
CAMILA� Formal Software Engineering

Supported by Functional Programming

J� J� Almeida� L� S� Barbosa� F� L� Neves and J� N� Oliveira

Computer Science Department
University of Minho
Largo do Pa�co � ���� Braga
Portugal

fjj�lsb��n�jnog�di�uminho�pt

Abstract� This paper describes two experiences in teaching a formal approach to
software engineering� at undergraduate level� supported by Camila� a functional
programming based tool	 Carried on in di
erent institutions� each of them addresses
a particular topic in the area� requirement analysis and generic systems design in
the �rst case� speci�cation and implementation development in the second	

Camila� the common framework to both experiences� animates a setbased
language� extended with a mild use of category theory� which can be reasoned upon
for program calculation and classi�cation purposes	 The project a�liates itself to�
but is not restricted to� the research in exploring Functional Programming as a rapid
prototyping environment for formal software models	 Its kernel is fully connectable
to external applications and equipped with a component repository and distribution
facilities	

The paper explains how Camila is being used in the educational practice� as a
tool to think with� providing a kind of crossfertilization between students� under
standing of di
erent parts of the curriculum	 Furthermore� it helps in developing
a number of engineering skills� namely the ability to analyze and classify �infor
mation� problems and models and to resort to �the combined use of� di
erent
programming frameworks in approaching them	

Keywords Education and applications of functional programming� functional
prototyping� program calculation�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634176?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


CAMILA� Formal Software Engineering Sup�
ported by Functional Programming

ABSTRACT

This paper describes two experiences in teaching a formal approach to
software engineering� at undergraduate level� supported by Camila� a func�
tional programming based tool� Carried on in di�erent institutions� each
of them addresses a particular topic in the area� requirement analysis and
generic systems design in the �rst case� speci�cation and implementation de�
velopment in the second�

Camila� the common framework to both experiences� animates a set�
based language� extended with a mild use of category theory� which can
be reasoned upon for program calculation and classi�cation purposes� The
project a�liates itself to� but is not restricted to� the research in explor�
ing Functional Programming as a rapid prototyping environment for formal
software models� Its kernel is fully connectable to external applications and
equipped with a component repository and distribution facilities�

The paper explains how Camila is being used in the educational practice�
as a tool to think with� providing a kind of cross�fertilization between students	
understanding of di�erent parts of the curriculum� Furthermore� it helps in
developing a number of engineering skills� namely the ability to analyze and
classify 
information� problems and models and to resort to 
the combined
use of� di�erent programming frameworks in approaching them�

� Introduction

A signi�cant majority of the students who apply for an undergraduate degree
in Software Engineering do possess� from the outset� some working knowledge
in computation� Yet some are really sparkling with particular systems or
tools� University teaching is expected to build on this knowledge for develop�
ing engineering skills� That is to say� the ability to classify 
information� prob�
lems and models and to resort to 
the combined use of� di�erent programming
frameworks in approaching them� Moreover� the basic problem solving strat�
egy people get used to from school physics � understand the problem� create
a mathematical model� reason in the model� calculate a solution � should be
taught as the usual way of dealing with Software Engineering problems�

It is widely recognized that declarative languages allow for the expression
of concepts and structures at a high level of abstraction� Moreover� it stimu�
lates a kind of compositional reasoning which paves the way to sound method�
ological principles� This may explain the increased use of those languages in
teaching a number of areas ranging from compiler construction to databases�
interface design to fuzzy reasoning or discrete mathematics 
see HPe��� for
a recent overview�� Furthermore� functional or relational languages are being
adopted in several institutions as �rst programming languages TH����



This paper describes two experiences in using a particular functional pro�
gramming system � Camila � to teach the principles of a Software Engi�
neering methodology at undergraduate level� They were carried on in di�erent
institutions and each of them addresses a particular topic in the area� require�
ment analysis and generic systems design in the �rst case� speci�cation and
implementation development in the second�

The common framework to both experiences isCamila� an emerging plat�
form for 
mathematical� software development� Based on a notion of formal
software component� Camila encompasses a set�theoretic language and an
inequational calculus Oli���Oli��� for classifying and reasoning about them�
In particular� it enables the synthesis of target code programs by transfor�
mation of the initial speci�cations� Its kernel is a functional prototyping en�
vironment BA���� fully connectable to external applications� equipped with
a component repository and distribution facilities�

Camila� was originally devised as a collection of interrelated support
tools for teaching formal speci�cation methods� A number of educational
projects and non trivial case�studies carried on in industrial 
see� e�g� Oli����
contexts have shown the language potential in exploring a broader scope
of the curriculum� In fact� using Camila as a common working framework
provided a kind of cross�fertilization between students	 understanding of a
number of di�erent domains� Furthermore it helps in concentrating on the
essential and requiring more and more precision and clarity in problem for�
mulation�

Camila development a�liates itself to� but is not restricted to� the re�
search in exploring Functional Programming as a rapid prototyping environ�
ment for formal software models� whose origin can be traced back to Peter
Hendersen	s me too Hen���� In fact� a major achievement of Functional Pro�
gramming has been to enforce a view of programming as a mathematical ac�
tivity� at the right 
human� level of abstraction� concentrated on exploring the
complexity 
and beauty� of problems to be solved� Since the pioneer working
of McCarthy McC���� the interplay of research in Functional Programming�
Formal Speci�cation Methods and Semantics� has made it possible to liber�
ate software development from ad hoc approaches and to set up information
technologies with sound mathematical basis� We believe that this program
remains� at present� a fundamental concern� with relevant implications in
education�

In the next two sections we try to support this claim by describing in
some detail the above mentioned teaching experiences using Camila in a
Software Engineering course at undergraduate level� The Camila language

� Camila is named after a Portuguese ��thcentury novelist � Camilo Castelo
Branco �����  ����� � whose immense and heterogeneous writings� deeply
rooted in his own time experiences and controversies� mirrors a passionate yet
di�cult life	



and calculus will be introduced along the way� Finally� section � presents
some conclusions and comparison with related work�

� Case A� Systems Modeling and Design

The �rst experience to be reported here concerns the use of Camila for ap�
proaching requirement analysis and software design� as part of the Systems
Design course taught to third�year students of the Computer Systems Engi�
neering degree at the University of Bristol 
UK�� This degree is particularly
oriented towards computer architectures� communications and systems pro�
gramming� though in the �rst two years students are supposed to undertake
courses in programming 
using Haskell and C� as well as in logic� discrete
mathematics and ��calculus�

The Systems Design course aims to challenge students	 ability to deal with
the di�culties of analyzing and managing the design of �real� information
systems as well as to develop teamwork skills� In this context a medium�size
case study� in the form of an� often ambiguous� user requirements document�
is assigned to a group up to ten people� A full prototype of the system�
exhibiting its functionality and modular organization� is expected within a
� months period� Typical themes have been� in recent years� an Emergency
Network Management System� a Control System for a TaxiBus Service� Data
Mining over a Temporal Warehouse Database and a study of Fault�Tolerance
Strategies for Distributed Systems�

In a �rst phase� Camila is used to model the project requirements� cap�
turing its structure as a network of software components� When analyzing
the structure of an information system� Software Engineering draws a funda�
mental distinction between entities� which represent information sources� and
transformations upon them� The former will originate the data structures�
the later the algorithms� A similar distinction appears in the de�nition of an
algebra 
sets and functions� or relational structure 
sets and relations�� which
makes such mathematical objects suitable in modeling information systems�
Hence� mathematically� a software component stands for a 
multi sorted� al�
gebra or a relational structure� which expresses� in a concise but meaningful
way� the speci�cation of 
some part of� an information system�

Components are described in the centenary notation of set theory� For
several years in their past education� since the primary school� students have
become familiar with such a notation as a tool to think with� This course
intends to build on this experience�

In fact� the speci�cation language is an executable version of set theory�
resorting to the �pure� mathematical notation arising from the 
Cartesian
closed� structure of the category Set of sets and set�theoretical functions� It
should be stressed� however� that the categorical properties and constructions
are used in an implicit way� whoever uses Camila� namely the students
involved in the educational projects reported here� are not supposed to have
any kind of familiarity with category theory�



Basic set constructors capture essential operations upon information�

� Cartesian product 
A�B� for aggregation in the spatial axis�
� coproduct 
A�B�� for choice 
i�e�� aggregation in the temporal axis� and
� exponentiation� or function space� 
AB� for functional dependence�

Notice that when processing entities de�nitions� the prototyper generates
automatically the constructors and selectors of each product type as well as
the canonical origin predicates associated to coproduct types�� A number of
derived constructors are also available in the Camila kernel notation� Those
include� for �nite A and B�

�A �nite subsets

�A�B binary relations

A �� C �
X

K�A

CK �nite mappings

A� �
X

n�N

An �nite sequences

as well as the �null� alternative 
A � ��� where � is a terminal 
singleton�
set� and recursive de�nitions in the form X � F
X�� where F is a set�
theoretical expression involving the above constructs� Those constructs are
directly expressible in the prototyping language�� from which a high level
description is automatically generated 
in the form of a LATEX �le�� The basic
algebras associated with them 
e�g�� intersection or union of two sets� joining
of binary relations� domain or range of a mapping� concatenation of sequences
and reduce operators� structure de�nition by enumeration or comprehension�
etc�� are also available as primitives in the language� So are the propositional
connectives and quanti�ers� Anonymous function de�nitions� in the form of
��expressions� and high�order functions are also allowed�

A very important feature 
to our knowledge new in an executable nota�
tion� is the fact that the set constructors also act upon functions 
either prim�
itive or user�de�ned� lifting its e�ect to the generated structure� Technically
this amounts to saying that entities in Camila are modeled by 
endo�functors
in Set� uniformly transforming either sets and functions OB���� For example�
the expressions �f�set��seq and �f�seq��set correspond� respectively� to
the action upon the function f � A �� B of the functors 
� �� and ��

���
In the �rst case f is applied to all the elements of the sets aggregated in a
sequence� in the second to all the elements of the sequences collected in a set�

� In a coproduct A
iA�� A � B

iB�� B origin predicates are de�ned as in
isA�x� � �a�A iA�a� � x	

� The concrete syntax for the above mentioned derived constructors being A�set�
A ��� B� A �� B and A�seq� respectively	



These enables a particularly fruitful modular calculus in which students
are able either to enrich or specialize their system components by composing
them with suitable functors� respectively� on the right and on the left� For
example� suppose a team has arrived to the following de�nition of a 
pa�
rameterized� data relation as a set of tuples of mappings from attributes to
something�

DR
 � � �Att��

This may be either enriched� e�g� by aggregating a decision tree component
on the attributes DT � P�
Att �� DT �� P standing for a set of propositions
about attributes� or specialized� e�g� to allow for associations of attributes to
sequences of values� Doing both amounts to the following composition�

S
 � � 
 �DT � �DR � �

that is�

S
 � � �Att��
�

�DT

This can be instantiated to S
V al�� V al being whatever set chosen to model
values in the system� or further lifted to a temporal indexed structure by com�
posing again on the right with the functor T �� � where T is a non�empty set
thought of as a discrete representation of time� This yields T ��S
V al�� one
of the structures actually used in the temporal warehouse database project�

What is interesting in this process is the fact that all the functions de�ned
upon the simple DR model can be lifted to the new structures in a functorial
way� and this mechanism is indeed supported by the language� For example�
having de�ned a query operation q � S
V al� �� V al upon S
V al�� one may
directly use T ��q � T ��S
V al� �� T ��V al on the temporal enrichment�

The Camila notation provides a straightforward way to make progress
from very simple models to complex ones� Moreover it o�ers a framework for
classifying models 
and problems� encouraging re�use of previous solutions�
In fact� architectural relationships in the Camila repository such as is�a�
is�used�by� is�special�case�of or� as we shall discuss in the following section�
is�implementation�of� are formally decided rather than �xed by intuition�
Furthermore they are built�in in the Camila components repository� As an
example of the former consider again the entity DT of a component modeling
decision trees� This may be specialized into a model of either genealogical
diagrams or subject taxonomies as soon as we make Att � � or P � ��
respectively� 
see Oli��� for details��

� Making simultaneously Att � P � �� DT boils down to a model of the natural
numbers �by DT �� �� �� �� DT � �� � �� DT �� DT � ��	



As most projects in Software Engineering have to deal with distribution
and communication issues� and those form a fundamental part of the curricu�
lum� the orientation towards concurrent and distributed systems emerged as
a major theme in the Camila project from the very beginning� The prototyp�
ing environment o�ers a small set of communication primitives so that� in a
second phase of the Design Project� students are able to distribute their com�
ponents along a network of Camila processes� simulating the physical archi�
tecture of the �real� system� A prototyper tool 
called interface� generates
for each component the entities names and operations signatures concerning
the available external services o�ered�� Di�erent communication disciplines
� ranging from synchrony to asynchrony� or point�to�point to multicast �
can be prototyped in Camila just in the same functional style used in mod�
eling any other software component� Moreover� structural properties of these
disciplines can be documented 
and compared� as equations on functional
terms� It is worthy notice that this usually provides a fresh look on the stu�
dents previous background on protocols and communications�

In summary we shall point out that resorting to Camila as a framework
to study Systems Design has been proved helpful in a number of issues�

� Camila helps in concentrating on the essence of the di�erent aspects
to be modeled� recording their structure and properties at an abstract
level� while retaining the possibility of executing �i�e�� animating� the de�
sign� More than being seen as another course in the curriculum� Camila
is understood as a common language to integrate previous knowledge�
interrelating concepts and put them to work�

� It requires more precision from students� contributing to developing strate�
gies for the correct formulation of systems requirements and questioning
their own designs by asking the prototyper questions like and what if �����
Notice the target students have no previous experience on formal speci�
�cation methods� which are introduced� through a Z course� only on the
following semester�

� Finally� we have found that using Camila as a project framework allows
for a more e�ective communication among the design team� developing
teamwork skills� and emphasizes the incremental and iterative character
of the software design process� A distinguished feature of Camila is the
capacity to handle partially de�ned functions� i�e� functions whose sig�
nature has been declared but whose computation rule has not yet been
supplied� Whenever the interpreter is requested to evaluate such a func�
tion it will prompt the user for a value and proceed with the calculation�
This enables to test incomplete prototypes� eventually integrating mate�
rial still under development�

� In subsequent phases this same tool allows for the automatic generation of online
helpers in the format of the Unix man	



� Case B� Re�nement and Interconnection

This section describes the experience gathered at Minho University 
Portu�
gal� in teaching formal methods for software development at undergraduate
level� supported by functional programming tools� Although these methods
have been taught to Minho undergrads since ����� it is only after the ad�
vent of the Camila environment 
����� and of the �rst steps of the Sets
rei�cation calculus Oli��� that such a teaching e�ort becomes systematic and
follows a regular pattern � that of the formal development life cycle depicted
in Figure ��

As systems modeling in Camila has been discussed in the previous sec�
tion� we will be concerned here with the development phase� which constitutes
the main subject of a �nal year undergraduate course in Formal Methods at
Minho� The overall target is to teach students how to develop a client�server
architecture for a 
possibly distributed� information system�

Proof of
invariants

Functional
prototype

� �

Formal speci�cation

�

Requirements�

�

� MMI

�

�

Re�nement �calculation�

�

Encoding
Maintenance

manuals

� �

team

client

maintenance

User
manuals

�

Fig� �� A Formal Software Development Life Cycle

Design starts from developing a formal model 
speci�cation� from a set
of requirements� This is done in a stepwise�elaboration style� each stage of
the model being immediately prototyped in the Camila functional animator



and quick feedback about its behavior being gathered within the design team

see the team arrow�� Camila	s type�checking �lters primary speci�cation

syntactic� errors and unexpected semantic behavior is likely to be spot and
corrected�

After a few iterations� the design should become stable and all members
of the team should believe in it� It will be time to bring the �client� in

either the teacher or whoever wrote the requirements�� just to see whether
critical misreading of the requirements are under way� To comply with current
standards on human�machine interaction� it will be convenient to �hide� the
prototype behind a capable window�manager� This is the start�point of the
client�server bi�partition� made possible by the fact that Camila code can
be easily embedded in C�C�� code��

Students are encouraged to de�ne the functional API which emerges nat�
urally from the algebraic structure of the formal model itself� so that their
prototype may be called from the outset as a normal C�C�� server appli�
cation� It is such an algebraic signature which induces the speci�cation of
a �canonical� syntax�directed�editor�like interaction layer 
see box MMI in
Figure ��� following a formal approach to user�interface design described else�
where 
see e�g� MO���Mar����� The next task is to encode such a structural
editor in a particular technology� typically Tcl�Tk or Borland	s Delphi�
and provide for its interconnection to the C�C�� protocol which embeds
the original Camila prototype 
see Figure ���

At this point� the existing formal speci�cation and its prototype are likely
to undergo a new iteration of changes� as suggested by the client	s taste and
experimentation with the prototype system� These may either be concerned
with the user�interface 
adding to or modifying the underlying signature� or
the semantic model itself 
adding to or modifying the behavior of the pro�
vided functionality�� This is the �higher�energy� design iteration loop which
corresponds to the client arrow in Figure ��

Once both team and client agree to exit from this loop� two parallel ac�
tivities may start� the preparation of the user�manuals� made possible by the
belief that the user�interface has reached a stable phase	� and the so�called
rei�cation phase 
see box Re�nement �calculation� in Figure ��� The latter
is preceded by what may be called a 
�ne�grain� �design certi�cation� ef�
fort� should data�type invariants be present in the formal speci�cation� time

� But note that this clientserver split is not bound to the need for a user interface	
A good illustration is provided in report �RP���� in a crossfertilization with a
parallel course on compiling� a batch version of a production planning system
was made available as an interpreter �written in Eli�� the semantic actions of
which were emulated by Camila animation of the system�s formal speci�cation�
on the background	

� In practice� it is hard to obtain such a high level of satis�ability� because the
userinterface is �what� the client has access to and e
ectively �sees�� changes
and more changes �some of them at pure cosmetic level� though� are likely to be
suggested until the project�s very end	



C

Unix
X-Windows
WindowsNT

...

The World

Application

Prototype

type
  Expsys = F:FBase
                  R:RBase;
    RB=Rid -> Rule
endtype

func init():
state ES <- Exps

mail()
{ int x,y,f();
  ...
   eval("init");
   for(x=8;...
   ....
}

Fig� �� Design Embedding in Camila

has come for providing invariant preservation formal proofs concerning all
relevant operations 
functions�� This is perhaps the most expensive task in
the whole life�cycle 
it requires good skills in mathematics� but it is of vital
importance to the overall quality of the design�

The rei�cation phase is a systematic process� that of step�wise transforma�
tion of the original speci�cation into another formal speci�cation which can
be eventually recognized as the formal semantics of a particular command�
or program fragment in the intended target server technology� A particular�
ity of the Camila life�cycle at this point is to adopt a program calculation
strategy instead of the more conventional �invent�and�verify� one� For this
purpose� a particular abstraction invariant calculus� using the terminology
of Mor���� has been developed � Sets Oli���Oli��� � which exploits the
categorical foundations of the Camila	s notation so that more and more con�
crete data�structures modeling the speci�cation sorts can be found by cal�
culation� accompanied by the synthesis of abstraction functions and induced
implementation�level invariants�

Di�erent laws of Sets lead to di�erent implementation structures and
platforms� For instance� the most common target technology is that of rela�
tional databases� typically materialized by a particular Sql server� A database
table is trivially formalized� in the Sets notation� by a relation in �A�B or a
mapping in A �� B� for A�B arbitrary products of �atomic� types� Therefore�
all Sets laws which somehow �lead� to such structures are welcome by such



a target environment
� A Sets law is an 
in�equation of the form

A E�
f B

stating that every instance of A can be rei�ed into the corresponding instance
of B� by adopting abstraction function f and provided that concrete invariant
� is enforced over B� On the whole� the following abstraction invariant is
synthesized�

�ab � 
a � f
b�� � �
b�

For instance� law

A �� D � 
B �� C� Edpi
onn


A �� D�� 

A�B� �� C� 
��

states that �nite mapping nesting of can be �attened� Repeated application of
this law makes it possible to boil arbitrarily nested� intricate mapping�based
data structures� down to products of atomic relation tables� The relevant
abstraction function 
onn� computes a kind of �nested join� and invariant
dpi will guarantee that such a join operation is e�ectively computed 
see e�g�
Oli��� for details��

Sets is pregnant of useful laws for data rei�cation� Among these� laws
which like 
�� �push the � construct outwards� make for horizontal re�ne�
ment Gog��� and distribution OBM��� in a natural way� This has a bene�cial
consequence at Camila prototyping level� students may choose which �fac�
tor� of a given product 
e�g� the left�hand�side of 
��� will be vertically rei�ed
in the next place� This leads to what 
in the Camila terminology� is called
a �hybrid� prototype� parts of the system which are already fully rei�ed may
cohabit 
and communicate� with other parts still awaiting for their rei�cation
to take place 
i�e� functionality still emulated by a Camila process��

Of course� such temporary con�gurations of the system 
which may re�
quire abstraction�representation functions explicit at run time� cannot be
expected to be particularly e�cient ones� But they provide for smooth� step�
wise rei�cation and testing� Should the system be too complex or students
run out of time� a hybrid prototype system will be tolerated�� Otherwise� all
Camila components will eventually yield place to full implementations���

� Should the target programming language be� for instance� C� then laws leading
to structures of the � � A pattern �the �pointer to A abstraction�� will become
relevant� in particular recursive structures of the X � � � F�X� shape	 Besides
the relational database paradigm� including a reinterpretation of normalization
theory as a subset of the Sets theory �Rod���� hash tables are a class of imple
mentation device which has been carefully calculated in Sets �Oli���	

	 Report �SRVN��� of last year�s course provides a good example of this� in which
students went further to displaying data evaluated by the Camila subprototype
in bluebackground textboxes and data produced by already calculated Sql code
�over Oracle� in white ones� thus providing good evidence of the hybridization
process at demo time	

�
 Report �RP��� of the ������� course was particularly successful in showing
how �exible the interplay between Tcl�Tk� Cembedded Camila� and ProC



Concerning operation rei�cation� and once the overall abstraction invari�
ant has been calculated� two alternatives are available� either the Oxford
Re�nement Calculus Mor��� or the Fold�Unfold Calculus Dar���� The lat�
ter has been more popular simply because of the functional �avor of Camila
speci�cation� For each abstract function

� � A �� B

in the formal speci�cation� and re�nement diagram

A

A� B�

B��

�

f

�

g

where A� and B� are implementations of� respectively� A and B 
witnessed by
the abstraction functions f and g�� the exercise amounts to �nding a solution
for �� in equation

�a��A�
� g
��
a��� � �
f
a��� 
��

thus �closing� the diagram�

A

A� B�

B

�
��

��

�

f

�

g

The categorical basis of the Sets calculus helps particularly in this reasoning
by providing many �functorial� or �natural transformation� 
�Wadler�like�
Wad���� theorems for function transformation OB����

The �nal tasks of code and documentation generation 
see the Encoding
and Maintenance manuals boxes in Figure �� are softened by the overall
discipline� The former is a repetitive exercise of re�writing �abstract code�
into some concrete syntax� that of the chosen target language 
e�g� the same

embedded Sql may happen to be	 A full Camila prototype was demonstrated
side by side with the full Sql version ��nal implementation�	 Switching from
Camila to Sql was �at compiletime� obtained simply by swapping a �h �le	



tail�recursive abstraction will lead to di�erent for�loops in Pascal or C��
The latter is but a systematic transliteration of mathematics into natural
language� browsing the whole speci�cation and rei�cation process�

Last but not least� a few words about the maintenance arrow in Figure ��
The academic context in which these experiments have been carried out has
not yet provided su�cient experience in this area� However� the overall formal
discipline can only help in keeping the impact of changes under control� once
the documentation can be easily followed up 
provided the maintainer knows
the adopted formal method�� The �locality of e�ect� of both the formal spec�
i�cation and the formal rei�cation process 
as inherited from the underlying
mathematics� is the good news here� in contrast with chaotic development
and eventual lack of information�

� Conclusions and Comparison

In recent years Camila has been used on several educational projects as
part of undergraduate and master degrees curricula� witnessing the adequacy
of Functional Programming for developing modeling� re�use and calculation
skills in Software Engineering 
see Ker��� for a similar discussion in a related
area�� The two experiences reported here may provide some evidence on this
claim�

With respect to the �rst� we would like to point out that� quite surpris�
ingly 
or perhaps not�� manipulating and combining Set�expressions appears
to be a much more e�ective way 
with a clear semantics and rich calculus� for
understanding and reasoning about a sheet of requirements� than the tons of
�diagrams� and �structured analysis� used in traditional approaches to teach�
ing Software Engineering� Notice however that Camila incorporates a tool
for generating the mathematics underlying traditional Entity�Relationship
diagrams OC��� useful whenever a particular system component is already
implemented and some reverse engineering is needed to reason about it� De�
sign evolves in an experimental setting� starting with simple� yet executable
models and calculating possible elaborations� The words of P� Halmos about
mathematics in� Hal���� may be adopted to the kind of approach to Software
Engineering Camila stimulates�

Mathematics is not a deductive science � that�s a clich	e� When you try
to prove a theorem� you don�t just list the hypotheses� and then start to
reason� What you do is trial and error� experimentation� guesswork� 
����
the source of all great mathematics is the special case� the concrete example�
It is frequent in mathematics that every instance of a concept of seemingly
great generality is in essence the same as a small and concrete special case�

With respect to the second experience� our main conclusion is that the
Camila life cycle provides a sober blend of the formal methods reasoning



and the functional programming traditions��� in a way which appears to be
reasonably successful in both academia and industry�

But the potential of Functional Programming in teaching may be further
assessed by looking at Camila experiences in the extreme points of the edu�
cational spectrum� teaching set theory and elementary discrete mathematics
at secondary school level VA���� one the one hand� training programming
professionals in industry� on the other�

The Camila approach to programming technology claims to provide a
smooth way to teaching and using 
constructive� formal methods in software
engineering� Similar motivations may be found in the research on formal
speci�cation methods� such as Vdm Jon���� Z Spi���� Raise Geo���� Cold�
K FJ��� or Larch GH���� In fact� a Camila component resembles what
is called a model in the Vdm meta�language or a schema in Z� We could
stress� however� the lighter notation of Camila� borrowed from set theory�
and the direct correspondence to the prototyping functional system� But
what is� to our knowledge� new is the associated calculus for model reasoning
and re�nement as well as the full incorporation� at the executable level� of
the functorial structure of functions� On the other hand� Camila lacks the
sophisticated interface and documentation management features available�
for instance� in Raise�

Acknowledgments

The Camila project has been supported by the JNICT council under PMCT

contract nr� ������� The on�going interaction with our students at Minho
and Bristol Universities provided several remarks into both the tools and the
methodology� Fruitful discussions with Bruce Pilsworth and John Lloyd on
the Bristol experience have been illuminating�

References

�BA��� L	 S	 Barbosa and J	 J	 Almeida	 Camila� a reference manual	 Technical
Report DICAM�������� DI �U	 Minho�� ����	

�Bac��� J	 Backus	 Can programming be liberated from the von Neumann style 
a functional style and its algebra of programs	 Communications of the
ACM� ���������!���� August ����	

�Dar��� J	 Darlington	 Program transformation	 In Funct� Prog� and Its Appli�
cations An Advanced Course	 Cambridge Univ	 Press� ����	

�FJ��� L	 Feijs and H	 Jonkers	 Formal Speci�cation and Design	 ��	 Cambridge
Tracts in Theoretical Computer Science� ����	

�Geo��� C	 George	 The raise speci�cation language� a tutorial	 In Proc� of
VDM���	 LNCS ������ ����	

�� Sometimes� one has the impression of programming and reasoning in a categorical
version of Backus FP �Bac���	



�GH��� J	 Guttag and J Horning	 Larch Languages and Tools for Formal Spec�
i�cation	 SpringerVerlag� ����	

�Gog��� J	 A	 Goguen	 Reusing and interconnecting software components	 IEEE
Computer� ��������!��� ����	

�Hal��� P	 Halmos	 I Want To Be a Mathematician	 MAA Spectrum� ����	
�Hen��� P	 Hendersen	 me too� A language for software speci�cation and model

building	 Preliminary Report� University of Stirling� ����	
�HPe��� P	 H	 Hartel and M	 J	 Plasmeijer �editors�	 Functional programming lan�

guages in education 
Proc� of FPLE� Nijmegen�	 LNCS ������	 Springer
Verlag� ����	

�Jon��� Cli
 B	 Jones	 Systematic Software Development Using VDM	 Series in
Computer Science	 PrenticeHall International� ����	

�Ker��� E	 T	 Keravnou	 Introducing computer science undergraduates to prin
ciples of programming through a functional language	 In P	 H	 Hartel
and M	 J	 Plasmeijer� editors� Functional programming languages in ed�
ucation 
FPLE�� LNCS ����� pages ��!��� Nijmegen� The Netherlands�
Dec ����	 SpringerVerlag	

�Mar��� F	 M	 Martins	 M	etodos Formais na Concep�c�ao e Desenvolvimento de
Sistemas Interactivos	 University of Minho� ����	 Ph	 D	 thesis �in Por
tuguese�	

�McC��� J	 McCarthy	 A basis for a mathematical theory of computation	 In
P	 Bra
ort and D	 Hirshberg� editors� Computer Programming and For�
mal Systems� pages ��!��	 NorthHolland� ����	

�MO��� F	 M	 Martins and J	 N	 Oliveira	 Archetypeoriented user interfaces	
Computer � Graphics� ��������!��� ����	

�Mor��� C	 Morgan	 Programming from Speci�cation	 Series in Computer Science	
PrenticeHall International� ����	 C	 A	 R	 Hoare� series editor	

�OB��� J	 N	 Oliveira and L	 S	 Barbosa	 Sets �subtyped� polymorphism as
natural transformation	 Technical report� �submitted for publication��
Jan	 ����	

�OBM��� J	 N	 Oliveira� L	 S	 Barbosa� and F	 S	 Moura	 Can distribution be �stat
ically� calculated Technical report� DI�INESC� ����	 �In preparation�	

�OC��� J N	 Oliveira and M	 Cruz	 Formal calculi applied to software component
knowledge elicitation	 Technical report c��wp�d� project c	�	�	 sviluppo
di metodologie� sistemi e servizi innovativi in rete� INESC� ����	

�Oli��� J	 N	 Oliveira	 Re�namento transformacional de especi�ca�c"oes �termi
nais�	 In Actas das XII �Jornadas Luso�Espanholas de Matem	atica��
volume II� pages ���!���� Braga� Portugal� �� Maio ����	

�Oli��� J	 N	 Oliveira	 A rei�cation calculus for modeloriented software speci�
cation	 Formal Aspects of Computing� ������!��� ����	

�Oli��� J	 N	 Oliveira	 Software rei�cation using the Sets calculus	 In Proc� of
the BCS FACS �th Re�nement Workshop� Theory and Practice of Formal
Software Development� London� UK� pages ���!���	 SpringerVerlag� �!
�� January ����	 �Invited paper�	

�Oli��� J	 N	 Oliveira	 Hash tables � a case study in Ecalculation	 Technical
Report DI�INESC ������ DI�INESC� U	 Minho� December ����	

�Oli��� J	 N	 Oliveira	 Fuzzy object comparison and its application to a self
adaptable query mecha nism	 In IFSA���� volume I� pages ���!���� ��!
�� July ����	 Proc	 of the �th International Fuzzy Systems Association
World Congress� S	 Paulo� Brazil	



�Rod��� C	 J	 Rodrigues	 Sobre o desenvolvimento formal de bases de dados	
Master�s thesis� University of Minho� ����	 �In Portuguese�	

�RP��� M	A	R	 Rebelo and R	M	N	 Pinto	 Trabalho pr#atico � departamento de
planeamento de produ�c"ao	 Technical Report LMCCOp������ Univer
sidade do Minho� Feb	 ����	 �In Portuguese�	

�Spi��� J	 M	 Spivey	 The Z Notation A Reference Manual	 Series in Computer
Science	 PrenticeHall International� ����	

�SRVN��� A	C	 Sampaio� J	M	 Rodrigues� L	F	 Varandas� and M	 Noval	 Informa
tiza�c"ao de uma empresa de constru�c"ao civil	 Technical Report LMCC
Op������ Universidade do Minho� Jun	 ����	 �In Portuguese�	

�TH��� S	 Thompson and S	 Hill	 Functional programming through the cur
riculum	 In P	 H	 Hartel and M	 J	 Plasmeijer� editors� Functional pro�
gramming languages in education 
FPLE�� LNCS ����� pages ��!����
Nijmegen� The Netherlands� Dec ����	 SpringerVerlag	

�VA��� M	 Vieira and R	 Alves	 Camila in secondary schools	 Technical Report
�in Portuguese�� Universidade do Minho� ����	

�Wad��� P	 Wadler	 Theorems for free$ In �th International Symposium on Func�
tional Programming Languages and Computer Architecture� September
����	


