
On Refinement of Generic State-based Software
Components

Sun Meng1 and Lúıs S. Barbosa2

1 LMAM, School of Mathematical Science
Peking University, China

sunmeng@water.pku.edu.cn
2 Department of Informatics
Minho University, Portugal

lsb@di.uminho.pt

Abstract. This paper characterizes refinement of state-based software
components modelled as pointed coalgebras for some Set endofunctors.
The proposed characterization is parametric on a specification of the
underlying behaviour model introduced as a strong monad. This provides
a basis to reason about (and transform) state-based software designs.

Keywords: components, refinement, coalgebraic models.

1 Introduction

Component-based software development [15, 16] emerged as a promising para-
digm to deal with the ever increasing need for mastering complexity, software
evolution and reuse. From object-orientation it retains the basic principle of
encapsulation of data and code. The emphasis, however, is shifted from (class)
inheritance to (object) composition to avoid interference between the former
and encapsulation and, thus, paving the way to a development methodology
based on third-party assembly of components. In [3, 2], the authors proposed a
coalgebraic characterization of software components as specifications of state-
based modules, encapsulating a number of services through a public interface
and providing limited access to an internal state space. Component persist and
evolve in time, being able to interact with the environment during their overall
computation. This piece of research has been driven by two key ideas: first,
the ‘black-box’ characterization of software components favors an observational
semantics; secondly, the proposed constructions should be generic in the sense
that they should not depend on a particular notion of component behaviour.
This led both to the adoption of coalgebra theory [14] to capture observational
semantics and to the abstract characterization of possible behaviour models (e.g.,
partiality or (different degrees of) non-determinism) by strong monads acting as
parameters in the resulting calculus.

Within this approach, briefly reviewed in section 2, a set of component con-
nectors have been identified and their properties established as bisimilarity equa-
tions with respect to a generic behaviour model. Actually, the corner stone of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634181?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Sun Meng and Lúıs S. Barbosa

our ’components as coalgebras’ approach is the use of coinduction to prove ∼-
results, where ∼ is the appropriate bisimilarity relation, as a basis for reasoning
and transforming component-based designs. This paper provides a basis to ex-
tend the approach toward the inequational side through the discussion of suitable
notions of refinement.

In broad terms refinement can be defined as a transformation of an ‘abstract’
into a more ‘concrete’ design, entailing a notion of substitution, but not neces-
sarily equivalence. There is, however, a diversity of ways of understanding both
what substitution means, and what such a transformation should seek for. In
data refinement, for example, after Hoare’s landmark paper [8], the ‘concrete’
model is required to have enough redundancy to represent all the elements of
the ‘abstract’ one. This is captured by the definition of a surjection from the
former into the latter (the retrieve map). Also substitution is regarded as ‘com-
plete’ in the sense that the (concrete) operations accept all the input values
accepted by the corresponding abstract ones, and, for the same inputs, the re-
sults produced are also the same, up to the retrieve map. This means that, if
models are specified, as they usually are in model-oriented design methods like
Vdm[10], in terms of pre and post-conditions, the former are weakened and the
latter strengthened, under refinement. In object-orientation, on the other hand,
substitution is expressed in terms of behaviour subtyping [11] capturing the idea
that ‘concrete’ objects behave similarly to objects in the ‘abstract’ class. Finally,
refinement in process algebras is usually discussed in terms of several ‘observa-
tion’ preorders (see, for example, [7]), most of them justifying transformations
entailing reduction of nondeterminism.

In general, refinement correctness means that the usage of a system according
to its ‘abstract’ description is still valid if it is actually built according to the
‘concrete’ one. What is commonly understood by being a valid usage is that
the corresponding observable consequences are still the same, or, in a less strict
sense, a subset thereof. The exact definition, however, depends on the underlying
behaviour model, which, in our approach to component modelling, is taken as
a specification parameter. Therefore, the main contribution of this paper is a
semantic characterization of refinement for state-based components, parametric
on a strong monad intended to capture components’ behavioural models.

After a brief review of the component calculus, in section 2, the paper dis-
cusses two levels of component refinement: the interface level, concerned with
what one may call plugging compatibility, in section 3, and the behavioural one in
section 4, which introduces forward and backward morphisms as refinement ‘wit-
nesses’, and section 5 which builds on them to propose a family of refinement
preorders. Section 6 proves soundness of simulations to establish behavioural
refinement. A few examples, along with some prospects for future work, are
presented in section 7.



On Refinement of Generic State-based Software Components 3

2 Components as Coalgebras

In [3, 2] software components and connectors have been characterised as dynamic
systems with a public interface and a private, encapsulated state. A typical
example is LBuff: a connector modelling a buffered channel which occasionally
looses messages, as represented below:

{
put : M −→ 1
pick : 1 −→ M

•

��	�

��
LBuff

O = 1 + M

I = M + 1

The put and pick operations are regarded as ‘buttons’ or ‘ports’, whose signatures
are grouped together in the diagram (M stands for a message parameter type,
1 for the nullary datatype and + for ‘datatype sum’). One might capture LBuff
dynamics by a function aLBuff : U × I −→ P(U ×O) where U denotes the
space state. This describes how LBuff reacts to input stimuli, produces output
data (if any) and changes state. It can also be written in a curried form as
aLBuff : U −→ P(U ×O)I that is, as a coalgebra [14] of signature U −→ T U
where functor T captures the transition ‘shape’:

T = P(Id×O)I (1)

Built in this ‘shape’ is the possibility of non deterministic evolution captured
by the use of P , the finite powerset monad. Concretely, LBuff is defined over
U = M∗, with nil as the initial state, and dynamics given by

aLBuff〈u, put m〉 = {〈u, ι1 ∗〉, 〈m : u, ι1 ∗〉}
aLBuff〈u, pick〉 = {〈tail u, ι2 (head u)〉}

where put m and pick abbreviates ι1 m and ι2 ∗, respectively.
Non determinism, capturing the occasional loss of messages, is a possible

behavioural pattern for this buffer, but, by no means, the only one. Other com-
ponents will exhibit different behaviour models: actually genericity is achieved
by replacing the powerset monad above, by an arbitrary strong monad3 B. In
the general case, a component p : I −→ O is specified as a (pointed) coalgebra
in Set

〈up ∈ Up, ap : Up −→ B(Up ×O)I〉 (2)

3 A strong monad is a monad 〈B, η, µ〉 where B is a strong functor and both η and µ
strong natural transformations. B being strong means there exist natural transfor-
mations τT

r : T×− =⇒ T(Id×−) and τT
l : −×T =⇒ T(−× Id) called the right and

left strength, respectively, subject to certain conditions. Their effect is to distribute
the free variable values in the context “−” along functor B.



4 Sun Meng and Lúıs S. Barbosa

where point up is taken as the ‘initial’ or ‘seed’ state. Therefore, the computa-
tion of an action will not simply produce an output and a continuation state,
but a B-structure of such pairs. The monadic structure provides tools to han-
dle such computations. Unit (η) and multiplication (µ), provide, respectively, a
value embedding and a ‘flatten’ operation to reduce nested behavioural annota-
tions. Strength, either in its right (τr) or left (τl) version, will cater for context
information.

In such a framework, components become arrows in a (bicategorical) universe
Cp whose objects are sets, which provide types to input/output parameters (the
components’ interfaces), and component morphisms h : p −→ q are functions
relating the state spaces of p and q and satisfying the following seed preservation
and coalgebra conditions:

h up = uq and aq · h = B (h×O)I · ap (3)

For each triple of objects 〈I,K,O〉, a composition law is given by functor ;I,K,O :
Cp(I, K)× Cp(K, O) −→ Cp(I,O) whose action on objects p and q is

p ; q = 〈〈up, uq〉 ∈ Up × Uq, ap;q〉 with

ap;q = Up × Uq × I
∼=−−−−→ Up × I × Uq

ap×id−−−−→ B(Up ×K)× Uq

τr−−−−→ B(Up ×K × Uq)
∼=−−−−→ B(Up × (Uq ×K))

B(id×aq)−−−−−−→ B(Up × B(Uq ×O)) Bτl−−−−→ BB(Up × (Uq ×O))
∼=−−−−→ BB(Up × Uq ×O)

µ−−−−→ B(Up × Uq ×O)

Similarly, for each object K, an identity law is given by a functor copyK : 1 −→
Cp(K, K) whose action is the constant component 〈∗ ∈ 1, η1×K〉. Note that the
definitions above rely solely on the monadic structure of B.

In [3, 2] a set of component combinators have been defined upon Cp in a
similar parametric way and their properties studied. In particular it was shown
that any function f : A −→ B can be lifted to Cp as pfq = 〈∗ ∈ 1, η(1×B) · (id×
f)〉. Also defined were both a wrapping mechanism p[f, g] which encodes the pre-
and post-composition of a component with Cp-lifted functions, and three tensors,
capturing, respectively, external choice (� : I + J −→ O + R), parallel (� :
I×J −→ O×R) and concurrent (� : I+J+I×J −→ O+R+O×R) composition,
given components p : I −→ O and q : J −→ R. When interacting with p � q :
I + J −→ O + R, the environment chooses either to input a value of type I or
one of type J , which triggers the corresponding component (p or q, respectively),
producing the relevant output. In its turn, parallel composition corresponds
to a synchronous product: both components are executed simultaneously when
triggered by a pair of legal input values. Note, however, that the behaviour effect,
captured by monad B, propagates. For example, if B can express component
failure and one of the arguments fails, the product will fail as well. Finally,
concurrent composition combines choice and parallel, in the sense that p and
q can be executed independently or jointly, depending on input. Generalized
interaction is catered through a ‘feedback’ mechanism on a subset of the inputs.



On Refinement of Generic State-based Software Components 5

3 Interface Refinement

Component interface refinement is concerned with type compatibility. The ques-
tion is whether a component can be transformed, by suitable wiring, to replace
another component with a different interface. As the structure of components
interface types encodes the available operations, this may capture situations of
extension of functionality, in the sense that the ‘concrete’ component may in-
troduce new operations. In the context of object-orientation, this is often called
design sophistication (rather than refinement) and it is known not to be a congru-
ence with respect to typical process combinators (see e.g., [17]). If we structure
component input and output parameters as an operations’ signature, interface
refinement can also be seen as induced by a signature morphism, as in e.g., [13].

To motivate our own approach, consider, from [3], the following law express-
ing commutativity of choice:

p � q ∼ (q � p)[s+, s+] (4)

where s+ : I +J −→ J +I is a natural isomorphism capturing + commutativity.
The law states that p � q and q � p are bisimilar up to isomorphic wiring. This
means that the observational effect of component p� q can be achieved by q �p,
providing the interface of the latter is converted to the interface of the former.
Such a conversion is achieved by composition with the appropriate wires, leading
to a notion of replaceability.

Definition 1 Let p and q be components. We say that p : I −→ O is replaceable
by q : I ′ −→ O′, or q is a replacement of p, and write plq if there exist functions
w1 : I −→ I ′ and w2 : O′ −→ O, to be referred to as the replacement witnesses,
such that

p ∼ q[w1, w2] (5)

Furthermore, components p and q are interchangeable if each of them is a re-
placement of the other. Formally,

p + q iff p l q ∧ q l p (6)

Clearly, p � q + q � p, using isomorphism s+ as a wire in both cases. In
general, p + q whenever w1 and w2 in (5) are isomorphisms.

Lemma 1. Replaceability (l) is a preorder on components

Proof. Clearly, l is reflexive because p l p is witnessed by p ∼ p[id, id]. On the
other hand, if p l q and q l r hold, there exist w1, w2, w3 and w4 such that
p∼ q[w1, w2] and q ∼ r[w3, w4]. Thus, a composition result on wrapping [2] and
transitivity of ∼, entails p∼ r[w1 · w3, w4 · w2], i.e., p l r.

2



6 Sun Meng and Lúıs S. Barbosa

Using l and +, some component laws in [2], as (4) above, can be presented
in a ‘wiring free’ form. As another example consider the law relating concurrent
composition with choice,

pι1q ; (p � q) ∼ (p � q) ; pι1q

which gives rise to two replacement inequations:

pι1q ; (p � q) l p � q and (p � q) ; pι1q l p � q

Finally, the statement that every component p can replace an inert component
can be expressed as an interface refinement situation: inert l p.

Relation l, however, fails to be a pre-congruence with respect to the compo-
nent operators introduced in [3]. It is easy to check that �, � and �, as well as
wrapping are preserved, i.e., if p l p′ then, for any q, f and g, p[f, g] l p′[f, g],
p � q l p′ � q and, similarly, for the other two tensors. But things are different
with respect to sequential composition and feedback. In these cases, the replaced
expression may even become wrongly typed.

What p l p′ means is that component p can be replaced in any context by
p′[w1, w2], for any functions w1, w2 witnessing the fact. The explicit reference to
them is actually required, something which is not completely satisfactory in a
refinement situation, although common in similar settings (cf. [17]).

4 Forward and Backward Morphisms

Interface refinement is essentially concerned with plugging adjustment. Behaviour
refinement, on the other hand, affects the internal dynamics of a component while
leaving unchanged its external interface: it takes place inside each hom-category
of Cp. Intuitively component p is a behavioural refinement of q if the behaviour
patterns observed from p are a structural restriction, with respect to the be-
havioural model captured by monad B, of those of q. To make precise such a
‘definition’ we shall first describe behaviour patterns concretely as generalized
transitions.

Actually, just as transition systems can be coded back as coalgebras, any
coalgebra 〈U, p : U −→ TU〉 specifies a (T-shaped) transition structure over its
carrier U . For extended polynomial Set endofunctors4 such a structure may be
expressed as a binary relation −→p⊆ U × U , defined in terms of the structural
membership relation ∈T⊆ U × T U , i.e.,

u −→p u′ iff u′ ∈T p u

4 The class inductively defined as the least collection of functors containing the identity
Id and constant functors K for all objects K in the category, closed by functor
composition and finite application of product, coproduct, covariant exponential and
finite powerset functors.



On Refinement of Generic State-based Software Components 7

where ∈T is defined by induction of the structure of T:

x ∈Id y iff x = y

x ∈K y iff false

x ∈T1×T2 y iff x ∈T1 π1 y ∨ x ∈T2 π2 y

x ∈T1+T2 y iff

{
y = ι1 y′ ⇒ x ∈T1 y′

y = ι2 y′ ⇒ x ∈T2 y′

x ∈TK y iff ∃k∈K . x ∈T y k

x ∈PT y iff ∃y′∈y. x ∈T y′

Notice that, given x ∈ U , X ∈ TU and a function h : U −→ V , if x ∈T X then
h x ∈T Th X, as it may be shown by induction on the polynomial structure,
resorting to the definition of ∈T and functoriality. Similarly, the dynamics of
p : I −→ O, based on functor B(Id × O)I , can be expressed in terms of the
following transition relation:

u
〈i,o〉−→p u′ iff 〈u′, o〉 ∈B (pu) i

In this setting, a possible (and intuitive) way of regarding component p as a
behavioural refinement of q is to consider that p transitions are simply preserved
in q. For non deterministic components this is understood simply as set inclu-
sion. But one may also want to consider additional restrictions. For example, to
stipulate that if p has no transitions from a given state, q should also have no
transitions from the corresponding state(s). Or one may adopt the dual point of
view requiring transition reflection instead of preservation. In any case the same
basic question arises: how can such a refinement stituation be identified?

In data refinement, as mentioned above, there is a ‘recipe’ to identify a re-
finement situation: look for a retrieve function to witness it. I.e., a morphism in
the relevant category, from the ‘concrete’ to the ‘abstract’ model such that the
latter can be recovered from the former up to a suitable notion of equivalence,
though, typically, not in a unique way.

In our components’ framework, however, things do not work this way. The
reason is obvious: component morphisms are (seed preserving) coalgebra mor-
phisms which are known (e.g., [14]) to entail bisimilarity. Therefore we have to
look for a somewhat weaker notion of a morphism between coalgebras.

First of all recall that a component morphism from p to q is a seed preserving
function h : Up −→ Uq such that

B(h× id) · ap = aq · (h× id) (7)

In terms of transitions, equation (7) is translated into the following two require-
ments (by a straightforward generalization of an argument in [14]):

u
〈i,o〉−→p u′ ⇒ h u

〈i,o〉−→q h u′ (8)

h u
〈i,o〉−→q v′ ⇒ ∃u′∈U . u

〈i,o〉−→p u′ ∧ v′ = h u′ (9)



8 Sun Meng and Lúıs S. Barbosa

which jointly state that, not only p dynamics, as represented by the induced
transition relation, is preserved by h (8), but also q dynamics is reflected back
over the same h (9). Is it possible to weaken the morphism definition to capture
only one of these aspects? The answer is given as follows:

An order ≤ on a Set endofunctor T is defined in [9] as a functor ≤ which
makes the following diagram to commute:

PreOrd

��

(TU,≤TU )

��
Set

T
//

≤ 77ooooooo
Set concretely U //

66mmmmmmm
TU

This means that for any function h : X −→ Y , Th preserves the order, i.e.

x1 ≤TX x2 ⇒ (Th) x1 ≤TY (Th) x2 (10)

In the sequel ≤ will be referred to as a refinement preorder. Then,

Definition 2 Let T be an extended polynomial functor on Set and consider two
T-coalgebras α : U −→ TU and β : V −→ TV . A forward morphism h : α −→ β
with respect to a refinement preorder ≤, is a function from U to V such that

T h · α ≤ β · h

Dually, h is called a backwards morphism if

β · h ≤ T h · α

The following lemma shows that such morphisms compose and can be taken as
witnesses of refinement situations:

Lemma 2. For T an endofunctor in Set, T-coalgebras and forward (respectively,
backward) morphisms define a category.

Proof. In both cases, identities are the identities on the carrier and composition
is inherited from Set. What remains to be shown is that the composition of
forward (respectively, backward) morphisms yields again a forward (respectively,
backward) morphism. So, let h : α −→ β and k : β −→ γ be two forward
(respectively, backward) morphisms. Then



On Refinement of Generic State-based Software Components 9

(forward case)

T(k · h) · α

= { T functor }

Tk · (Th · α)

≤ { h forward and (10) }

Tk · (β · h)

= { · associative }

(Tk · β) · h

≤ { k forward }

(γ · k) · h

= { · associative }

γ · (k · h)

(backward case)

γ · (k · h)

= { · associative }

(γ · k) · h

≤ { k backward }

(Tk · β) · h

= { · associative }

Tk · (β · h)

≤ { h backward and (10) }

Tk · Th · α

= { T functor }

T(k · h) · α

2

Such a split of a coalgebra morphism, witnessing a bisimulation equation, into
two conditions, makes it possible to capture separately transition preservation
and reflection. To prove the next result, however, it is necessary to impose an
extra condition on the refinement preorder ≤ expressing its compatibility with
∈T: for all x ∈ X and x1, x2 ∈ TX,

x ∈T x1 ∧ x1 ≤ x2 ⇒ x ∈T x2 (11)

Lemma 3. Let T be an extended polynomial functor in Set, and α and β two
T-coalgebras as above. Let −→α and −→β denote the corresponding transition
relations. A forward (respectively, backward) morphism h : α −→ β preserves
(respectively, reflects) such transition relations.

Proof. Preservation follows from

u −→α u′

≡ { −→ definition }

u′ ∈T α u

⇒ { ∈T definition }

h u′ ∈T (Th · α) u

≡ { h forward and (11) }

h u′ ∈T (β · h) u

≡ { · associative and −→ definition }

h u −→β h u′



10 Sun Meng and Lúıs S. Barbosa

To establish reflection suppose that h u −→β v′, i.e., v′ ∈T (β · h) u. As h is a
backward morphism we have β · h ≤ T h · α, which, together with requirement
(11), entails v′ ∈T (T h · α) u. This implies the existence of a state u′ ∈ U such
that v′ = h u′ and u′ ∈T α u, i.e., u −→α u′.

2

5 Behaviour Refinement

The existence of a forward (backward) morphism connecting two components
p and q witnesses a refinement situation whose symmetric closure coincides, as
expected, with bisimulation. In the sequel we will restrict ourselves to forward
refinement5 and define behaviour refinement as the existence of a forward mor-
phism up to bisimulation. Formally,

Definition 3 Component p is a behaviour refinement of q, written qEp, if there
exist components r and s such that p ∼ r, q ∼ s and a (seed preserving) forward
morphism from r to s.

The exact meaning of a refinement assertion q E p depends, of course, on the
concrete refinement preorder ≤ adopted. Let us consider a few possibilities.

– T-structural inclusion, defined by x ≤ y iff ∀e∈Tx
. e ∈T y, seems inadequate

because the transition relation preserved by a forward morphism is not
〈i,o〉−→p,

but simply −→p, and, therefore, blind to the outputs produced. This suggests
an additional requirement on refinement preorders for Cp components: their
definition on a constant functor K is equality on set K, i.e., x ≤K y iff
x =K y so that transitions with different O-labels could not be related.

– Building on this idea, we arrive to a first (good) example:

x⊆Id y iff x = y

x⊆K y iff x =K y

x⊆T1×T2 y iff π1 x⊆T1 π1 y ∧ π2 x⊆T2 π2 y

x⊆T1+T2 y iff

{
x = ι1 x′ ∧ y = ι1 y′ ⇒ x′ ⊆T1 y′

x = ι2 x′ ∧ y = ι2 y′ ⇒ x′ ⊆T2 y′

x⊆TK y iff ∀k∈K . x k ⊆T y k

x⊆PT y iff ∀e∈x∃e′∈y. e⊆T e′

A forward refinement of non deterministic components based on ⊆T captures
the classical notion of nondeterminism reduction.

5 A similar study can be made about backward refinement, although the underlying
intuition seems less familiar.



On Refinement of Generic State-based Software Components 11

– However, this preorder can be tuned to more specific cases. For example,
the following ‘failure forcing’ variant — ⊆E

T , where E stands for ‘emptyset’
—- guarantees that the concrete component fails no more than the abstract
one. It is defined as ⊆T by replacing the clause for the powerset functor by

x ⊆E
PT y iff (x = ∅⇒ y = ∅) ∧ ∀e∈x∃e′∈y. e⊆T e′

– Relation ⊆T is inadequate for partial components: refinement would collapse
into bisimilarity, instead of entailing increasing definition in the implementa-
tion. An alternative is relation ⊆F

T (F standing for ‘failure’) which replaces
the sum clause in ⊆T by

x ⊆F
T1+T2

y iff


x = ι1 x′ ∧ y = ι1 y′ ⇒ x′ ⊆T y′

x = ι2 ∗ ⇒ y = ι2 ∗
y = ι2 ∗ ⇒ true

To illustrate behaviour refinement, consider the lossy buffer LBuff introduced
in section 2, and a deterministic buffered channel Buff specified as a coalgebra
M∗ −→ (M∗ × (1 + M))M+1 with nil as the initial state, and dynamics given
by

aBuff〈u, put m〉 = 〈m : u, ι1 ∗〉
aBuff〈u, pick〉 = 〈tail u, ι2 (head u)〉

To establish LBuff EBuff it is required first to embed the latter into the space of
non-deterministic systems. This is achieved by a (natural) transformation from
(Id × O)I to P(Id×O)I canonically extending function sing x = {x} which is a
monad morphism from the identity to the powerset monads — the behaviour
models underlying Buff and LBuff, respectively. Then, it is immediate to verify
that the identity function on state space M∗ is a forward morphism, with respect
to the first preorder given above, i.e.,

(id×O) · aBuff ⊆ aLBuff

Another behaviour refinements of LBuff would arise by choosing different
strategies for delivering elements from the buffer. Here are some possibilities,
each of them is witnessed by a forward morphism:

– the queuing strategy, leading to the specification Buff as above;
– the stack strategy (LIFO deliver);
– the priority strategy (in which elements carry some probability information);
– the lift strategy (a linear order on the elements is served in alternating

increasing and decreasing order).

In the priority strategy, for example, elements are labelled with a ‘show-up’
probability, introducing an elementary form of probabilistic nondeterminism. As
detailed in [3], the corresponding behaviour monad is generated by a monoid
M = 〈[0, 1],min,×〉 with the additional requirement that for each m ∈ M ,∑

(Pπ2)m = 1. ‘Probabilistic’ components can be embedded into the space of
‘plain nondeterministic’ ones where behaviour refinement, wrt ⊆T, is discussed.



12 Sun Meng and Lúıs S. Barbosa

6 Simulations

In this section we prove that behaviour refinement, as characterized above, can
be established by a simulation relation R ⊆ Up × Uq on the state spaces of the
‘concrete’ (p) and the ‘abstract’ (q) components. Again, the notion of a simula-
tion depends on the adopted refinement preorder ≤. To proceed in a generic way,
we adopt an equally generic definition of simulation due to Jacobs and Hughes
in [9]:

Definition 4 Given a Set endofunctor T and a refinement preorder ≤, a lax re-
lation lifting is an operation Rel≤(T) mapping relation R to ≤ ◦Rel(T)(R) ◦ ≤,
where Rel(T)(R) is the lifting of R to T (defined, as usual, as the T-image of
inclusion 〈r1, r2〉 : R −→ U × V , i.e., 〈Tr1,Tr2〉 : TR −→ TU × TV ).

Given T-coalgebras α and β, a simulation is a Rel≤(T)-coalgebra over α and
β, i.e., a relation R such that, for all u ∈ U, v ∈ V , 〈u, v〉 ∈ R ⇒ 〈α u, β v〉 ∈
Rel≤(T)(R).

In order to prove that simulations are a sound proof technique to establish
behaviour refinement we consider separately functional and non functional sim-
ulations. In any case, however, simulations are assumed to be left total relations
6 as we do not consider partial refinements.

Lemma 4. Let p and q be T-components over state spaces U and V , respectively.
For a given refinement preorder ≤, if there exists a simulation R ⊆ U ×V which
is both functional and left total, then p is a (forward) refinement of q.

Proof. By assumption, simulation R is the graph of a function. Now, define a
forward morphism h : U → V as h u = v iff 〈u, v〉 ∈ R. Because R is a
simulation, for every pair 〈u, v〉 ∈ R, there should exist x ∈ TU , y ∈ TV , such
that α u ≤TU x, y ≤TV β v, and 〈x, y〉 ∈ Rel(T)(R), i.e., y = Th(x). By (10) and
α u ≤TU x we get Th(α u) ≤TV Th(x), and thus Th(α u) ≤TV β v. Since R is
left total, h is defined for all u ∈ U , making the following diagram to commute:

u
h - h u = v

α u (≤TU α u)

α
?

Th- Th(α u)≤TV β v

β

?

2

Consider, now, the non-functional case (e.g. whenever two bisimilar but not equal
abstract states are represented by a single concrete state). To prove soundness
in this case, the state space of the ‘concrete’ component p is artificially inflated
with an auxiliary state space such that a forward morphism can be found.
6 A relation R ⊆ U × V is functional if every u ∈ U is related to at most one v ∈ V

and left total if for all u ∈ U , there exists some v ∈ V such that 〈u, v〉 ∈ R.



On Refinement of Generic State-based Software Components 13

Definition 5 Given a coalgebra (U,α : U → TU) and a set W , define the
extension of α to W as any coalgebra α̂ over Û = U×W such that Tπ1◦α̂ = α◦π1.

Clearly this auxiliary state space does not interfere with the behaviour of α: π1

being a coalgebra morphism, the two coalgebras are bisimilar.
Given components p and q and a non-functional simulation R an auxiliary

coalgebra p̂ can be defined taking R as the state space (which, because R is
left total, is just an extension of p in the sense of the definition above) and the
rule (u′, v′) ∈T α̂(u, v) iff u′ ∈T apu ∧ v′ ∈T aqv as its dynamics. With this
construction we prove that

Lemma 5. (Soundness) To prove q E p it is sufficient to exhibit a left total
simulation R relating components p and q.
Proof. If R is functional the result follows from lemma 4. Otherwise construct p̂
as above: clearly p is bisimilar to p̂ and the graph of projection π2 from its state
space to V defines a simulation between p̂ and q. By definition, p ∼ p̂ and the
existence of a (seed-preserving) forward morphism from p̂ to q entails q E p.

2

Finally notice that, although E is transitive, it is not always the case that
simulations are closed under (relational) composition. This would be a conse-
quence of Rel≤(T) preserving composition, but, in general, only the following
weaker result holds:

Lemma 6. Any refinement preorder ≤ verifies

Rel≤(T)(R ◦ S) ⊆ Rel≤(T)(R) ◦Rel≤(T)(S) and =TU ⊆ Rel≤ (T)(=U )

Proof. For the first statement note that 〈u, w〉 ∈ Rel≤(T)(R ◦ S) equivales

∃u′, w′.(u ≤ u′ ∧ 〈u′, w′〉 ∈ Rel(T)(R ◦ S) ∧ w′ ≤ w)
{because Rel(T)(R ◦ S) = Rel(T)(R) ◦Rel(T)(S)}

⇔∃u′, w′.(u ≤ u′ ∧ (∃v′.(〈u′, v′〉 ∈ Rel(T)(R) ∧ 〈v′, w′〉 ∈ Rel(T)(S))) ∧ w′ ≤ w)
⇔∃u′, w′, v′.(u ≤ u′ ∧ 〈u′, v′〉 ∈ Rel(T)(R) ∧ 〈v′, w′〉 ∈ Rel(T)(S) ∧ w′ ≤ w)
{introducing v = v′}

⇒∃u′, w′, v, v′.(u ≤ u′ ∧ 〈u′, v′〉 ∈ Rel(T)(R) ∧ v′ ≤ v)∧
(v ≤ v′ ∧ 〈v′, w′〉 ∈ Rel(T)(S) ∧ w′ ≤ w)

⇒∃v.〈u, v〉 ∈ Rel≤(T)(R) ∧ (v, w) ∈ Rel≤(T)(S)
⇔〈u, w〉 ∈ Rel≤(T)(R) ◦Rel≤(T)(S)

Then consider

=TU ⊆ ≤TU

= ≤TU ◦ =TU ◦ ≤TU = ≤TU ◦Rel(T)(=U )◦ ≤TU = Rel≤(T)(=U )

2



14 Sun Meng and Lúıs S. Barbosa

7 Discussion and Future Work

In this paper, two levels of refinement for (state-based) components have been
introduced. In particular, the notion of behavioural refinement parametric on a
model of behaviour captured by a strong monad B is, to the best of our knowl-
edge, new. It is generic enough to capture a number of situations, depending on
both B and the refinement preorder adopted. Nondeterminism reduction is just
one possibility among many others. Also note that Poll’s notion of behavioural
subtyping in [13], at the model level, emerges as a particular instantiation.

As mentioned in the introduction, the main motivation underlying this work
is the development of inequational laws in the context of the component calculus
proposed in [3]. Even though there is not enough space in this paper to introduce
the derived laws, let us take a brief glimpse. As a first example consider equation

p!Iq ∼ p ; p!Oq (12)

which does not hold for non trivial behaviour models. In fact the Cp lifting of
the final arrow (as the lifting of any other function) cannot fail, whereas the
the right hand side may fail (whenever p does). Function ! : Up × 1 −→ 1 is,
however, a forward morphism, with respect to ⊆F

T for partial components, or
to both ⊆T and ⊆E

T for non deterministic ones. For this last case, note that
ap!Oq·! = λ i ∈ I. {∗}, whereas B(!× id)I · ap;p!Oq 〈u, ∗〉 equals

λ i ∈ I .

{
{∗} iff (ap u) (i) 6= ∅
∅ iff (ap u) (i) = ∅

Therefore, p!Iq E p ; p!Oq. Similarly, the cancellation law for parallel composi-
tion �, which involves a split-like construction for components (which, differ-
ently from the split of functions [4], is not an universal arrow), is, in general, a
refinement result:

p E 〈p, q〉 ; pπ1q (13)

witnessed by projection π1 : Up × Uq × 1 → Up as a forward morphism. Yet
another example is given by the (pseudo) naturality of pMq, where M is the
diagonal function, which could be written as

pMq ; (p � p) E p ; pMq (14)

Finally, monotonicity of E with respect to both pipeline composition and the
tensor products can be proved by defining a simulation in terms of the argument
simulations: if qEp and tEr are witnessed by R1 and R2, respectively, refinement
q � t E p � r, with � standing for ;,�,� or � is witnessed by simulation R =
{((up, ur), (uq, ut)) | (up, uq) ∈ R1 ∧ (ur, ut) ∈ R2}.

Currently we are working on the full development of the refinement calculus
and, in particular, in its application to the proof of consistency between static
and dynamic diagrams in Uml in the context of [12]. Whether this approach
scales up to be useful in the classification and transformation of software ar-
chitectures [1] remains a research question. Further comparison with refinement



On Refinement of Generic State-based Software Components 15

theories in both process algebra (as in, e.g., [5]) and state-based systems (for
example in [6]) is also in order.

Acknowledgements. This piece of research was carried on in the context of
the PURe Project (Program Understanding and Re-engineering) supported by
Fct (the Portuguese Foundation for Science and Technology) under contract
POSI/ICHS/44304/2002. The work of Sun Meng was further supported by the
National Natural Science Foundation of China under grant no. 60273001.

References

1. R. Allen and D. Garlan. A formal basis for architectural connection. ACM TOSEM,
6(3):213–249, 1997.

2. L. S. Barbosa. Towards a Calculus of State-based Software Components. Journal
of Universal Computer Science, 9(8):891–909, August 2003.

3. L. S. Barbosa and J. N. Oliveira. State-based components made generic. In H. P.
Gumm, editor, CMCS’03, Elect. Notes in Theor. Comp. Sci., volume 82.1, 2003.

4. R. Bird and O. Moor. The Algebra of Programming. Series in Computer Science.
Prentice-Hall International, 1997.

5. P. Degano, R. Gorrieri, and G. Rosolini. A categorical view of process refinement.
In J. de Bakker, G. Rozenberg, and J. Rutten, editors, Proc. REX Workshop on
Semantics, pages 138–154. Springer Lect. Notes Comp. Sci. (666), 1992.

6. J. Derrick and E. Boiten. Calculating upward and downward simulations of state-
based specifications. Information and Software Technology, 41:917–923, July 1999.

7. M. Fokkinga and R. Eshuis. Comparing refinements for failure and bisimulation
semantics. Technical report, Faculty of Computing Science, Enschede, 2000.

8. C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica,
1:271–281, 1972.

9. B. Jacobs and J. Hughes. Simulations in coalgebra. In H. P. Gumm, editor,
CMCS’03, Elect. Notes in Theor. Comp. Sci., volume 82.1, Warsaw, April 2003.

10. C. B. Jones. Systematic Software Development Using Vdm. Series in Computer
Science. Prentice-Hall International, 1986.

11. B. Liskov. Data abstraction and hierarchy. SIGPLAN Notices, 23(3), 1988.
12. S. Meng and B. Aichernig. Towards a Coalgebraic Semantics of UML: Class Dia-

grams and Use Cases. Technical Report 272, UNU/IIST, January 2003.
13. E. Poll. A coalgebraic semantics of subtyping. Theorectical Informatica and Aplli-

cations, 35(1):61–82, 2001.
14. J. Rutten. Universal coalgebra: A theory of systems. Theor. Comp. Sci., 249(1):3–

80, 2000. (Revised version of CWI Techn. Rep. CS-R9652, 1996).
15. C. Szyperski. Component Software, Beyond Object-Oriented Programming.

Addison-Wesley, 1998.
16. P. Wadler and K. Weihe. Component-based programming under different

paradigms. Technical report, Dagstuhl Seminar 99081, February 1999.
17. J. Woodcock and J. Davies. Using Z: Specification, Refinement and Proof.

Prentice-Hall International, 1996.


