
Prototyping ProcessesL. S. BarbosaAbstractConstruction and observation are two basic notions in Computer Sciencecorresponding to precise dual mathematical concepts: those of algebra andcoalgebra. This paper introduces a simple coalgebraic model for concurrentprocesses and discusses its animation in the declarative language Charity.It is argued that the ability to reason in an uniform way about data andbehaviour, provides an unifying approach to functional prototyping of softwarespeci�cations.Keywords: Coalgebraic models, prototyping, higher-order programming.1 IntroductionThe success of formal approaches to software engineering depends a great deal onthe interplay between suitable notions of speci�cation, prototyping and re�nement.Given a formal speci�cation notation, prototyping allows for a stepwise develop-ment style. Each design stage being immediately animated, quick feedback aboutits behavior is gathered within the design team. Re�nement, on the other hand,stands for the process of calculating implementations from speci�cations over con-crete architectural platforms.Functional programming languages have been a favorite vehicle for rapid proto-typing of formal speci�cations, at least since Peter Henderson's me too [13] proposalfor animatingVdm [19]. Several animation tools have emerged, both in academia anindustry, such as Raise [9], Vdm-sl [7], B Tool [21] and Camila [2]. The directuse of modern functional languages supporting rich type systems, such as Haskell[16] or Standard ML [12] in system's modeling has also been advocated.However, the increasing demand for distributed (even mobile) applications is chal-lenging the application of formal methods, entailing the need to scale up this picture.In such systems, both information and computational power are disseminated alonga (eventually loose) network of autonomous and interacting agents. The key in-gredient to control | in terms of which speci�cations are stated | becomes theobservational pattern of the components involved and their possible combinations.Models which, being non isomorphic at the data level, behave in a similar way \asfar as we can see", tend to be identi�ed, in practice.Dep. Inform�atica, Univ. Minho, Portugal. E-mail: lsb@.di.uminho.ptWork partially supported by LogComp under PRAXIS XXI contract 2/2.1/TIT/1658/95.

APPIA-GULP-PRODE'99The work reported here is part of a research agenda on extending the speci�cation- prototyping - re�nement trilogy to the development of concurrent and distributedsystems. Such systems can be seen as transition structures | or coalgebras [26] |whose shape is determined by a signature of observers and actions on a (hidden)state space. The concept is dual to that of an (inductive) data structure, suchas sequences or generalized trees, which emerges canonically as a term algebra fora signature of constructors. In fact, the intuitive symmetry between constructionand observation (data and behaviour) is mirrored, semantically, on the algebra vscoalgebra duality.In this context, the paper discusses how a prototyping kernel for processes can bebuilt on top of a language which, being functional in style, provides the necessarycategorical constructions to de�ne both inductive and coinductive datatypes, i.e.,canonical models for algebras and coalgebras. Charity [5] is such a language.Section 2 provides a brief introduction to Charity and, at the same time, dis-cusses how the familiar non inductive structures of sets and maps, widely used inspeci�cations, can be de�ned. Then, in section 3, more elaborated coinductive typesare introduced as prototypes of processes. An example is discussed and a fragmentof a process algebra de�ned. Section 4 claims that the re�nement of processes' statespaces may induce richer behavioural patterns and shows how this development canbe animated in Charity. Finally, some possible generalizations are briey men-tioned.2 Prototyping in CharityUnlike more traditional functional languages, Charity is not based on the �-calculus. Its basis is the term logic of distributive categories enriched with a def-initional mechanism for datatypes [6]. This means, in particular, that functioncomposition, instead of function application, is taken as the fundamental primitivein the language. Moreover, the basic building blocks of Charity programs arecombinators arising as universal arrows in category theory.What makes Charity an interesting alternative for prototyping purposes, ifcompared with other declarative languages, is the very general way it provides forde�ning datatypes as algebras or coalgebras for functors.It is well known that a speci�cation signature, i.e., the formal analog to a softwarecomponent interface, can be expressed by an endofunctor on an appropriate category,stressing the fact that operations act uniformly both on types and type morphisms.Given one such functor T, a T-algebra is simply an arrow from TS to a S, S beingsaid the carrier of the algebra. Therefore, an algebra speci�es how values in thecarrier are built from its constructors.This simple notion is extremely expressive. In particular, there is a one to onecorrespondence between algebras for certain Set-functors and the usual notion ofan algebra in Universal Algebra, Set denoting the familiar category of sets and set-theoretical functions. By reversing the arrow, one gets the dual notion of a coalgebra:an arrow from S to TS which speci�es how values of the carrier, now thought of as

Prototyping Processesa state space, are observed or updated by the operations in T 1.Consider, to begin with, theCharity declaration of the natural numbers, de�nedinductively by the two familiar constructors.data nat -> C = zero: 1 -> C| succ: C -> C.Its purpose is twofold. On the one hand it declares the signature of the naturalnumbers, in the form of a functor TX = 1 + X, 1 standing for the �nal object inthe category (\the" singleton set, if Set is assumed). Simultaneously, it provides acanonical algebra for T, i.e., an arrow from TW to the set W of terms, which isinitial in the sense that every other T-algebra factorizes through it. In general, itis the existence and uniqueness of such an arrow that makes possible de�nition andproof by induction, respectively. Such datatypes are then classi�ed as inductive.From a declaration like nat above one gets for free a case expression (determinedby the nat constructors, zero and succ), a map construction, i.e. the action of Ton functions, and a general fold operation. For an arbitrary algebra � : TS �! S,the last is known as a catamorphism, written as ([�])T. It is nothing more than thecomputer science nick name for the universal arrow from the initial algebra to �.This kind of inductive, tree-like structures, are the functional programmer favoritestu�. In the formal methods community, however, the data modeling primitive se-lected as \�rst choice", when facing a design problem, would most probably be somekind of map, expressing a functional dependence. This is a subtle, but expressive,shift of perspective.In fact, such unordered structures, like maps or sets, are easier to observe thanto construct (in an e�ective computational sense). Of course, they have a more orless obvious implementation in functional languages as certain kinds of sequences.The prototype of a map in Camila, for example, is a sequence of pairs. Operationsover maps are translated to operations over sequences. We will look here for moredirect representations.2.1 PowersetOur starting point is to represent sets by their characteristic functions. Note that,however, the exponential type (the type BA of functions from a type A to B) isnot primitive in Charity. This is because the underlying categorical model is notcartesian closed, just distributive, and therefore functions are not values. The wayto introduce function spaces resorts to the possibility of de�ning higher-order types,as a particular case of coinductive datatypes [27]. Let us see how.The de�nition mechanism for coinductive datatypes is similar to the one providedfor the inductive case. A speci�cation is given of the di�erent ways in which sucha type can be observed, but nothing is said about how to construct its values.Formally a coinductive datatype for a signature functor T is a �nal T-coalgebra,i.e., a transition structure of shape T over the space of all possible observations.1The reader is referred to [18] for an introduction to the use of algebras and coalgebras incomputing.

APPIA-GULP-PRODE'99In this context, consider the following representation for 2A, the powerset of A.data C -> set(A) = in: C -> A => bool.Here a set is seen as a structure accessed, or observed, by a predicate (the observerin) codifying set membership: all one is able to know about a set is whether aparticular value is in it. Technically, this amounts to saying that set(A) is the �nalcoalgebra for the constant functor TX = 2A. A coalgebra is just an arrow from atype X to TX. Being �nal means it is unique (or universal) among all such arrows.Of course, TX being a constant functor, the state space for TX-coalgebras becomesirrelevant.Simple operations on sets are de�ned as operations on predicates, as in, for ex-ample, the following representation of the empty set, set union and di�erence.def empty : 1 -> set(A)= () => (in: x => false).def union: set(A) * set(A) -> set(A)= (s1,s2) => (in: x => or(in(x,s1),in(x,s2))).def diff: set(A) * set(A) -> set(A)= (s1,s2) => (in: x => and(in(x,s1), not in(x,s2))).As the datatype set(A) is parametric in A, some operations will require a speci�cde�nition of equality on A, as is the case of singleton set formation.def sing{equal: A * A -> bool}: A -> set(A)= a => (in: x => equal(a,x)).Such parameterization is straightforward in Charity. For example, ZF abstractionis just written as,def zf{pred: A -> bool}: set(A) -> set(A)= s => (in: x => and (in(x,s), pred(x))).Finally, setffg, for any function f from A to B, denotes the datatype action onmorphisms 2.There are however some familiar operations over sets that can not be programmedin this way as they rely on (the axiom of) choice. Computationally this means thatthey presuppose the existence of an ordered representation of a universe with respectto which the sets of interest are de�ned. It is typically the case of set equality, subsetinclusion and monoidal reductions: all of them require the ability to pick an elementfrom a set.2Technically, set(-) is the co-type functor for the bifunctor (A;X) 7! 2A [8].

Prototyping ProcessesOur solution to this problem consists in isolating the choice dependent operationsand providing a separate speci�cation of a universe and a choice function over it.Sequences o�er a simple implementation, but in Charity one is not limited to �nitestructures. Therefore, a typical encoding of choice is made over possible in�nitestreams. They are known as colists and de�ned coinductively bydata C -> colist(A) = delist: C -> SF(A * C).where SF(X) is the exception construction, i.e., the initial algebra for TX �= 1+X.Having de�ned the universe U(A) as colist(A), two choice functions are provided,the second accepting an additional �lter predicate 3.def choice: set(A) * U(A) -> SF(A)= (s, u) => col_first_st{ x => in(x,s) } u.def pchoice{pred}: set(A) * U(A) -> SF(A)= (s, u) => col_first_st{ x => and(in(x,s), pred(x)) } u.def choice: set(A) * U(A) -> SF(A)= (s, u) => col_first_st{ x => in(x,s) } u.def pchoice{pred}: set(A) * U(A) -> SF(A)= (s, u) => col_first_st{ x => and(in(x,s), pred(x)) } u.2.2 MapsA direct implementation of maps, also as a coinductive datatype, follows almost thesame lines. The space of maps from A to B, written as A*B, is de�ned asdata C -> maps(A, B) = ap: C -> A => SF(B).stating that elements of A*B are observed through evaluation (the observer ap, for\apply"), which may return an unde�ned value. The identity mapping is de�ned bya case expression and composition expressed in terms of the exception type values,def mid: set(A) -> maps(A, A)= s => (ap: a => { true => ss(a)| false => ff} in(a,s)).def mcomp: maps(A, B) * maps(B, C) -> maps(A, C)= ((ap: t), (ap: r)) => (ap: a => compose_SF{t,r} a).3The SF(-) type is extensively used in the sequel. Its constructors are concretely namedff : 1 �! SF(-) and ss : SF(-) �! SF(-). The function col first st returns the �rst elementof a colist satifying a given predicate.

APPIA-GULP-PRODE'99Typical operations over maps, such as the ones in the meta-language of Vdm, areeasily supported. For example, consider the following de�nitions of overwrite anddomain restriction.def over: maps(A,B) * maps(A,B) -> maps(A,B)= (m1,m2) => (ap: x => { ff => ap(x,m1)| _ => ap(x,m2)} ap(x,m2)).def dr: maps(A,B) * set(A) -> maps(A,B)= (m,s) => (ap: x => { true => ap(x,m)| false => ff} in(x,s)).Also notice that, being parametric in two arguments, its action on morphisms isdivided in three cases: acting on the domain through f, mapsff,x => xg, on therange through g, mapsfx => x,gg, or both, mapsff,gg.In traditional formal speci�cation methods one is used to restrict herself to �nitemaps. Such restriction, however is not essential in our Charity implementation.The following is an example of an in�nite map which maps every even naturalnumber to its successor.def mm: 1 -> maps(nat,nat)= () => (ap: n => {true => ss(succ n) | false => ff} even(n)).3 From Data to Processes3.1 ProcessesThe last example above suggests that coinductive types are closer to the notion ofa process, as a computational entity with a proper state space persisting in time,than to the idea of a data container.To illustrate how processes can be dealt with in Charity, consider the speci�-cation of a (simpli�ed fragment of a) bank account management system (referred toas Bams in the sequel) starting from the following signature:bal : Id�X �! Am (show balance)hol : Id�X �! 2Ho (show set of account holders)cre : Id� Am�X �! X (credit)deb : Id� Am�X �! X (debit)aho : Id�Ho�X �! X (add account holder)rho : Id�Ho�X �! X (remove account holder)where Am, Id and Ho stand for the types modelling amounts, account identi�ersand account holders, respectively. X models the state space of the Bams system.

Prototyping ProcessesNotice that the two �rst operations are pure observers, usually called attributes inthe object-orientation literature, both parameterized by the account identi�er. Onthe other hand, the last four are actions (or methods) which change the state spacewithout any immediately visible e�ect. This information may be collected into afunctor. Take the following as a �rst approximation.TX = AmId � (2Ho)Id �XId�Am+Id�Am+Id�Ho+Id�Ho (1)= AmId � (2Ho)Id �XId�(Am+Am+Ho+Ho) (2)Note that the main operator in the de�nition of T is a product, whereas in a functorarising from an algebraic signature coproducts are usually taken. In fact, in thelatter case one is concerned with the di�erent available ways to build values. Inthis case, however, the possibility of (pure) observations being carried in parallelcouldn't be discarded. Also observers and actions can be activated simultaneously,eventually by di�erent processes, as they are non interfering operations.In fact, one may argue that the system can process either the �rst attribute, thesecond one or both simultaneously. So, let us replace AmId � (2Ho)Id by (Am �2Ho)IdqId, where Id q Id is de�ned by the coproduct Id + Id + Id � Id. Theconstruction A q B behaves like a partial product (or an extended coproduct) andis so common that we decided to include it in the prototyping kernel.data amg(A, B) -> X = c0: A -> X| c1: B -> X| c01: A * B -> X.Another enhancement consists in introducing partiality. In fact, it is most un-likely that the above mentioned operations can be modeled by total functions. Ob-servers are clearly partial operations. This amounts to take as their output type theexception coproduct, modeled by SF(-), as explained above. T takes now the formTX = ((Am + 1)� (2Ho + 1))IdqId �XId�(Am+Am+Ho+Ho) (3)Actions could also be partial. However, partiality in this case should be absorbedby the identity function over the state space. This procedure caters for a distinctionbetween the usual data partiality and dynamic partiality, seen as the possibility oftermination, which arises by replacing X by X + 1. This leads us to the followinggeneral shape for coalgebras modelling this kind of processes: : S �! BC � SA (4)where A has the form of a coproduct (of action arguments) and B as well as C areusually a q construction. This is de�ned in Charity asdata S -> obj(A, B, C) = ob : S -> C => B| ac : S -> A => S.

APPIA-GULP-PRODE'99In this setting, the bank system is speci�ed by giving a concrete representationfor the state space and the operations. From the above signature for Bams onearrives to data BT = obj(Id * coprod(Am, Am, Ho, Ho),SF(Am) * SF(set(Ho)),amg(Id,Id))As a particular instance of this process type consider a coalgebra over a state spacede�ned as a map from account identi�ers to the respective balance and set of holders,i.e., def BSt = maps(Id, Am * set(Ho)).The process itself is introduced as a constant:def bams: 1 -> BT= () =>(| s => ob : x => { c0 i => (SFp0 ap(i,s), ff)| c1 j => (ff, SFp1 ap(j,s))| c01 (i, j) => (SFp0 ap(i,s), SFp1 ap(j,s))} x| ac : (i,x) =>{ s40 a => cre(s,(i, a))| s41 a => deb(s,(i, a))| s42 h => aHo(s,(i, h))| s43 h => rHo(s,(i, h))} x|) bseed.The code for the observers is straightforward: just apply the right argument to theright component of the state space. Note the possibility of observing the balanceand the set of holders simultaneously, either for the same account or not. As theresult of observing, say, the balance of a particular account may return unde�ned (if,for example, the account does not exist), a way is needed to either record this factor project the required information from the tuple. This is the purpose of functionsSPp0 and SPp1 4.Note that the actual process bams is a concrete coalgebra over a BSt variable.But what can be prototyped is only its behaviour, i.e., its canonical image in the�nal coalgebra. This kind of abstract process universes is exactly what Charityhas to o�er. Therefore bams is introduced as an anamorphism [8] for a concretecoalgebra , whose code is written between the (| and |) brackets.Anamorphims are the formal duals to catamorphisms, corresponding to the notionof unfolding in functional programming. In fact, the state of a process is just the type4The actual de�nition is, e.g., def SFp0: SF(A * B) -> SF(A) = ff => ff | ss(p) => ssp0(p). In the bams de�nition, s4i denotes the ith embedding in a 4 sumands coproduct.

Prototyping Processesover which unfold proceeds. Technically, given a T-coalgebra , the anamorphism[()]T is the unique arrow from to the �nal T-coalgebra.Finally, the anamorphism is applied to a seed value, bseed, specifying an initialvalue for the state space. The following diagram summarizes what's going on,BT !
// TBTBSt[()]T OO
// TBStT[()]T OO

1bseed OOwhere ! is the �nal coalgebra which emerges from the Charity declaration.The actual way in which the anamorphism is computed (and the process imagerevealed) resorts to lazy evaluation. In each action activation a new continuationprocess is returned upon which experimentation proceeds.3.2 A Process AlgebraHow do processes get composed? Algebraic, stateless software components arejoined together by functional composition, originating tree-like modular structures.The composition patterns for processes, on the other hand, are considerably richer.Firstly, the internal state of each process being composed cannot be discarded.Secondly, interaction among them proceeds during the overall computation. Theresult is a network of processes joined by the matching between the input and out-put parameters in their interface. The kind of connectives relevant are essentiallyvariants of parallel composition, restriction and renaming found in process algebras[22, 15, 14].Instead of de�ning such combinators on the y, our approach begins by organizingprocesses | understood as concrete coalgebras for some kinds of polynomial func-tors | in suitable categories. Then, the relevant compositional patterns emerge ascanonical constructions on the category, rather than being �xed by intuition. Suchconnectives have correspondents in di�erent processes categories (e.g., arising fromdi�erent families of functors), providing a remarkable level of genericity.From a methodological point of view this approach is in debt to Abramsky'sinteraction categories [1]. Our processes, however, are concretely de�ned over (also)concrete state spaces, leading to a rather di�erent structure. In particular, by thepresence of such state spaces, most diagrams, including the ones expressing identityand associativity of composition, only commute up to isomorphism. In consequence,we end up with a bicategorical structure, the overall approach being much closer towhat has been proposed by R. Walters and his team [20].Presenting in detail the bicategory PrT, in which processes like the Bams examplelive, is out of the scope of this paper (the interested reader is referred to [3]). Ourintention here is just to present Charity codi�cations of some of the relevantconnectives.

APPIA-GULP-PRODE'99Such connectives are, again, de�ned as anamorphisms. For example, the followingcorresponds to the synchronous execution of processes p and q | notice how theresult interface is expanded.def osyn: obj(A1, B1, C1) * obj(A2, B2, C2)-> obj(A1 * A2, B1 * B2, C1 * C2)= o =>(| (p,q) => ob: (x1, x2) => (ob(x1, p), ob(x2, q))| ac: (a1, a2) => (ac(a1, p), ac(a2, q))|) o.The corresponding abstract operator is a tensor product in PrT. Another tensor inPrT, giving a less strict interpretation of parallel composition, is opar. The intuitionis that, putting p and q side by side results in an (observable) increase of behaviour:not only the individual observers and actions of both processes are available, butthere is also the possibility of activating them concurrently (the disjointness of thetwo state spaces avoiding interference).def opar: obj(A1, B1, C1) * obj(A2, B2, C2)-> obj(amg(A1,A2), amg(B1,B2), amg(C1,C2))= o =>(| (p,q) => ob: x => { c0 c => c0 ob(c, p)| c1 d => c1 ob(d, q)| c01 (c,d) => c01 (ob(c, p), ob(d, q))} x| ac: x => { c0 a => (ac(a, p), q)| c1 b => (p, ac(b, q))| c01 (a,b) => (ac(a, p), ac(b, q))} x|) o.Interaction between two processes is achieved by connecting output to input gates.For the kind of processes discussed here, of T shape, output is only produced byobservers. With respect to input, however, there are two possibilities: the valuesgenerated by, say, process p can be supplied to q either as attribute parameters oras input to q actions.In the former case they are used to trigger q observers. The resulting processbecomes a coalgebra for T12(X) = DC �XA1qA2for T1(Y) = BC � Y A1 and T2(Z) = DB �ZA2, the shapes of p and q, respectively.In the latter case, by contrast, p output is an argument of a q action, C becomingan action in the composed process. The interface functor is thenT21(X) = DC2 �XAqC1for T1(Y) = BC1 � Y A and T2(Z) = DC2 � ZB, respectively. We call the resultingcombinators ohook and ahook, as their e�ect is to send a hook from the �rst to thesecond process, activating, respectively, observers or actions.

Prototyping Processesdef ohook: obj(A1, B, C) * obj(A2, D, B) -> obj(amg(A1,A2), D, C)= o =>(| (p,q) => ob: c => ob(ob(c, p), q)| ac: x => { c0 a => (ac(a, p), q)| c1 a' => (p, ac(a', q))| c01 (a,a') => (ac(a, p), ac(a', q))} x|) o.def ahook: obj(A, B, C1) * obj(B, D, C2) -> obj(amg(A,C1), D, C2)= o =>(| (p,q) => ob: c => ob(c, q)| ac: x => { c0 a => (ac(a, p), q)| c1 c => (p, ac(ob(c, p), q))| c01 (a,c) => (ac(a, p), ac(ob(c, p), q))} x|) o.Other process operators we have considered include restriction and renaming,both particular cases of pre- and post- composition with a function; coproduct,which corresponds to what is known as external choice in some process algebras;replication and general feedback.All of them are �rst de�ned in PrT. Then their Charity codi�cations as opera-tors on �nal (rather than arbitrary) T-coalgebras are calculated in a way such thata particular diagram is made to commute. Such a diagram states that the operatoris uniform in the universe of T-coalgebras. A su�cient, but not necessary, conditionfor this arises whenever the operator is induced by a natural transformation betweenthe origin and target T shapes [3].4 Animating a Re�nementThe main stream of our research is directed towards modelling interactive processesby concrete coalgebras over Set and building a re�nement calculus in this setting.Such a calculus helps not only in deriving distributed implementations of softwaresystems in a mathematically sound way but also in identifying procedural redun-dancy in existing systems [3].A particular sub-problem we have been studying is the e�ect of static re�ne-ment of state spaces in the overall process dynamics. At this level we resort to theSets calculus [24] for static data re�nement. Re�nement means, in this framework,an epimorphic transformation between sets introducing data redundancy, in a con-trolled (i.e., recoverable) way, in order to achieve greater conformity with a givenimplementation platform. This transformation presumably entails e�ciency.A Sets law is an (in)equation of the form A E�f B, stating that every instanceof A can be rei�ed into the corresponding instance of B, by adopting abstractionepimorphism f and provided that concrete invariant � is enforced over B. On

APPIA-GULP-PRODE'99the whole, and using the terminology of [23], the following abstraction invariant issynthesized: �ab : (a = f(b)) ^ �(b).One such law concerns map partition. For example, the Bams state space canbe factorized into two maps: one dealing with account balances and the other withholders' information management. More precisely we getId*Am� 2Ho E (Id*Am)� (Id*2Ho) (5)a re�nement witnessed by a surjection | the abstraction function | which joinsthe two maps into one.Such a state transformation leads to a possible distribution of the state spaceinto two independent processes. Moreover, independent actions can be carried outin parallel.Once calculated, such a re�nement can be e�ectively prototyped in Charity.The two development stages can even coexist as prototypes and the formal relationbetween them | the abstraction function | also turned into executable code.Without further comments, we present below this development step for the Bamsexample, since it is almost self-explanatory. We begin with the type declarationsand then de�ne the processes dealing with the two halves of the Bams system.data ASt = maps(int, int).data HSt = maps(int, set(string)).data AT = obj(int * sum2(int, int), SF(int), int).data HT = obj(int * sum2(string, string), SF(set(string)), int).data BT1 = obj(amg(int * sum2(int, int), int * sum2(string, string)),amg(SF(int), SF(set(string))),amg(int, int)).def AcTab: 1 -> AT= () =>(| s => ob : i => ap(i,s)| ac : (i,x) =>{ s20 a => cre(s,(i, a))| s21 a => deb(s,(i, a))} x|) atex.def HoTab: 1 -> HT= () =>(| s => ob : i => ap(i,s)| ac : (i,x) =>{ s20 h => aHo(s,(i, h))| s21 h => rHo(s,(i, h))} x|) htex.

Prototyping ProcessesFinally, the new Bams system is formed by the parallel composition of AcTab andHoTab: def bdt': 1 -> BT1 = () => opar(AcTab, HoTab).5 ConcludingDi�erent models for processes, seen as concrete coalgebras for di�erent Set-functors,may be easily modeled in Charity. For each of them, a variety of compositionpatterns emerge from the (bi)categorical structure by universality, giving rise toconnectives which may also be animated in the prototyping kernel. Besides the onesused above, some other typical examples include:� data X -> proc(A, B) = pr: X -> A => B * X, i.e., total deterministicprocesses, also known as Mealy automata (cf., [20]).� data X -> parp(A, B) = pp: X -> A => SF(B * X), i.e., partial processes.� data X -> objt(A, B) = ob: X -> B * A => X, i.e., Moore automata, aparticular simple model for objects.� data X -> repr(A, B) = rr: X -> A => set(B * X), i.e., non determin-istic processes, extending binary relations in time.� data X -> prc(A, B, C, D) = o : X -> C => D | a : X -> A => (B *X), a generalization of the model considered in this paper, such that actionsmay also produce observable output.� data X -> prc(A, B, C, D) = o : X -> C => D | a : X -> A => (SF(B* X)), the partial, possibly terminating, extension of the previous one.In summary, we have tried to show how a su�ciently strong prototyping kernel forprocesses can be based on Charity, providing the same kind of functionality oneis used to require from traditional prototyping languages. This makes it possible toreason in an uniform way about data and behaviour, the algebraic and coalgebraicaspects of speci�cations.This kind of categorical modelling of datatypes, either in the constructive, alge-braic side, or in the behavioural, coalgebraic one, was initiated in Hagino's land-mark thesis [11], and has become, since then, a major inuence in the design andcalculation of algorithms [4]. In fact, programming exclusively in terms of genericfunctionals directly derived from datatype de�nitions, such as catamorphisms oranamorphisms, leads to a controlled, data driven, use of recursion. This may be asbene�cial to declarative programming as the removing of goto statements has beento imperative languages twenty years ago. The use of coinductive types, as recursivetypes inhabited by in�nite objects, to model reactive systems has also been studiedin type theoretic frameworks (e.g., [10]).Finally, note that, in the approach sketched here, the canonical model of a pro-cess is a coalgebraic structure over its observation patterns. Taking such patterns

APPIA-GULP-PRODE'99systematically has been the overall concern of the work in process algebras for thelast two decades. This has been carried to an extent that discards the actual ob-served data, actions and observers being identi�ed as symbols in a formal language.What may distinguish the approach taken here, however, is the explicit associationof a transformational contents to actions. A similar use of coalgebraic structures hasbeen made, by [17] and [25], in the semantics and speci�cation of object orientedsystems, although in a more axiomatic style.References[1] S. Abramsky, S. Gay, and R. Nagarajan. Interaction categories and the founda-tion of typed concurrent programming. In M. Broy, editor, Deductive ProgramDesign: Proc. of the 1994 Marktoberdorf Summer School. NATO ASI Series F,Springer Verlag, 1994.[2] J. J. Almeida, L. S. Barbosa, F. L. Neves, and J. N. Oliveira. Camila: Pro-totyping and re�nement of constructive speci�cations. In M. Johnson, editor,6th Int. Conf. Algebraic Methods and Software Technology (AMAST), pages554{559, Sydney, December 1997. Springer Lect. Notes Comp. Sci. (1349).[3] L. S. Barbosa. A coalgebraic approach to process re�nement. In Proc. 14thInternational Workshop on Algebraic Development Techniques (WADT'99),Bonas, France, 15-18 September 1999. (in print).[4] R. Bird and Moor. O. The Algebra of Programming. Series in Computer Science.Prentice-Hall International, 1997.[5] Robin Cockett and Tom Fukushima. About Charity. Yellow Series Report No.92/480/18, Dep. Computer Science, University of Calgary, June 1992.[6] Robin Cockett and Dwight Spencer. Strong categorical datatypes II: A termlogic for categorical programming. Theor. Comp. Sci., (139):69{113, 1995.[7] J. Fitzgerald and P. G. Larsen. Modelling Systems: Pratical Tools and Tech-niques in Software Development. Cambridge University Press, 1998.[8] M.M. Fokkinga. Law and Order in Algorithmics. PhD thesis, University ofTwente, Dept INF, Enschede, The Netherlands, 1992.[9] C. George. The raise speci�cation language: a tutorial. In Proc. of VDM'91.LNCS (551), 1991.[10] E. Gim�enez. Co-inductive types in coq: An experiment with the alternatingbit protocol. Tr 95-38, INRIA Rocquencourt-CNRS-ENS Lyon, June 1995.[11] T. Hagino. Category theoretic approach to data types. Ph.D. thesis. TechnicalReport ECS-LFCS-87-38, Laboratory for Foundations of Computer Science,University of Edinburgh, UK, 1987.

Prototyping Processes[12] R. Harper and K. Mitchell. Introduction to standard ml. Technical Report,University of Edimburgh, 1986.[13] P. Henderson. me too: A language for software speci�cation and model building.Preliminary Report, University of Stirling, 1984.[14] M. C. Hennessy. Algebraic Theory of Processes. Series in the Foundations ofComputing. MIT Press, 1988.[15] C. A. R Hoare. Communicating Sequential Processes. Series in ComputerScience. Prentice-Hall International, 1985.[16] P. Hudak, S. L. Peyton Jones, and P. Wadler. Report on the programminglanguage Haskell, a non-strict purely-functional programming language, version1.2. SIGPLAN Notices, 27(5), May 1992.[17] B. Jacobs. Objects and classes, co-algebraically. In C. Lengauer B. Freitag,C.B. Jones and H.-J. Schek, editors, Object-Orientation with Parallelism andPersistence, pages 83{103. Kluwer Acad. Publ., 1996.[18] B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. EATCSBulletin, 62:222{159, 1997.[19] Cli� B. Jones. Software Development | a Rigorous Approach. Series in Com-puter Science. Prentice-Hall International, 1980.[20] P. Katis, N. Sabadini, and R. Walters. Bicategories of processes. Journal ofPure and Applied Algebra, 115(2):141{178, 1997.[21] K. Lano. The B Language and Method: A Guide to Practical Formal Develop-ment. FACIT. Springer-Verlag, 1996.[22] A. J. R. G. Milner. Communication and Concurrency. Series in ComputerScience. Prentice-Hall International, 1989.[23] C. Morgan. Programming from Speci�cation. Series in Computer Science.Prentice-Hall International, 1990.[24] J. N. Oliveira. A rei�cation calculus for model-oriented software speci�cation.Formal Aspects of Computing, 2(1):1{23, 1990.[25] H. Reichel. An approach to object semantics based on terminal co-algebras.Math. Struc. Comp. Sci., (5):129{152, 1995.[26] J. Rutten. Universal coalgebra: A theory of systems. Technical Report CS-R9636, CWI, Amsterdam, 1996.[27] M. A. Schroeder. Higher-order Charity. Master's thesis, The University ofCalgary, 1997.

