
SmellSheet Detective:
A Tool for Detecting Bad Smells in Spreadsheets

Jácome Cunha†∗, João Paulo Fernandes†, Pedro Martins†, Jorge Mendes†, João Saraiva†
∗Escola Superior de Tecnologia e Gestão de Felgueiras, IPP, Portugal

†HASLab / INESC TEC & Universidade do Minho, Portugal
{jacome,jpaulo,prmartins,jorgemendes,jas}@di.uminho.pt

Abstract—This tool demo paper presents SmellSheet Detective:
a tool for automatically detecting bad smells in spreadsheets.
We have defined a catalog of bad smells in spreadsheet data
which was fully implemented in a reusable library for the
manipulation of spreadsheets. This library is the building block of
the SmellSheet Detective tool, that has been used to detect smells
in large, real-world spreadsheet within the EUSES corpus, in
order to validate and evolve our bad smells catalog.

I. INTRODUCTION

Spreadsheets play a crucial role in modern society. They are
inherently multi-purpose and widely used both by individuals
with simple needs as well as by large companies as integrators
of complex systems and as support for business decisions. In
fact, it is estimated that 95% of all U.S. firms use them for
financial reporting, that 90% of all analysts in industry perform
calculations in them and that 50% of all spreadsheets are the
basis for decisions. Effective mechanisms for error prevention,
however, did not grow proportionally: up to 94% of real-world
spreadsheets contain errors [1], which each year cause losses
worth around 10 billion dollars!

In this paper we seek to identify potential errors in spread-
sheets in an automated way. We look for spreadsheet smells, a
concept that was introduced on software by Martin Fowler [2]
as a concrete evidence of a possible coding problem. A
smell is not necessarily an error, but a characteristic that may
cause problems understanding, updating or evolving a software
artifact. An example of a software smell is the definition of
long methods in an object-oriented program. In the context of
spreadsheets, a (bad) smell is, for example, a reference to an
empty cell within a spreadsheet formula. An extensive catalog
of bad smells for spreadsheets is presented in [3].

To automatically perform the detection of spreadsheets’
bad smells we have implemented a library for the analysis
of spreadsheets. This library implements our full catalog of
smells, that we also review in this paper. The library is reusable
and can easily be extended to incorporate further analysis
and smells, and it is also the basis for the development of

This work is funded by ERDF - European Regional Development Fund
through the COMPETE Programme (operational programme for competi-
tiveness) and by National Funds through FCT - Fundação para a Ciência
e a Tecnologia (Portuguese Foundation for Science and Technology) within
project FCOMP-01-0124-FEDER-010048. The four first authors were sup-
ported by FCT grants SFRH/BPD/73358/2010, SFRH/BPD/46987/2008 and
BI4-2011PTDC/EIA-CCO/108613/2008, respectively. Part of this work was
developed during a visit to Software Improvement Group (SIG), Amsterdam.

the SmellSheet Detective tool. We have used this tool for
detecting bad smells in large and real-world spreadsheets,
namely by processing the large EUSES spreadsheet corpus to
define and evolve our catalog of bad smells. The SmellSheet
Detective automatically detects smells given a spreadsheet and
the first preliminary results produced are promising: 22% of
the smells automatically detected by our tool are real bad
smells, according to a manual validation that we performed. In
this paper we present our library and the SmellSheet Detective
tool which are the main contributions of this tool paper.

II. A CATALOG OF SPREADSHEET SMELLS

The detection of errors in software systems is an important
software engineering research field. Software errors cause
programs not to behave as expected and are responsible for
several accidents. Even if not necessarily errors, the presence
of bad smells in software code can make programs harder to
understand, maintain, and evolve, for example. Martin Fowler
popularized this notation of program smells in the context of
object-oriented programming and this is now an important area
of research. The detection of bad smells allows programmers
to improve their programs by eliminating them.

In this section we review the catalog of bad smells for
spreadsheets introduced in [3]. This catalog was developed
using a four steps methodology. In the first step, catalog
definition, based on our experience developing and doing
research on spreadsheets, an initial catalog of spreadsheets bad
smells was proposed. In the second step, catalog validation,
in order to validate the catalog we considered a large repos-
itory of spreadsheets, the EUSES corpus [4], that contains
more than 5000 spreadsheets, and we detected smells in a
representative sub-set of the repository: 180 spreadsheets were
randomly selected from EUSES which cover the different
spreadsheet categories defined in this corpus. In the third
step, catalog evaluation, in order to evaluate the results of
the empirical experiment performed in the previous step, we
manually inspected all the identified bad smells. We classified
the detected smells in four categories: not a smell, low smell,
medium smell and high smell. In the fourth and last step,
catalog refinement, based on the evaluation performed in
the previous step, we adjusted the catalog by identifying
wrong smells, by refining previously defined smells and by
adding new smells that showed up when manually inspecting
spreadsheets within the EUSES corpus. The result of this step

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634188?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


is the catalog of spreadsheets bad smells that we structure in
four categories: Statistical Smells (standard deviation smell),
Type Smells (empty cell and pattern finder smells), Content
Smells (string distance and reference to empty cells smells)
and Functional Dependencies Based Smells (Quasi-Functional
Dependencies (QFD) smell).

III. THE SmellSheet Detective TOOL

In order to automatically analyze sample spreadsheets we
implemented SmellSheet Detective1 that builds on the above
library to detect the smells introduced in Section II. This
implementation combines the Java programming language, the
Google Web Toolkit (GWT), the Apache POI library and the
Google libraries to work with spreadsheets within the Google
Docs environment. We decided to support spreadsheets written
in the Google Docs platform because it is becoming more and
more used, and even the popular Microsoft Office suite has
also its online version. Indeed, the migration from desktop to
online applications is becoming very common. Nevertheless,
we also support spreadsheets written using desktop applica-
tions, as can be seen in Figure 1.

Fig. 1. SmellSheet Detective architecture.

When using the Google Docs version of our tool, a valid
Google account login is required. After logging in to the
account, the tool displays all the spreadsheet files in the
account. After choosing a particular spreadsheet file, the user
can select a single sheet or the full spreadsheet to be analyzed.
If we use the direct upload source, the user can browse the
spreadsheets in the computer and select one. After selecting
the input, the SmellSheet Detective produces the results of bad
smells in several formats (csv, excel and LATEX tables).

Table I presents the results computed by the tool for
the 180 spreadsheets considered when evolving our catalog.
Each row represents a smell and each column represents the
classification we gave to each smell found by the tool. As we
can see, 22% of the smells found are in fact bad smells that
deteriorate the quality of the spreadsheet.

The SmellSheet Detective was developed on top of a modu-
lar and extensible library written in Java. Next, we present the
elegant implementation of the method that computes formulas
that contain references to empty cells.

1Available at http://ssaapp.di.uminho.pt/software/SpreadsheetWA.zip.

XXXXXXXXSmell
Level Low

smells
Medium
smells

High
smells

Not
smells

Total

Empty cells 115 4 0 274 393
Patterns 9 5 0 90 101
Std. Dev. cells 21 0 0 234 255
String Dist. 13 2 7 290 312
QFD 64 13 6 121 204
Ref2empty 9 9 8 24 50
Total 231 33 21 1033 1315

TABLE I
RESULTS OF RUNNING SmellSheet Detective IN THE EUSES CORPUS.

public TreeMap<String,String> ReferenceEmptyCells() {
TreeMap<String,String> nullRefs =

new TreeMap<String,String>();
for(String sheet : spreadsheet.keySet())

for(String cellRef :
spreadsheet.get(sheet).keySet()) {

TreeMap<String, String> oneNull =
getNull(sheet, cellRef);

for(String key : oneNull.keySet())
nullRefs.put(key, oneNull.get(key)); }

return nullRefs; }

Given the extensibility feature of our library, extending it
with new smells is very simple: we just need to add a new
method implementing the smell as shown before. This is very
important when starting developing our catalog, since new
smells can easily been considered. For example, the smells
from [5], [6] can easily be incorporated in our tool.

IV. CONCLUSION

In this paper we have presented the SmellSheet Detective
tool and a Java-based library that implements an extensive
catalog of bad smells for spreadsheets. The SmellSheet De-
tective automatically detects bad smells given a spreadsheet
as input. We have used it to detect bad smells in the EUSES
spreadsheet corpus and the first results are promising. The
tool was developed using modular and extensible mechanisms,
which allow a simple and efficient implementation of new
smells.

Code smells, as suggested by Fowler, are usually associated
with refactorings that eliminate them. In fact, we are working
now in defining and implementing a set of domain specific
spreadsheet refactorings that can be used to eliminate the
detected smells.

REFERENCES

[1] R. Panko, “Facing the problem of spreadsheet errors,” Decision Line,
37(5), 2006.

[2] M. Fowler, Refactoring: Improving the Design of Existing Code. Boston,
MA, USA: Addison-Wesley, 1999.

[3] J. Cunha, J. P. Fernandes, H. Ribeiro, and J. Saraiva, “Towards a catalog
of spreadsheet smells,” in 12th Int. Conf. on Computational Science and
Its Applications, ser. LNCS, vol. 7336. Springer, 2012, pp. 202–216.

[4] M. F. Ii and G. Rothermel, “The euses spreadsheet corpus: A shared
resource for supporting experimentation with spreadsheet dependability
mechanisms,” in End-User SW Engineering Workshop, 2005, pp. 47–51.

[5] S. Badame and D. Dig, “Refactoring meets spreadsheet formulas,” in
Proceedings of the 28th IEEE International Conference on Software
Maintenance. IEEE Computer Society, 2012, to appear.

[6] M. P. Felienne Hermans and A. van Deursen, “Detecting and visualizing
inter-worksheet smells in spreadsheets,” in Proc. of the 34rd International
Conference on Software Engineering. ACM, 2012, pp. 441–451.

2


