s library amounts to
providing a suitable type for whatever a component is. Fol-
lowing closely the coalgebraic model reviewed in Section 2,
we arrive at

type CpTL s l i o m = s → l → i → m (s, (l , o))

Thus, the CpTL type constructor is synonymous to a func-
tion that receives a state s, a label l designating the oper-
ation to perform and its input i , and returns a pair with a
new state and the label of the corresponding output o. The
function result is suitably wrapped into a monad m which
defines the behavioral model of the component.

Labels have an important role in component prototyping.
Actually they act as ‘port’ identifiers for components and
therefore define an interactive language which allows direct
access to each operation’s input or output port. A com-
ponent language is an n-ary sum just like the one in the
example above. But instead of defining a value of HEither
type we resort to the Encapsulate class which automatically
derives the component language for a given component.

class Encapsulate cp is st os m | cp → is st os m
where

(�) :: cp → (st , is)→ m (st , os)

As shown in the class definition, cp uniquely determines the
remaining type parameters: the component input language
– is, the state type – st , the output language – os and the
behaviour monad – m.

The Encapsulate class has two instances. The first instance,
shown below, deals with all the actions in the component but
the last, while the second instance (omitted here because of
its simplicity) takes care of the last element.

instance (Encapsulate (st → fs) is st os m,Monad m)
⇒

Encapsulate (st → HCons (l ′, e → m (st , r)) fs)
(HEither (l ′, e) is)
st
(HEither (l ′, r) os)
m

where . . .

The function definition of this instance is given in two parts:
one applies when the label action is introduced in the lan-
guage using a HLeft injection:

(�) g (st ,HLeft ( , e)) = do
let (HCons (l , f ) ) = g st
(st ′, r)←− f e
return (st ′,HLeft (l , r))

The other part of the function definition applies when a
HRgiht injection is used:

(�) fs (st ,HRight is) = do
let (HCons fs ′) = fs st
(st ′, os)←− (�) (λst → fs ′) (st , is)
return (st ′,HRight os)

Having generated the component language, this is used to
activate the corresponding prototype. This task is accom-
plished by another class:

class Apl it o1 l i st o m | l it o1 → i o
where

(@.) :: ((st , it)→ m (st , o1 ))→ CpTL st l i o m

Class Apl provides both the input type i and the output
type o of the component in each use of it.

instance (Monad m,Sum l o1 o,Sum l it i)⇒
Apl it o1 l i st o m

where
(@.) cp st l i = do

let input = inject l i :: it
(st ′, output)←− cp (st , input)
let (Just output ′) = select l output
return (st ′, (l , output ′))

Note the use of the inject and select functions defined above
and of the Sum class. The input to the component is gener-
ated by the injection of both the label and the input value.



The component is then activated with a state value and the
input sum. The (monadic) output is selected again from a
sum and returned together with the corresponding label.

4.3 Combinators
Now that a suitable encoding for component model has been
defined, we proceed to describe the component combinators
of the library.

4.3.1 Machine activation – DoCompIO
The first operator in the library is responsible for activating
components as interactive prototypes6.

class DoCompIO it o1 st o m
where

doCompIO :: ToIO m ⇒
((st , it)→ m (st , o1 ))→ StateT st IO o

This class has a function which turns a (CpTL) component
into an interactive state machine [15]. The machine will ask
for an action and respective input (which is only possible if
the language of the component is an instance of the Haskell
standard Read class). Afterwards operator .@ (which ap-
plies the component to the state and the input) activates
the component and the state machine evolves to the next
state7.

instance (Read it ,Show o1 )
⇒
DoCompIO it o1 st o m

where
doCompIO cp = do

lift $ putStr "\nAction: "

i ←− lift getLine
st ←− get
let res = (.@) cp st (read i)
(st ′, out)←− lift $ toIO res
lift $ putStrLn $ show out
put st ′

doCompIO cp

This interactive cycle will stop as soon as the machine re-
ceives a signal to die or whenever the read of the input fails.
See Section 5 for an example of this operator in use.

4.3.2 External choice – �
The choice operator allows the combination of two compo-
nents: as the name indicates, it permits the activation of
one component or the other, but never both at the same
time. The language of the new component is the a sum of
the languages of its arguments.

data Lft a = Lft a

data Rgt a = Rgt a

We use these two data types to distinguish the labels of the
first component (Lft) from those of the second one (Rgt).
Input and output types are also changed, becoming the sum
of input or output types, respectively.

6where ToIO m turns the monad m into the monad IO .
7The $ :: (a → b) → a → b function just applies a function
to its argument.

class Choice s1 l i o l1 s2 l ′ i ′ o′ l2 m cp3 |
s1 l i o l1 s2 l ′ i ′ o′ l2 m → cp3

where
(�) :: (s1 → HCons (l , i → m (s1 , o)) l1 )→

(s2 → HCons (l ′, i ′ → m (s2 , o′)) l2 )→
cp3

This class declares that, given two components, a new one
will be determined (cp3 )8.

instance (...)
⇒
Choice s1 l i o l1 s2 l ′ i ′ o′ l2 m

((s1 , s2 )→
(HCons (Lft l ,Either i i ′ → m ((s1 , s2 ),

Either o o′)) lstf ))
where

cp1 � cp2 =

λ(s1 , s2 )→ hAppend

(leftE (toLeftLst (cp1 s1 ) (s1 , s2 ))
(⊥ :: i ′) (⊥ :: o′))

(rightE (toRightLst (cp2 s2 ) (s1 , s2 ))
(⊥ :: i) (⊥ :: o))

This instance constructs the new component with the help
of another two classes, ToLeftLst and ToRightLst , which
create the new language with the Lft and Rgt data types.
The final step is to create the new input and output types
(Either i i ′ and Either o o′ respectively), which are a sum
of the input and output types of the two given components
(i and i ′, and o and o′ respectively). This is performed by
the leftE and rightE which the reader can see in detail in
the library source code.

4.3.3 Parallel composition – �
In contrast to the choice combinator �, parallel composition
ensures that both composed components run at the same
time. The language is composed of pairs: each pair has a
label of the first component and a label of the second one,
in this order.

class Parallel s1 l i o l1 s2 l ′ i ′ o′ l2 m cp3 |
s1 l i o l1 s2 l ′ i ′ o′ l2 m → cp3

where
(�) :: (s1 → HCons (l , i → m (s1 , o)) l1 )→

(s2 → HCons (l ′, i ′ → m (s2 , o′)) l2 )→
cp3

The new language is constructed using the ToPairs class and
its function toPairs, which receives the list of functions of
both components and the two states and returns a new list
of functions. Each function has as label a pair with a label
from the first component and a label from the second one,
in this order. Input and output types are now pairs with the
input and output types of the two supplied components.

instance (...)
⇒

8Notice that components are split into state, language, input
and output type and behavior monad.
Either a b = Left a | Right b represents datatype disjoint
sum.



Parallel s1 l i o l1 s2 l ′ i ′ o′ l2 m
((s1 , s2 )→ HCons ((l , l ′), (i , i ′)→

m ((s1 , s2 ), (o, o′))) lstf )
where

cp1 � cp2 =
λ(s1 , s2 )→ toPairs (cp1 s1 ) (cp2 s2 ) (s1 , s2 )

4.3.4 Hook – �
This operator allows to “feed back” a component with (part
of) its own output. To implement this, a list with all the
feed back rules must be created. This list has the following
syntax:

(new act 1 , (old act 11 , old act12 )) .∗.
(new act 2 , (old act 21 , old act12 )) .∗.
... .∗.
HNil

The first line above indicates that the result of the action
old act 11 should be fed back as an input to the action
old act 12 . new act 1 is the new action and could be dif-
ferent from old act 11 .

Given a component cp and a feed back list l as above, � com-
putes the new component cp′. The input and output type
of the component must be framed as an Haskell Either .

class Hook cp l cp′ | cp l → cp′

where
(�) :: cp → l → cp′

Suppose then the input type is Either i z and the output
type Either o z . When the first execution succeeds, its
output is tested. If it is a Left i then it is returned as result,
but if it is a Right z then it is fed back to the component.

instance (...)
⇒
Hook (s → lf ) l (s → lf ′)

where
(�) f l = λs → let cons = constH f s l

lfr = hsnd HNil l
fs ′ = deleteMany lfr (f s)

in cons ‘hAppend ‘ fs ′

This operator has four different stages to be performed. It
starts by creating the new actions of the component (as
described above) using the constH function. It will then
infer the operations to be removed from the interface of the
new component with the hsnd function. This list is then
used to hide the operations (deleteMany). Finally, the new
operations and the old ones that were not hidden are put
together in the final list of operations.

4.3.5 Refact
This operator allows hiding and renaming of actions.

class Refact cp l cp′ | cp l → cp′

where
refact :: cp → l → cp′

The operator receives a component and a special list with
the actions to hide and the renamings to be performed,
splited into two different lists. The renamings are pairs re-
lating the old action name, for example, Lft $ Lft $ Rgt $
Lft reset to the new name one, for example, just new reset .
This gives the possibility to simplify a lot the component’s
language as well as to block some actions in the interface.
Such lists are specified according to the following syntax.

remove = act1 .∗. act2 .∗. ... .∗. HNil

redef =
(old act ,new act1 .∗. new act2 .∗. ... .∗. HNil) .∗.
(old act ,new act1 .∗. new act2 .∗. ... .∗. HNil) .∗.
...
HNil

This allows for port replication through renaming an action
to several different new identifiers.

instance (...)
⇒
Refact (s → lf ) (HCons l l ′) (s → ftf )

where
refact f (HCons l l ′) =

λs → let fs = f s
ct = constl fs l ′

in remov l (fs ‘hAppend ‘ ct)

The remov function is responsible for hiding and constl for
all the renamings. Because these are quite complex func-
tions, they will not be shown here and the reader is referred
to the library code.

4.3.6 Wrap – [ ]
As the name suggests, this operator wraps a component with
input type i and output type o, given a function with type
i ′ → i and a function with type o → o′. This produces a
component with input type i ′ and output type o′.

class Wrap cp f g cp′ | cp f g → cp′

where
wrap :: cp → f → g → cp′

In the only instance of this class the list of the component’s
ports is generated and passed to wrap′ together with the two
wrapping functions.

instance (...)
⇒
Wrap cp f g cp′

where
wrap cp f g = λs → wrap′ (cp s) f g

This auxiliary class returns the new list of input/output
ports after wrapping.

class Wrap′ lf f g lf ′ | lf f g → lf ′

where
wrap′ :: lf → f → g → lf ′

Besaides an instance to deal with the stop case (treats the
empty list), another instance was created, in which every
action of the component gets its input and output wrapped



by the given wrapping functions.

instance (...)
⇒
Wrap′ (HCons (l , i → m (s, o)) r) (i ′ → i) (o → o′)

(HCons (l , i ′ → m (s, o′)) rt)
where

wrap′ (HCons (l , f1 ) r) f g =
HCons (l , λi ′ → do (s ′, o′)←− f1 (f i ′)

return (s ′, g o′))
(wrap′ r f g)

4.3.7 Lift – pq
The Lift operator creates a component from a function. A
label must be supplied.

class Lift i o s l m cp | i o s l m → cp
where

cpLift :: (i → o)→ l →
(s → HCons (l , i → m (s, o)) HNil)

This label forms the language of the new created component,
which has, of course, a single action.

instance Monad m
⇒
Lift i o s l m (s → HCons (l , i → m (s, o)) HNil)

where
cpLift f l =

λs → HCons (l , λi → return (s, f i)) HNil

This combinator allows the integration of existent functions
in the a component based design.

4.3.8 Pipeline – ;
Sequential composition understood as a component pipeline
mechanism is a fundamental pattern in a component-based
programming style. Its implementation is given by the fol-
lowing class.

class Pipeline cp1 cp2 cp3 | cp1 cp2 → cp3
where

(;) :: cp1 → cp2 → cp3

The code listed bellow is the only instance of this class.

instance (...)
⇒
Pipeline (s1 → lf1 ) (s2 → lf2 ) ((s1 , s2 )→ lf )

where
cp1 ; cp2 =

λ(s1 , s2 )→ composeAll (cp1 s1 ) (cp2 s2 )

This instance uses the ComposeAll class and its function
composeAll to perform the composition of the functions.

5. REVISITING THE EXAMPLE
In this section we show in detail how the voting system pre-
sented in Section 2 can be prototyped using the component’s
type level library. As the reader will see, the implementa-
tion is quite straitforward, basically amounting to a direct
translation of the theorical model.

5.1 Voting pad(s)
The voting system is constructed on top of two basis com-
ponents: vp and bb. The implementation of vp is shown
next:

vp = λn → (emit , emitf n) .∗. HNil
where

emitf n () = if n 6≡ 0
then Just (n − 1, ())
else Nothing

where emit is defined as emit = ⊥ :: Emit . The Emit
datatype has no constructors. This is the only label in the
language of the vp component; function emitf is just the
translation to Haskell of the formal definition.

Suppose one wants a system with three voting pads. Within
this model it is very easy to create a new component to
represent this collection:

vp3 = vp � vp � vp

The input and output language of vp3 is:

(HEither (Lft (Lft Emit),
Either (Either () ()) ())

(HEither (Lft (Rgt Emit),
Either (Either () ()) ())

(HEither (Rgt Emit ,
Either (Either () ()) ()) HVoid)))

5.2 Ballot box
Another piece of this voting system is the ballot box where
the votes are counted and the system reset to a new value.

bb = λst → (reset , resetf st) .∗.
(vote, votef st) .∗. HNil

where
resetf n (Left rv) = Just (rv ,Left ())

votef n (Right ) = Just (st − 1,Right (st − 1 ≡ 1))

This component has two actions: one to decrement the cur-
rent state of the system (vote) and another to reset the sys-
tem to a new value (reset). These two actions are defined
similarly to emit above and constitute the language of this
component. The input language is defined as follows

HEither (Reset ,Either Int ())
(HEither (Vote,Either Int ()) HVoid)

and the output is listed below.

HEither (Reset ,Either () Bool)
(HEither (Vote,Either () Bool) HVoid)

5.3 The voting system
Now that we have constructed the two main pieces of the
system, we will plug them together to build the final voting
system component. We start by composing the voting pad
vp3 with the co-diagonal cod as presented in Section 2. The
cod component is a lift of the co-diagonal function O given



by:

data CodT ; codT = ⊥ :: CodT

cod = cpLift O codT

Then the ballot box component is added to the model using
combinator �.

s3 = (vp3 ; cod) � bb

This component has not the right type yet (has described
in Section 2). It is necessary to apply the wrap operator to
finally achieve the correct type and be able to use the �.

vs = (�) (wrap s3 a+ s+) hp

hp is the list required by the � operator to proceed with feed
back.

hp =
(emit1 , (Lft $ Lft $ Lft $ Lft emit , vote)) .∗.
(emit2 , (Lft $ Lft $ Rgt $ Lft emit , vote)) .∗.
(emit3 , (Lft $ Rgt $ Lft emit , vote)) .∗. HNil

Each time a voting pad is activated two actions are per-
formed: the first one is the local vote and the second one is
the decrement of the state of the ballot box (vote). As the
reader can notice, the labels for the voting pad activation
were not used in the left side of the pair. We have created
three new labels (emit1 , emit2 and emit3 ) to denote them
and made them smaller to make easier its use. The final
language for the input of the voting system is:

type Out =
Either (Either (Either (Either () ()) ()) Int) ()

HEither (Emit1 ,Out)

(HEither (Emit2 ,Out)

(HEither (Emit3 ,Out)

(HEither (Rgt Reset ,Out) HVoid)))

and the output is shown below.

HEither (Emit1 ,Either (Either () Bool) ())

(HEither (Emit2 ,Either (Either () Bool) ())

(HEither (Emit3 ,Either (Either () Bool) ())

(HEither (Rgt Reset ,
Either (Either () Bool) ()) HVoid)))

5.4 Animating the voting system
It is now possible to use the library to make component’s
prototype interactive. First it is necessary to create an in-
stance of the standard Read class with the language of the
component.

instance (Sum Emit1 s In,Sum Emit2 s In,
Sum Emit3 s In,Sum (Rgt Reset) s In)

⇒ Read s

For each action in the component’s language it is necessary
create a way of reading it. A possible encoding for emit1

and Rgt reset reading is listed:

readsPrec "emit1" =
[(inject emit1 (Left $ Left $ Left $ Left ()), "")]

readsPrec (’r’ : ’e’ : ’s’ : ’e’ : ’t’ : n) =
[(inject (Rgt reset)

(Left $ Right (read n :: Int)), "")]

The function which animates the voting system prototype
is defined like this:

vsAnimation () =
evalStateT $ doCompIO ((�) $ vs ())

which provides for test interactive as illustrated below.

VotingSystem > vsAnimation () ((((20, 33), 14), ()), 4)

Action : emit2
(Emit2 ,Left (Right False))

Action : emit1
(Emit1 ,Left (Right False))

Action : emit1
(Emit1 ,Left (Right True))

Action : reset 3
(Rgt Reset ,Left (Left ()))

...

6. CONCLUSIONS
This paper discussed the encoding of a formal model for
state-based components into a concrete programming lan-
guage. The theoretical framework is a theory of component
composition in the sense that it lifts principles of classical
modular construction [32] to the level of stand-alone, black-
box software components. Actually, we start from abstract-
ing a semantic model and, then, define a suitable algebra,
i.e. a family of generic operators for assembling components
together in a number of different ways. This calculus, which
generalizes the algebra of Mealy machines, acts as a glue
code for wiring autonomous components. Although its the-
ory is detailed elsewhere (see e.g., [5, 3] for the equational
fragment and [26] for refinement issues), this paper shows
how such combinators can be neatly and effectively imple-
mented in Haskell by exploring programming techniques
at the type level.

This provides not only a smooth way to directly incorporate
componentware in Haskell, but also a testbed for proto-
typing software architectural patterns in a high-level pro-
gramming language. Reference [6], for example, introduces
a number of such patterns for composing partial compo-
nents, which can be easily prototyped with the Haskell
library proposed here.

Related work
Note that commonly a component is regarded as a col-
lection of objects and, therefore, component interaction is
achieved by mechanisms implementing the usual method call
semantics. Such perspective is typical of popular, wide-
spread, technologies like, e.g., Corba[36], DCom [12] or
JavaBeans [23].



An alternative point of view, inspired by research on co-
ordination languages [11, 31], favors strict component de-
coupling in order to support a looser inter-component de-
pendency. Here computation and coordination are clearly
separated, communication becomes anonymous and compo-
nent interconnection is externally controlled. This model is
(partially) implemented in JavaSpaces on top of Jini [30]
and fundamental to a number of approaches to component-
ware which identify communication by generic channels as
the basic interaction mechanism — see, e.g., Reo [2] or Pic-
cola [35, 28]. The focus becomes, therefore, the definition
of external coordination devices which ensure the flow of
data and enforce synchronization constraints within a com-
ponent’s network. A component’s interface becomes, basi-
cally, a collection of ports through which values flow. The es-
sential difference with respect to the approach adopted here
lies in regarding software connectors as either component
combinators (to produce new components from old) or as
coordinators of data flow. In practice the expressive power
of both approaches is comparable. Reference [7] includes
a Haskell implementation of a subset of a Reo-inspired
coordination model.

Related work includes Leijen et al. proposal to integrate
COM [9] into Haskell code [33, 22], which also provides
both sequential and parallel composition mechanisms. Their
starting point is, however, a concrete componentware plat-
form whereas we are backed up by a full developed calculus
which establishes a reasoning framework for analyzing and
transform component based designs.

The technique of type-level programming was pioneered by
McBride [24] and Hallgren [13] who explained how to the
use Haskell’s type system as static logic programming lan-
guage. Apart from heterogeneous collections [19], the tech-
nique has been used for lightweight dependently typed pro-
gramming [24], implicit configurations [20], variable-length
argument lists, formatting [14], and more.

Kiselyov et al. have developed a model of object-oriented
programming inside Haskell [18], based on their HList li-
brary of extensible polymorphic records with first-class la-
bels and subtyping. The model includes all conventional
object-oriented features and more advanced ones, such as
flexible multiple inheritance, implicitly polymorphic classes,
and many flavors of subtyping. Silva et al. [37] used the
same basis (HList records) and the same techniques (type-
level programming) for modeling a different paradigm, viz.
relational database programming. In the current paper we
have added a third paradigm to the list: component-based
development. All three models rely non-trivially on type-
class bounded and parametric polymorphism.

Future work
Recently, integration of a (loose) notion of a Haskell com-
ponent within .Net has been addressed in different contexts
(see. e.g., [1]) to overcome the fact that typical Haskell
compilers do not provide support for XML-Web services,
assisted GUI development, or HTML processing, which are
frequent in most modern development frameworks. Other
authors have tackled similar problems through specific ex-
tensions to Haskell which provide primitives for concur-
rency [17], mobility [8] and distribution [10]. It would be

an interesting issue for future work to study how the library
proposed in this paper could be integrated to take advantage
of such extensions.

In a wider perspective we would like to take the underly-
ing theoretical framework and the library discussed here
as a kernel, of a cross-platform environment for program-
ming with reusable software components. Functional lan-
guages have been shown to lead to short development times
and simplified maintenance for a wide range of applications.
When integrated into a component model, such functional
applications can be used for those parts of a project for
which they are most suitable.

Availability
The Haskell library of component combinators presented
in this paper is available under the name HaMealy through
the author’s home pages (www.di.uminho.pt/˜jacome).
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Chalmers, Göteborg, Sweden.

[14] R. Hinze. Formatting: a class act. J. Funct. Program.,
13(5):935–944, 2003.

[15] M. P. Jones. Functional Programming with
Overloading and Higher-Order Polymorphism. In
Advanced Functional Programming, pages 97–136,
1995.

[16] S. L. P. Jones. Haskell 98: Language and libraries. J.
Funct. Program., 13(1):1–255, 2003.

[17] S. P. Jones, A. Gordon, and S. Finne. Concurrent
Haskell. In Proc. of POPL’96: The 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 295–308, St.
Petersburg Beach, Florida, 21–24 1996.

[18] O. Kiselyov and R. Lämmel. Haskell’s overlooked
object system. Draft of 10 September 2005, 2005.
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