-

View metadata, citation and similar papers at core.ac.uk brought to you byj(: CORE

provided by Universidade do Minho: RepositoriUM

CAMILA: Formal Software Engineering
Supported by Functional Programming

J. J. Almeida, L. S. Barbosa, F. L. Neves and J. N. Oliveira

Computer Science Department
University of Minho

Largo do Paco — 4710 Braga
Portugal

{77,1sb,fin,jno} @di.uminho.pt

Abstract. This paper describes two experiences in teaching a formal approach to
software engineering, at undergraduate level, supported by CAMILA, a functional
programming based tool. Carried on in different institutions, each of them addresses
a particular topic in the area: requirement analysis and generic systems design in
the first case, specification and implementation development in the second.

CAMILA, the common framework to both experiences, animates a set-based
language, extended with a mild use of category theory, which can be reasoned upon
for program calculation and classification purposes. The project affiliates itself to,
but is not restricted to, the research in exploring Functional Programming as a rapid
prototyping environment for formal software models. Its kernel is fully connectable
to external applications and equipped with a component repository and distribution
facilities.

The paper explains how CAMILA is being used in the educational practice, as a
tool to think with, providing a kind of cross-fertilization between students’ under-
standing of different parts of the curriculum. Furthermore, it helps in developing
a number of engineering skills, namely the ability to analyze and classify (infor-
mation) problems and models and to resort to (the combined use of) different
programming frameworks in approaching them.

Keywords Education and applications of functional programming, functional
prototyping, program calculation.


https://core.ac.uk/display/55634176?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CAMILA: Formal Software Engineering Sup-
ported by Functional Programming

ABSTRACT

This paper describes two experiences in teaching a formal approach to
software engineering, at undergraduate level, supported by CAMILA, a func-
tional programming based tool. Carried on in different institutions, each
of them addresses a particular topic in the area: requirement analysis and
generic systems design in the first case, specification and implementation de-
velopment in the second.

CAMILA, the common framework to both experiences, animates a set-
based language, extended with a mild use of category theory, which can
be reasoned upon for program calculation and classification purposes. The
project affiliates itself to, but is not restricted to, the research in explor-
ing Functional Programming as a rapid prototyping environment for formal
software models. Its kernel is fully connectable to external applications and
equipped with a component repository and distribution facilities.

The paper explains how CAMILA is being used in the educational practice,
as a tool to think with, providing a kind of cross-fertilization between students’
understanding of different parts of the curriculum. Furthermore, it helps in
developing a number of engineering skills, namely the ability to analyze and
classify (information) problems and models and to resort to (the combined
use of) different programming frameworks in approaching them.

1 Introduction

A significant majority of the students who apply for an undergraduate degree
in Software Engineering do possess, from the outset, some working knowledge
in computation. Yet some are really sparkling with particular systems or
tools. University teaching is expected to build on this knowledge for develop-
ing engineering skills. That is to say, the ability to classify (information) prob-
lems and models and to resort to (the combined use of)) different programming
frameworks in approaching them. Moreover, the basic problem solving strat-
egy people get used to from school physics — understand the problem, create
a mathematical model, reason in the model, calculate a solution — should be
taught as the usual way of dealing with Software Engineering problems.

It is widely recognized that declarative languages allow for the expression
of concepts and structures at a high level of abstraction. Moreover, it stimu-
lates a kind of compositional reasoning which paves the way to sound method-
ological principles. This may explain the increased use of those languages in
teaching a number of areas ranging from compiler construction to databases,
interface design to fuzzy reasoning or discrete mathematics (see [HPe95] for
a recent overview). Furthermore, functional or relational languages are being
adopted in several institutions as first programming languages [TH95].



This paper describes two experiences in using a particular functional pro-
gramming system — CAMILA — to teach the principles of a Software Engi-
neering methodology at undergraduate level. They were carried on in different
institutions and each of them addresses a particular topic in the area: require-
ment analysis and generic systems design in the first case, specification and
implementation development in the second.

The common framework to both experiences is CAMILA, an emerging plat-
form for (mathematical) software development. Based on a notion of formal
software component, CAMILA encompasses a set-theoretic language and an
inequational calculus [01i90,01i92] for classifying and reasoning about them.
In particular, it enables the synthesis of target code programs by transfor-
mation of the initial specifications. Its kernel is a functional prototyping en-
vironment [BA95], fully connectable to external applications, equipped with
a component repository and distribution facilities.

CamIiLA! was originally devised as a collection of interrelated support
tools for teaching formal specification methods. A number of educational
projects and non trivial case-studies carried on in industrial (see, e.g. [Oli95])
contexts have shown the language potential in exploring a broader scope
of the curriculum. In fact, using CAMILA as a common working framework
provided a kind of cross-fertilization between students’ understanding of a
number of different domains. Furthermore it helps in concentrating on the
essential and requiring more and more precision and clarity in problem for-
mulation.

CamiLA development affiliates itself to, but is not restricted to, the re-
search in exploring Functional Programming as a rapid prototyping environ-
ment for formal software models, whose origin can be traced back to Peter
Hendersen’s me too [Hen84]. In fact, a major achievement of Functional Pro-
gramming has been to enforce a view of programming as a mathematical ac-
tivity, at the right (human) level of abstraction, concentrated on exploring the
complexity (and beauty) of problems to be solved. Since the pioneer working
of McCarthy [McC63], the interplay of research in Functional Programming,
Formal Specification Methods and Semantics, has made it possible to liber-
ate software development from ad hoc approaches and to set up information
technologies with sound mathematical basis. We believe that this program
remains, at present, a fundamental concern, with relevant implications in
education.

In the next two sections we try to support this claim by describing in
some detail the above mentioned teaching experiences using CAMILA in a
Software Engineering course at undergraduate level. The CAMILA language

! CaMILA is named after a Portuguese 19°"-century novelist — Camilo Castelo-
Branco (1825 - 1890) — whose immense and heterogeneous writings, deeply
rooted in his own time experiences and controversies, mirrors a passionate yet
difficult life.



and calculus will be introduced along the way. Finally, section 4 presents
some conclusions and comparison with related work.

2 Case A: Systems Modeling and Design

The first experience to be reported here concerns the use of CAMILA for ap-
proaching requirement analysis and software design, as part of the Systems
Design course taught to third-year students of the Computer Systems Engi-
neering degree at the University of Bristol (UK). This degree is particularly
oriented towards computer architectures, communications and systems pro-
gramming, though in the first two years students are supposed to undertake
courses in programming (using HASKELL and C) as well as in logic, discrete
mathematics and A-calculus.

The Systems Design course aims to challenge students’ ability to deal with
the difficulties of analyzing and managing the design of “real” information
systems as well as to develop teamwork skills. In this context a medium-size
case study, in the form of an, often ambiguous, user requirements document,
is assigned to a group up to ten people. A full prototype of the system,
exhibiting its functionality and modular organization, is expected within a
3 months period. Typical themes have been, in recent years, an Emergency
Network Management System, a Control System for a TazxiBus Service, Data
Mining over a Temporal Warehouse Database and a study of Fault-Tolerance
Strategies for Distributed Systems.

In a first phase, CAMILA is used to model the project requirements, cap-
turing its structure as a network of software components. When analyzing
the structure of an information system, Software Engineering draws a funda-
mental distinction between entities, which represent information sources, and
transformations upon them. The former will originate the data structures,
the later the algorithms. A similar distinction appears in the definition of an
algebra (sets and functions) or relational structure (sets and relations), which
makes such mathematical objects suitable in modeling information systems.
Hence, mathematically, a software component stands for a (multi sorted) al-
gebra or a relational structure, which expresses, in a concise but meaningful
way, the specification of (some part of) an information system.

Components are described in the centenary notation of set theory. For
several years in their past education, since the primary school, students have
become familiar with such a notation as a tool to think with. This course
intends to build on this experience.

In fact, the specification language is an executable version of set theory,
resorting to the “pure” mathematical notation arising from the (Cartesian
closed) structure of the category Set of sets and set-theoretical functions. It
should be stressed, however, that the categorical properties and constructions
are used in an implicit way: whoever uses CAMILA, namely the students
involved in the educational projects reported here, are not supposed to have
any kind of familiarity with category theory.



Basic set constructors capture essential operations upon information:

— Cartesian product (A x B) for aggregation in the spatial axis,
— coproduct (A+ B), for choice (i.e., aggregation in the temporal axis) and
— exponentiation, or function space, (A?) for functional dependence.

Notice that when processing entities definitions, the prototyper generates
automatically the constructors and selectors of each product type as well as
the canonical origin predicates associated to coproduct types®. A number of
derived constructors are also available in the CAMILA kernel notation. Those
include, for finite A and B,

24 finite subsets
24xB binary relations
A= C 2 Z ck finite mappings
KCA
A & Z A" finite sequences
nCN

as well as the “null” alternative (A + 1), where 1 is a terminal (singleton)
set, and recursive definitions in the form X = F(X), where F is a set-
theoretical expression involving the above constructs. Those constructs are
directly expressible in the prototyping language®, from which a high level
description is automatically generated (in the form of a WTEX file). The basic
algebras associated with them (e.g., intersection or union of two sets, joining
of binary relations, domain or range of a mapping, concatenation of sequences
and reduce operators, structure definition by enumeration or comprehension,
etc.) are also available as primitives in the language. So are the propositional
connectives and quantifiers. Anonymous function definitions, in the form of
A-expressions, and high-order functions are also allowed.

A very important feature (to our knowledge new in an executable nota-
tion) is the fact that the set constructors also act upon functions (either prim-
itive or user-defined) lifting its effect to the generated structure. Technically
this amounts to saying that entities in CAMILA are modeled by (endo)functors
in Set, uniformly transforming either sets and functions [OB97]. For example,
the expressions (f-set)-seq and (f-seq)-set correspond, respectively, to
the action upon the function f : A — B of the functors (2-)* and 2(-7).
In the first case f is applied to all the elements of the sets aggregated in a
sequence; in the second to all the elements of the sequences collected in a set.

2In a coproduct A -2 A+ B ¢ B origin predicates are defined as in
is-A(z) £ Jucaiala) =z.

% The concrete syntax for the above mentioned derived constructors being A-set,
A <-> B, A -> B and A-seq, respectively.



These enables a particularly fruitful modular calculus in which students
are able either to enrich or specialize their system components by composing
them with suitable functors, respectively, on the right and on the left. For
example, suppose a team has arrived to the following definition of a (pa-
rameterized) data relation as a set of tuples of mappings from attributes to
something:

DR(_) — 2Att‘—>_

This may be either enriched, e.g. by aggregating a decision tree component
on the attributes DT = P x (Att < DT), P standing for a set of propositions
about attributes, or specialized, e.g. to allow for associations of attributes to
sequences of values. Doing both amounts to the following composition:

S())=(_x DT)oDRo *

that is,

S() = 24" x DT

This can be instantiated to S(Val), Val being whatever set chosen to model
values in the system, or further lifted to a temporal indexed structure by com-
posing again on the right with the functor T _, where T is a non-empty set
thought of as a discrete representation of time. This yields T S(Val), one
of the structures actually used in the temporal warehouse database project.

What is interesting in this process is the fact that all the functions defined
upon the simple DR model can be lifted to the new structures in a functorial
way, and this mechanism is indeed supported by the language. For example,
having defined a query operation ¢ : S(Val) — Val upon S(Val), one may
directly use T q : T S(Val) — T — Val on the temporal enrichment.

The CAMILA notation provides a straightforward way to make progress
from very simple models to complex ones. Moreover it offers a framework for
classifying models (and problems) encouraging re-use of previous solutions.
In fact, architectural relationships in the CAMILA repository such as is-a,
is-used-by, is-special-case-of or, as we shall discuss in the following section,
is-implementation-of, are formally decided rather than fixed by intuition.
Furthermore they are built-in in the CAMILA components repository. As an
example of the former consider again the entity DT of a component modeling
decision trees. This may be specialized into a model of either genealogical
diagrams or subject taronomies as soon as we make Att = 2 or P = 1,
respectively? (see [0O1i92] for details).

* Making simultaneously Att = P = 1, DT boils down to a model of the natural
numbers (by DT &£ 1x (1— DT) £ 1— DT = DT +1).



As most projects in Software Engineering have to deal with distribution
and communication issues, and those form a fundamental part of the curricu-
lum, the orientation towards concurrent and distributed systems emerged as
a major theme in the CAMILA project from the very beginning. The prototyp-
ing environment offers a small set of communication primitives so that, in a
second phase of the Design Project, students are able to distribute their com-
ponents along a network of CAMILA processes, simulating the physical archi-
tecture of the “real” system. A prototyper tool (called interface) generates
for each component the entities names and operations signatures concerning
the available external services offered®. Different communication disciplines
— ranging from synchrony to asynchrony, or point-to-point to multicast —
can be prototyped in CAMILA just in the same functional style used in mod-
eling any other software component. Moreover, structural properties of these
disciplines can be documented (and compared) as equations on functional
terms. It is worthy notice that this usually provides a fresh look on the stu-
dents previous background on protocols and communications.

In summary we shall point out that resorting to CAMILA as a framework
to study Systems Design has been proved helpful in a number of issues:

— CAMILA helps in concentrating on the essence of the different aspects
to be modeled, recording their structure and properties at an abstract
level, while retaining the possibility of executing (i.e., animating) the de-
sign. More than being seen as another course in the curriculum, CAMILA
is understood as a common language to integrate previous knowledge,
interrelating concepts and put them to work.

— It requires more precision from students, contributing to developing strate-
gies for the correct formulation of systems requirements and questioning
their own designs by asking the prototyper questions like and what if ... 7.
Notice the target students have no previous experience on formal speci-
fication methods, which are introduced, through a Z course, only on the
following semester.

— Finally, we have found that using CAMILA as a project framework allows
for a more effective communication among the design team, developing
teamwork skills, and emphasizes the incremental and iterative character
of the software design process. A distinguished feature of CAMILA is the
capacity to handle partially defined functions, i.e. functions whose sig-
nature has been declared but whose computation rule has not yet been
supplied. Whenever the interpreter is requested to evaluate such a func-
tion it will prompt the user for a value and proceed with the calculation.
This enables to test incomplete prototypes, eventually integrating mate-
rial still under development.

% In subsequent phases this same tool allows for the automatic generation of on-line
helpers in the format of the UNIX man.



3 Case B: Refinement and Interconnection

This section describes the experience gathered at Minho University (Portu-
gal) in teaching formal methods for software development at undergraduate
level, supported by functional programming tools. Although these methods
have been taught to Minho undergrads since 1984, it is only after the ad-
vent of the CAMILA environment (1990) and of the first steps of the SETS
reification calculus [Oli87] that such a teaching effort becomes systematic and
follows a regular pattern — that of the formal development life cycle depicted
in Figure 1.

As systems modeling in CAMILA has been discussed in the previous sec-
tion, we will be concerned here with the development phase, which constitutes
the main subject of a final year undergraduate course in Formal Methods at
Minho. The overall target is to teach students how to develop a client-server
architecture for a (possibly distributed) information system.

|

Requirements|
maintenance
Formal specification client
team
Proof of Functional
invariants prototype MMI
Refinement (calculation) User
manuals
. Mai
Encoding aintenance
manuals

Fig. 1. A Formal Software Development Life Cycle

Design starts from developing a formal model (specification) from a set
of requirements. This is done in a stepwise-elaboration style, each stage of
the model being immediately prototyped in the CAMILA functional animator



and quick feedback about its behavior being gathered within the design team
(see the team arrow). CAMILA’s type-checking filters primary specification
(syntactic) errors and unexpected semantic behavior is likely to be spot and
corrected.

After a few iterations, the design should become stable and all members
of the team should believe in it. It will be time to bring the “client” in
(either the teacher or whoever wrote the requirements), just to see whether
critical misreading of the requirements are under way. To comply with current
standards on human-machine interaction, it will be convenient to “hide” the
prototype behind a capable window-manager. This is the start-point of the
client-server bi-partition, made possible by the fact that CAMILA code can
be easily embedded in C/C++ code®.

Students are encouraged to define the functional APT which emerges nat-
urally from the algebraic structure of the formal model itself, so that their
prototype may be called from the outset as a normal C/C++ server appli-
cation. It is such an algebraic signature which induces the specification of
a “canonical” syntax-directed-editor-like interaction layer (see box MMI in
Figure 1), following a formal approach to user-interface design described else-
where (see e.g. [M0O90,Mar95]). The next task is to encode such a structural
editor in a particular technology, typically T'cr./Tk or Borland’s DELPHI,
and provide for its interconnection to the C/C++ protocol which embeds
the original CAMILA prototype (see Figure 2).

At this point, the existing formal specification and its prototype are likely
to undergo a new iteration of changes, as suggested by the client’s taste and
experimentation with the prototype system. These may either be concerned
with the user-interface (adding to or modifying the underlying signature) or
the semantic model itself (adding to or modifying the behavior of the pro-
vided functionality). This is the “higher-energy” design iteration loop which
corresponds to the client arrow in Figure 1.

Once both team and client agree to exit from this loop, two parallel ac-
tivities may start: the preparation of the user-manuals, made possible by the
belief that the user-interface has reached a stable phase’, and the so-called
reification phase (see box Refinement (calculation) in Figure 1). The latter
is preceded by what may be called a (fine-grain) “design certification” ef-
fort: should data-type invariants be present in the formal specification, time

5 But note that this client-server split is not bound to the need for a user interface.
A good illustration is provided in report [RP95]: in a cross-fertilization with a
parallel course on compiling, a batch version of a production planning system
was made available as an interpreter (written in ELI), the semantic actions of
which were emulated by CAMILA animation of the system’s formal specification,
on the background.

In practice, it is hard to obtain such a high level of satisfiability: because the
user-interface is “what” the client has access to and effectively “sees”, changes
and more changes (some of them at pure cosmetic level, though) are likely to be
suggested until the project’s very end.



type
Expsys = F:FBase
R:RBase;

RB=Rid -> Rule
endtype

func init():
state ES <- Exps,

Prototype

Application

mail()
{intx,y,f();

eval("init");
for(x=8;...

)

Fig. 2. Design Embedding in CAMILA

has come for providing invariant preservation formal proofs concerning all
relevant operations (functions). This is perhaps the most expensive task in
the whole life-cycle (it requires good skills in mathematics) but it is of vital
importance to the overall quality of the design.

The reification phase is a systematic process, that of step-wise transforma-
tion of the original specification into another formal specification which can
be eventually recognized as the formal semantics of a particular command,
or program fragment in the intended target server technology. A particular-
ity of the CAMILA life-cycle at this point is to adopt a program calculation
strategy instead of the more conventional “invent-and-verify” one. For this
purpose, a particular abstraction invariant calculus, using the terminology
of [Mor90], has been developed — SETs [01i90,01i92] — which exploits the
categorical foundations of the CAMILA’s notation so that more and more con-
crete data-structures modeling the specification sorts can be found by cal-
culation, accompanied by the synthesis of abstraction functions and induced
implementation-level invariants.

Different laws of SETS lead to different implementation structures and
platforms. For instance, the most common target technology is that of rela-
tional databases, typically materialized by a particular SQL server. A database
table is trivially formalized, in the SETS notation, by a relation in 24*® or a
mapping in A — B, for A,B arbitrary products of “atomic” types. Therefore,
all SETS laws which somehow “lead” to such structures are welcome by such



a target environment®. A SETS law is an (in)equation of the form
¢
ALY B

stating that every instance of A can be reified into the corresponding instance
of B, by adopting abstraction function f and provided that concrete invariant
¢ is enforced over B. On the whole, the following abstraction invariant is
synthesized:

Xab . (a = F(5) A B(b)

For instance, law
A= Dx (B C)AP¥" (A D) x ((Ax B) = C) (1)

states that finite mapping nesting of can be flattened. Repeated application of
this law makes it possible to boil arbitrarily nested, intricate mapping-based
data structures, down to products of atomic relation tables. The relevant
abstraction function (x,) computes a kind of “nested join” and invariant
dpi will guarantee that such a join operation is effectively computed (see e.g.
[01i92] for details).

SETS is pregnant of useful laws for data reification. Among these, laws
which like (1) “push the x construct outwards” make for horizontal refine-
ment [Gog86] and distribution [OBM97] in a natural way. This has a beneficial
consequence at CAMILA prototyping level: students may choose which “fac-
tor” of a given product (e.g. the left-hand-side of (1)) will be vertically reified
in the next place. This leads to what (in the CAMILA terminology) is called
a “hybrid” prototype: parts of the system which are already fully reified may
cohabit (and communicate) with other parts still awaiting for their reification
to take place (i.e. functionality still emulated by a CAMILA process).

Of course, such temporary configurations of the system (which may re-
quire abstraction/representation functions explicit at run time) cannot be
expected to be particularly efficient ones. But they provide for smooth, step-
wise reification and testing. Should the system be too complex or students
run out of time, a hybrid prototype system will be tolerated®. Otherwise, all

CAMILA components will eventually yield place to full implementations!®.

& Should the target programming language be, for instance, C, then laws leading
to structures of the 1 + A pattern (the “pointer to A abstraction”) will become
relevant, in particular recursive structures of the X = 1 4+ F(X) shape. Besides
the relational database paradigm, including a re-interpretation of normalization
theory as a subset of the SETS theory [Rod93], hash tables are a class of imple-
mentation device which has been carefully calculated in SETs [Oli94].
Report [SRVN96] of last year’s course provides a good example of this, in which
students went further to displaying data evaluated by the CAMILA subprototype
in blue-background text-boxes and data produced by already calculated SQL code
(over ORACLE) in white ones, thus providing good evidence of the hybridization
process at demo time.
19 Report [RP95] of the 1995/96 course was particularly successful in showing
how flexible the interplay between TcL/TK, C-embedded CAaMILA, and Pro-C-

©



Concerning operation reification, and once the overall abstraction invari-
ant has been calculated, two alternatives are available: either the Oxford
Refinement Calculus [Mor90] or the Fold-Unfold Calculus [Dar82]. The lat-
ter has been more popular simply because of the functional flavor of CAMILA
specification. For each abstract function

c:A— B
in the formal specification, and refinement diagram

a

A

B

A1 Bl

where A; and B; are implementations of, respectively, A and B (witnessed by
the abstraction functions f and g), the exercise amounts to finding a solution
for o1 in equation

Varea, - g(o1(ar)) = o(f(ar)) (2)

thus “closing” the diagram:

A

A1 B1

o1

The categorical basis of the SETS calculus helps particularly in this reasoning
by providing many “functorial” or “natural transformation” (“Wadler-like”
[Wad89]) theorems for function transformation [OB97].

The final tasks of code and documentation generation (see the Encoding
and Maintenance manuals boxes in Figure 1) are softened by the overall
discipline. The former is a repetitive exercise of re-writing “abstract code”
into some concrete syntax, that of the chosen target language (e.g. the same

embedded SQL may happen to be. A full CAMILA prototype was demonstrated
side by side with the full SQL version (final implementation). Switching from
CAMILA to SQL was (at compile-time) obtained simply by swapping a .h file.



tail-recursive abstraction will lead to different for-loops in PAscAL or C).
The latter is but a systematic transliteration of mathematics into natural
language, browsing the whole specification and reification process.

Last but not least, a few words about the maintenance arrow in Figure 1.
The academic context in which these experiments have been carried out has
not yet provided sufficient experience in this area. However, the overall formal
discipline can only help in keeping the impact of changes under control, once
the documentation can be easily followed up (provided the maintainer knows
the adopted formal method). The “locality of effect” of both the formal spec-
ification and the formal reification process (as inherited from the underlying
mathematics) is the good news here, in contrast with chaotic development
and eventual lack of information.

4 Conclusions and Comparison

In recent years CAMILA has been used on several educational projects as
part of undergraduate and master degrees curricula, witnessing the adequacy
of Functional Programming for developing modeling, re-use and calculation
skills in Software Engineering (see [Ker95] for a similar discussion in a related
area). The two experiences reported here may provide some evidence on this
claim.

With respect to the first, we would like to point out that, quite surpris-
ingly (or perhaps not), manipulating and combining Set-expressions appears
to be a much more effective way (with a clear semantics and rich calculus) for
understanding and reasoning about a sheet of requirements, than the tons of
“diagrams” and “structured analysis” used in traditional approaches to teach-
ing Software Engineering. Notice however that CAMILA incorporates a tool
for generating the mathematics underlying traditional Entity-Relationship
diagrams [OC93] useful whenever a particular system component is already
implemented and some reverse engineering is needed to reason about it. De-
sign evolves in an experimental setting, starting with simple, yet executable
models and calculating possible elaborations. The words of P. Halmos about
mathematics in, [Hal85], may be adopted to the kind of approach to Software
Engineering CAMILA stimulates:

Mathematics is not a deductive science — that’s a cliché. When you try
to prove a theorem, you don’t just list the hypotheses, and then start to
reason. What you do is trial and error, experimentation, guesswork. (...)
the source of all great mathematics is the special case, the concrete example.
It is frequent in mathematics that every instance of a concept of seemingly
great generality is in essence the same as a small and concrete special case.

With respect to the second experience, our main conclusion is that the
CaMmiLA life cycle provides a sober blend of the formal methods reasoning



and the functional programming traditions'!, in a way which appears to be
reasonably successful in both academia and industry.

But the potential of Functional Programming in teaching may be further
assessed by looking at CAMILA experiences in the extreme points of the edu-
cational spectrum: teaching set theory and elementary discrete mathematics
at secondary school level [VA94], one the one hand, training programming
professionals in industry, on the other.

The CAMILA approach to programming technology claims to provide a
smooth way to teaching and using (constructive) formal methods in software
engineering. Similar motivations may be found in the research on formal
specification methods, such as VDM [Jon86], Z [Spi89], RAISE [Geo91], COLD-
K [FJ92] or LARCH [GH93]. In fact, a CAMILA component resembles what
is called a model in the VDM meta-language or a schema in Z. We could
stress, however, the lighter notation of CAMILA, borrowed from set theory,
and the direct correspondence to the prototyping functional system. But
what is, to our knowledge, new is the associated calculus for model reasoning
and refinement as well as the full incorporation, at the executable level, of
the functorial structure of functions. On the other hand, CAMILA lacks the
sophisticated interface and documentation management features available,
for instance, in RAISE.

Acknowledgments

The CAMILA project has been supported by the JNICT council under PMCT
contract nr. 169/90. The on-going interaction with our students at Minho
and Bristol Universities provided several remarks into both the tools and the
methodology. Fruitful discussions with Bruce Pilsworth and John Lloyd on
the Bristol experience have been illuminating.

References

[BA95] L. S. Barbosa and J. J. Almeida. CAMILA: a reference manual. Technical
Report DI-CAM-95:11:2, DI (U. Minho), 1995.

[Bac78] J. Backus. Can programming be liberated from the von Neumann style?
a functional style and its algebra of programs. Communications of the
ACM, 21(8):613-639, August 1978.

[Dar82] J. Darlington. Program transformation. In Funct. Prog. and Its Appli-
cations: An Advanced Course. Cambridge Univ. Press, 1982.

[FJ92] L. Feijs and H. Jonkers. Formal Specification and Design. 35. Cambridge
Tracts in Theoretical Computer Science, 1992.

[Geo91] C. George. The RAISE specification language: a tutorial. In Proc. of
VDM’91. LNCS (551), 1991.

' Sometimes, one has the impression of programming and reasoning in a categorical
version of Backus FP [BacT78].



[GHO3)]
[Gog86]

[Hal85]
[Hen84]
[HPe95]

[Jong6]

[Ker95]

[Mar95]

[McC63]

[MO90]
[Mor90]

[0BY7]

[OBM97]

[0C93]

[01i87]

[01i90]

[01i92]

[01i94]

[01i95]

J. Guttag and J Horning. LARCH: Languages and Tools for Formal Spec-
ification. Springer-Verlag, 1993.

J. A. Goguen. Reusing and interconnecting software components. IEEE
Computer, 19(2):16-28, 1986.

P. Halmos. I Want To Be a Mathematician. MAA Spectrum, 1985.

P. Hendersen. me too: A language for software specification and model
building. Preliminary Report, University of Stirling, 1984.

P. H. Hartel and M. J. Plasmeijer (editors). Functional programming lan-
guages in education (Proc. of FPLE, Nigmegen). LNCS (1022). Springer-
Verlag, 1995.

Cliff B. Jones. Systematic Software Development Using VDM. Series in
Computer Science. Prentice-Hall International, 1986.

E. T. Keravnou. Introducing computer science undergraduates to prin-
ciples of programming through a functional language. In P. H. Hartel
and M. J. Plasmeijer, editors, Functional programming languages in ed-
ucation (FPLE), LNCS 1022, pages 15-34, Nijmegen, The Netherlands,
Dec 1995. Springer-Verlag.

F. M. Martins. M¢étodos Formais na Concepcdo e Desenvolvimento de
Sistemas Interactivos. University of Minho, 1995. Ph. D. thesis (in Por-
tuguese).

J. McCarthy. A basis for a mathematical theory of computation. In
P. Braffort and D. Hirshberg, editors, Computer Programming and For-
mal Systems, pages 33-70. North-Holland, 1963.

F. M. Martins and J. N. Oliveira. Archetype-oriented user interfaces.
Computer & Graphics, 14(1):17-28, 1990.

C. Morgan. Programming from Specification. Series in Computer Science.
Prentice-Hall International, 1990. C. A. R. Hoare, series editor.

J. N. Oliveira and L. S. Barbosa. SETS (subtyped) polymorphism as
natural transformation. Technical report, (submitted for publication),
Jan. 1997.

J. N. Oliveira, L. S. Barbosa, and F. S. Moura. Can distribution be (stat-
ically) calculated? Technical report, DI/INESC, 1997. (In preparation).
J N. Oliveira and M. Cruz. Formal calculi applied to software component
knowledge elicitation. Technical report c19-wp2d, project c.1.9. sviluppo
di metodologie, sistemi e servizi innovativi in rete, INESC, 1993.

J. N. Oliveira. Refinamento transformacional de especifica¢oes (termi-
nais). In Actas das XII “Jornadas Luso-Espanholas de Matemdtica”,
volume II, pages 412-417, Braga, Portugal, 4-8 Maio 1987.

J. N. Oliveira. A reification calculus for model-oriented software specifi-
cation. Formal Aspects of Computing, 2(1):1-23, 1990.

J. N. Oliveira. Software reification using the SETS calculus. In Proc. of
the BCS FACS 5th Refinement Workshop, Theory and Practice of Formal
Software Development, London, UK, pages 140-171. Springer-Verlag, 8-
10 January 1992. (Invited paper).

J. N. Oliveira. Hash tables — a case study in <-calculation. Technical
Report DI/INESC 94-12-1, DI/INESC, U. Minho, December 1994.

J. N. Oliveira. Fuzzy object comparison and its application to a self-
adaptable query mecha nism. In IFSA’95, volume I, pages 245-248, 22—
28 July 1995. Proc. of the 6th International Fuzzy Systems Association
World Congress, S. Paulo, Brazil.



[Rod93]

[RP95]

[Spi89]

C. J. Rodrigues. Sobre o desenvolvimento formal de bases de dados.
Master’s thesis, University of Minho, 1993. (In Portuguese).

M.A.R. Rebelo and R.M.N. Pinto. Trabalho préitico — departamento de
planeamento de produgdo. Technical Report LMCC-Op6-95/1, Univer-
sidade do Minho, Feb. 1995. (In Portuguese).

J. M. Spivey. The Z Notation: A Reference Manual. Series in Computer
Science. Prentice-Hall International, 1989.

[SRVN96] A.C. Sampaio, J.M. Rodrigues, L.F. Varandas, and M. Noval. Informa-

[THO5]

[VA94]

[Wad89]

tizacdo de uma empresa de construcao civil. Technical Report LMCC-
Op6-96/1, Universidade do Minho, Jun. 1996. (In Portuguese).

S. Thompson and S. Hill. Functional programming through the cur-
riculum. In P. H. Hartel and M. J. Plasmeijer, editors, Functional pro-
gramming languages in education (FPLE), LNCS 1022, pages 85-102,
Nijmegen, The Netherlands, Dec 1995. Springer-Verlag.

M. Vieira and R. Alves. CAMILA in secondary schools. Technical Report
(in Portuguese), Universidade do Minho, 1994.

P. Wadler. Theorems for free! In /th International Symposium on Func-
tional Programming Languages and Computer Architecture, September
1989.



