
Towards a Catalog of Spreadsheet Smells?

Jácome Cunha1, João P. Fernandes12, Hugo Ribeiro1, and João Saraiva1

1 HASLab / INESC TEC, Universidade do Minho, Portugal
{jacome,jpaulo,jas}@di.uminho.pt, pg15970@alunos.uminho.pt

2 Universidade do Porto, Portugal

Abstract. Spreadsheets are considered to be the most widely used pro-
gramming language in the world, and reports have shown that 90% of
real-world spreadsheets contain errors.
In this work, we try to identify spreadsheet smells, a concept adapted
from software, which consists of a surface indication that usually corre-
sponds to a deeper problem. Our smells have been integrated in a tool,
and were computed for a large spreadsheet repository. Finally, the analy-
sis of the results we obtained led to the refinement of our initial catalog.

Keywords: Spreadsheets, Code Smells, EUSES Corpus

1 Introduction

Spreadsheets are widely used, specially by non-professional programmers, the
also called ”end users” [21]. A typical end user is teacher, an engineer, a student,
or anyone that is not a professional programmer. The number of end-user pro-
grammers vastly outnumbers the amount of professional programmers. In fact,
studies suggest that in the U.S. alone there exist 11 million end users against
2.75 million of professional programmers [25]. In the same study, it is projected
for 2012 a total number of 90 million end users, 55 million of which will be
working on spreadsheets or databases.

The number of spreadsheet users provides enough evidence that millions of
spreadsheets are created every year. The fact is that, since end users are not
professional programmers, they usually do not follow the principles of good pro-
gramming. Instead, they care about getting a concrete task done. This approach,
together with the lack of support for abstraction, testing, encapsulation, or struc-
tured programming in spreadsheets, leads to reports showing that up to 90% of
real-world spreadsheets contain errors [24], with concrete impacts on companies’
profits.

In this paper we present a catalog and a methodology to identify smells in
spreadsheets. The concept of code smell (or simply bad smell) was introduced
by Martin Fowler [11] as a concrete evidence that a piece of software may have a

? This work has been supported by Fundação para a Ciência e a Tecnologia, under
grants SFRH/BPD/73358/2010, SFRH/BPD/46987/2008, PTDC/EIA-CCO/108613/2008

and PTDC/EIA-CCO/108995/2008.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634175?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

problem. Usually a smell is not an error in the program, but a characteristic that
may cause problems understanding the software, for example, a long class in an
object-oriented program, and updating and evolving the software. We present a
methodology to define such smells in spreadsheets. We start by defining a set of
possible smells as our initial catalog. Then we use a large repository to evaluate
those smells. Finally, and as a result of this evaluation, we refine our spreadsheet
smells in order to have a more robust catalog. To perform the detection of smells
automatically we have developed a tool: SmellSheet Detective.

This paper is structured as follows. In Section 2 we present the methodology
used to create, validate, evaluate and refine a catalog of bad smells for spread-
sheets. Section 3 presents our initial catalog of bad smells. Then, in Section 5,
we present the evaluation of our initial catalog in the EUSES corpus. In Sec-
tion 4, we validate the results from the previous section. In Section 6 we adjust
the initial catalog according to the results obtained. Section 7 introduces the
developed tool to detect smells. In Section 8 we present related work and finally,
Section 9 concludes the paper.

2 A Methodology to Identify Spreadsheet Smells

The detection of errors in software systems is an important software engineering
technique. Software errors cause programs not to behave as expected and are re-
sponsible for several accidents. Even if not necessarily errors, the presence of bad
smells in software code can make programs harder to understand, maintain, and
evolve, for example. Martin Fowler popularized this notation of program smells
in the context of object-oriented programming and this is now an important area
of research. The detection of bad smells allows programmers to improve their
programs by eliminating them.

In this section we present a methodology to define a catalog of bad smells for
spreadsheets. This methodology is based on four steps: catalog definition, catalog
validation, catalog evaluation and catalog refinement.

Step 1: Catalog Definition - based on our personal experiences, we propose
an initial catalog of spreadsheet bad smells. We consider a bad smell in
spreadsheets a reference in a formula to an empty cell, an empty cell in a
table, etc. The full catalog is presented in Section 3.

Step 2: Catalog Validation - in order to validate the catalog we consider a large
repository of spreadsheets, the EUSES corpus [15], that contains more than
5000 spreadsheets, and we detect smells in a representative sub-set of the
repository, as described in Section 4.

Step 3: Catalog Evaluation - in order to evaluate the results of our empiri-
cal experiment performed in the previous step, we manually inspect all bad
smells detected by our catalog. We classify the detected smells in four cate-
gories: not a smell, low smell, medium smell and high smell. We present this
evaluation in detail in Section 5.

Step 4: Catalog Refinement - based on the evaluation performed in Step 3, we
have adjusted our catalog by identifying wrong smells, by refining previously



3

defined smells and by adding new smells that showed up when manually
inspecting EUSES spreadsheets. The result of this step is our catalog of
spreadsheet bad smells, which is shown in Section 6.

In order to validate our catalog in a large corpus we need a tool to automat-
ically detect smells in spreadsheets. Thus, the full catalog defined in Step 1 was
implemented as a software tool, SmellSheet Detective, that we present in
Section 7.

3 Spreadsheet Smells: Catalog Definition

The notion of bad smell emerged from the need to identify the cases for which
the internal structure of a piece of software could be improved. A bad smell is
typically something that is easy to spot, and an indicator of a possible concrete
issue. However, a smell is not something that can necessarily be considered an
error. An example of a smell proposed by Fowler and that applies to a software
project is the long method smell, that implements the notion that defining too
long methods (i.e, methods larger than around a dozen lines of code) may lead
to understandability and maintainability problems in the future.

The smells introduced by Fowler consist of a single flat list, but Mantyla
has created a taxonomy for all those smells [20]. Similarly to what Mantyla has
done we also grouped our smells in different categories: Statistical Smells, Type
Smells, Content Smells and Functional Dependencies Based Smells.

In Figure 1 we present a spreadsheet, slightly adapted from a spreadsheet
in the EUSES repository, where we can observe at least one smell belonging to
each of the categories that we have defined. In the next sections, we present in
detail the smells that we have fitted in each of these categories.

3.1 Statistical Smells

This category groups smells that are calculated through statistical analysis,
namely the Standard Deviation smell.

– Standard Deviation

This smell detects, for a group of cells holding numerical values, the ones
that do not follow their normal distribution.

Detection Most spreadsheets with numeric values are organized either by
rows or columns, and it is often the case that wrong values are introduced
without the user ever noticing. The Standard Deviation smell is detected
by analyzing the rows (or columns) of a spreadsheet and flagging the values
outside the normal distribution of 95,4% (two standard deviations). In the
detection of this smell neither formulas nor labels are taken into account.



4

Fig. 1: A spreadsheet for a warehouse of cleaning products.

Example By inspecting Figure 1 we have realized, for instance, that the
standard deviation of column B values is 2.369E8. Then, the values that
are acceptable by normal distribution should be within the range [5.868E8,
1.534E9]. This means that a smell is detected for cell B4, since it contains
the value 123. Cell G12 is also indicated as a smell by standard deviation
analysis.

3.2 Type Smells

In this category we have included the Empty Cell and the Pattern Finder smells,
both analyzing the type of a cell, being it a Label, a Number, a Formula or an
Empty Cell.

– Empty Cell

In order to detect cells that are left empty, but that occur in a context that
suggests they should have been filled in, we have implemented the Empty
Cell smell.

Detection What we do here is to select all possible windows of five cells from
each row (or column) and verify in each window whether it holds or not
precisely one empty cell.



5

Example In the spreadsheet in Figure 1, we can see that cells C6 and G16 are
empty. However, they occur in a context where all their neighbor cells have
been filled in; for these cells, a smell is signaled. Notice that, for example
in column I, several other empty cells are not pointed out as smells: indeed,
they occur in windows of 5 cells where more than just a single cell is empty.

– Pattern Finder

For faster development, spreadsheet users often simplify parts of formulas by
introducing in them constant (numeric or label) values. This is a poor design
decision that, if not corrected at some point, may lead to problems. In order
to point out the cells where this situation occurs, we have implemented the
Pattern Finder smell, that in fact works not only for formulas. Indeed, this
smell is able of finding patterns in a sheet such as a row containing only
numerical values except for one cell holding a label or a formula, or being
empty. We flag such a cell as a smell.

Detection The detection of Pattern Finder smell follows an approach in all
similar to the detection of Empty Cell smells. In Pattern Finder, we use a
four cell window and we search for one cell with type characteristics that
are different from the ones in the other window cells. In this smell, we have
chosen a smaller window since the occurrence of patterns other than empty
cell patterns is also smaller.

Example In Figure 1 we can see that cell F3 holds the textual value ”o”,
being then a cell of type Label; furthermore, it is surrounded by numbers in
the window constructed as described above: F3 is then a smell, and indeed
it is likely that the value that instead should have been inserted is ”0”.

3.3 Content Smells

In this category we include smells that are found through the analysis of the
content of cells: the String Distance smell and the Reference to Blank Cells
smell.

– String Distance

Typographical errors are frequent when typing in a computer. In order to
try to detect these type of errors, we have implemented the String Distance
smell, that signals string cells that differ minimally with respect to other
cells in a spreadsheet.

Detection In the detection of this smell we use the algorithm created by
Levenshtein [17]. This algorithm compares two strings and finds the mini-
mum number of edits that are needed to transform one string into another.



6

In our case, we apply Levenshtein’s algorithm to each pair of strings in a
row (or column), and signal as a smell the cases for which the result is the
value 1. This means that a single change to a string in the pair is enough
to obtain the other string. We have furthermore limited the comparison to
strings of length greater than three: this prevents, for example, all cells in a
row holding the alphabet letters to be considered smells.

Example We can see a String Distance smell in Figure 1: in row C, cell C8
holds the plural of cells C9 to C11; this suggests a typing error on cell C8.

– Reference to Empty Cells

The existence of formulas pointing to empty cells is a typical source of errors
in spreadsheets, and we have therefore included in our catalog a smell for
detecting all occurrences of this situation.

Detection The detection of this smell is implemented by searching for all
formulas in a spreadsheet and by gathering all their references. Then, we
simply check whether each of these references points to an empty cell or not.

Example Cell J16 of Figure 1 is recognized as a smell since its value is
calculated using the value of cell G16, which is empty.

3.4 Functional Dependencies Based Smells

In this category, we have adapted to spreadsheets data mining techniques that
were first introduced for databases. In particular, we search for dirty values in a
spreadsheet.

– Quasi-Functional Dependencies (QFD)

In [4] it is described a technique to identify dirty values using a slightly
relaxed version of Functional Dependencies [5], and this is the technique that
we use here. Two columns A and B are Functionally Dependent if multiple
occurrences of the same value in A always correspond to the same value in
B. For instance, in the example show in Figure 1, column A functionally
determines column B, as knowing one particular code is enough to know its
associated upc. When equal values in a column correspond to the same value
in another column, except for a small number of cases, this is a situation
that smells, and that we flag.

Detection The implementation of this smell follows the approach described
in [4]. It involves collecting and matching all data in a spreadsheet in order
to find QFD, actually identifying dirty values and then ranking all these
values.



7

Example Cells E12 and E13 of the spreadsheet presented in Figure 1 are
pointed out as smells by the analysis of QFD. Indeed, we may see that the
values (655, 1111147006, SUNLIGHT POWDER AUTO, 85 OZ) in columns A
to F always determine the value 103 in column E, except precisely for cells
E12 and E13.

4 Catalog Validation

In the previous section, we have described the catalog of spreadsheet smells
that we propose in this paper. Now, we need to validate our catalog against
real spreadsheets. For this purpose, we will use the EUSES Corpus [15], a large
spreadsheet repository which has been widely used by the software engineer-
ing community [1, 10]. This repository consists of 5606 spreadsheets which have
been divided into six categories: Database, Financial, Grades, Homework, In-
ventory and Modeling. The proportion of spreadsheets per category can be seen
in Figure 2.

Fig. 2: EUSES spreadsheet categories.

In order to evaluate our catalog, we have implemented in a tool, Smell-
Sheet Detective, the spreadsheet smells that the catalog includes (this tool
is presented in detail in Section 7). For each smell, the results we obtain are
presented in Table 1: the different smells are listed in rows and the different
EUSES categories are listed in columns.

The results observed in Table 1 consider 180 EUSES spreadsheets only. Still,
smells were identified, in those spreadsheets, 3841 times. This is a number that is
large enough for validation purposes while still enabling the manual validation of
the detected smells. Indeed, the next phase of our methodology was to inspect
individually and in detail each spreadsheet that we considered, and validate
the smells identified for them. The validation tried to establish two things: a)
whether the identification of a smell was accurate or not; b) in case the identified
smell was accurately pointed out, how severe we consider it to be, i.e., how much
a smell impacts in the overall quality of the spreadsheet.



8

Smell/Category Database Financial Grades Homework Inventory Modeling Total

Empty cells 53 27 56 42 109 106 393
Patterns 86 62 66 58 111 114 497
Std. Dev. 33 35 134 14 32 7 255
String Dist. 25 3 1357 231 158 658 2442
CFD 12 13 150 2 13 24 204
Ref2empty 0 23 27 0 0 0 50

Total: 209 163 1790 347 423 909 3841

Table 1: Number of smells collected for each EUSES category.

5 Catalog Evaluation

The purpose of this section is to establish a model to evaluate the smells that
our catalog identifies as such. For this, we need to define how the smells that
are identified can be measured and classified. We have inspired ourselves in the
technique used by the software quality measurement company Software Improve-
ment Group [14] and empirically classify the smells that we detect under three
categories:

– Low smells (ls): In this category we include the cells that are identified as
smells but that we can not ensure that indeed constitute smells, neither can
we ensure that, on the contrary, do not constitute smells;

– Medium smells (ms): This category includes the cells that we we can
ensure are smells with a high degree of certainty, but that belong to spread-
sheets that we can not fully understand;

– High smells (hs): Here, we include all smells that are detected and that
our inspection confirmed as such, without a doubt;

– Not smells (ns): Finally, we include here all smells that we consider to
have been wrongly detected, for example, due to tool malfunctioning;

The creation of this classification model made it possible to uniformly classify
spreadsheet smells. In the remaining of this section, we present different views
of the classification we establish for each smell we identify.

In Table 2, we show the absolute results of classifying each detected smell
under one category of the catalog validation model. As a concrete example of this,
the value 7 in line ’Empty Cells’, column ’Database’, sub-column ’ls’ indicates
that 7 of the smells that were identified by the ’Empty cells’ smell in spreadsheets
of the ’Databases’ EUSES category were identified as low smells.

In Table 3 we present the percentage of automatic detections, per smell, that
were classified in each of the validation model categories. Taking the same cell
as above, it means that 13% of empty cell smells that were identified in database
spreadsheets were classified as low smells.

The information of Table 4 shows the percentage of automatic detections,
per validation model category, for all the smells. Again reading the same table



9

Smell/Level
Database Financial Grades Homework Inventory Modeling

ls ms hs ns ls ms hs ns ls ms hs ns ls ms hs ns ls ms hs ns ls ms hs ns

Empty cells 7 1 0 45 3 2 0 22 15 1 0 40 1 0 0 41 1 0 0 108 88 0 0 18
Patterns 7 1 0 78 6 2 0 54 16 5 0 45 1 1 0 56 1 0 0 110 93 0 0 21
Std. Dev. 10 0 0 23 2 0 0 33 2 0 0 132 5 0 0 9 1 0 0 31 1 0 0 6
String Dist. 0 0 1 24 0 0 0 13 0 0 4 1353 1 0 0 230 1 0 2 155 11 2 0 645
CFDs 4 7 1 0 0 0 3 0 55 5 1 89 1 0 0 1 1 1 0 11 3 0 1 20
Ref2empty 0 0 0 0 9 1 7 6 0 8 1 18 0 0 0 0 0 0 0 0 0 0 0 0

Total: 28 9 2 170 20 5 10 128 88 19 6 1677 9 1 0 337 5 1 2 415 196 2 1 710

Table 2: Smell classification (absolute values).

Smell/Level
Database Financial Grades Homework Inventory Modeling
ls ms hs ns ls ms hs ns ls ms hs ns ls ms hs ns ls ms hs ns ls ms hs ns

Empty cells 13 2 0 85 11 7 0 81 27 2 0 71 2 0 0 98 1 0 0 99 83 0 0 17
Patterns 8 1 0 91 10 3 0 87 24 8 0 68 2 2 0 97 1 0 0 99 82 0 0 18
Std. Dev. 30 0 0 70 6 0 0 94 1 0 0 99 36 0 0 64 3 0 0 97 14 0 0 86
String Dist. 0 0 4 96 0 0 0 100 0 0 0 100 0 0 0 100 1 0 1 98 2 0 0 98
QFD 33 58 8 0 0 0 100 0 37 3 1 59 50 0 0 50 8 8 0 85 13 0 4 83
Ref2empty 0 0 0 0 39 4 30 26 0 30 4 67 0 0 0 0 0 0 0 0 0 0 0 0

Total: 13 4 1 81 12 3 6 79 5 1 0 94 3 0 0 97 1 0 0 98 22 0 0 78

Table 3: Smell classification (relative values, per smell).

element, 25% of the smells that we have included in the ’Low Smells’ category,
for database spreadsheets, were identified by the ’Empty Cell’ smell.

Smell/Level
Database Financial Grades Homework Inventory Modeling
ls ms hs ns ls ms hs ns ls ms hs ns ls ms hs ns ls ms hs ns ls ms hs ns

Empty cells 25 11 0 26 15 40 0 17 17 5 0 2 11 0 0 12 20 0 0 26 45 0 0 3
Patterns 25 11 0 46 30 40 0 42 18 26 0 3 11 100 0 17 20 0 0 27 47 0 0 3
Std. Dev. 36 0 0 14 10 0 0 26 2 0 0 8 56 0 0 3 20 0 0 7 1 0 0 1
String Dist. 0 0 50 14 0 0 0 10 0 0 67 81 11 0 0 68 20 0 100 37 6 100 0 91
QFD 14 78 50 0 0 0 30 0 63 26 17 5 11 0 0 0 20 100 0 3 2 0 100 3
Ref2empty 0 0 0 0 45 20 70 5 0 42 17 1 0 0 0 0 0 0 0 0 0 0 0 0

Table 4: Smell classification (relative values, per evaluation model category).

Finally, in Table 5, we present the total number of smells, for each of smell
and for each model evaluation category.



10

PPPPPPPPSmell
Level

Low smells Medium smells High smells Not smells Total

Empty cells 115 4 0 274 393
Patterns 124 9 0 364 497
Std. Dev. cells 21 0 0 234 255
String Dist. 13 2 7 2420 2442
QFD 64 13 6 121 204
Ref2empty 9 9 8 24 50

Total: 346 37 21 3437 3841

Table 5: Global total results (absolute values).

This table shows that we are able to detect smells in the EUSES corpus.
However, 90% of the smelly cells detected were not confirmed as such after the
manual inspection of those 3841 cells. In the next section we conduct a refinement
on the initial catalog that we have defined, based on the analysis of the results
presented in this section.

6 Catalog Refinement

Having evaluated our initial spreadsheet catalog in a representative set of spread-
sheets of the EUSES repository, firstly, by automatically running a spreadsheet
smell detector and, secondly, by manually validating the results, we can now re-
fine the catalog based on the results and experience obtained. We consider three
different types of refinement:

– Overlapped smells: The pattern smell overlaps the empty cell smell. In fact,
all empty cells were detected by both approaches. Since we want to distin-
guish an empty cell from a pattern in order to have a more precise notion of
the smell itself, then the empty cells should not be considered as a pattern
smell.

– New smells detected: when manually inspecting a large number of EUSES
spreadsheets, we detected several bad smells in spreadsheets that we had not
considered, namely, the use o summation cells where no formulas are used
to do the calculations: constant values are used instead! This is the case, for
example, in the spreadsheet file “FIN hospitaldataset2002 MEMORIAL”,
cell F22. Thus, a smell detecting constant values where formulas should be
used needs to be added to the catalog.

– Wrong smells: The string distances smell produced the highest number of
wrongly detected cells. Because we use the Levenshtein distance algorithm
to find close strings, most of the wrong string distance detected came from
the use of the algorithm in numeric strings or strings with numeric values.
One solution for this problem would be the identification of the character
where the strings were different and if that character was a numeric value
we would ignore it. This would lead to an improvement in this smell of 88%.



11

The other smells where the results would be improved is the standard devi-
ation smell: in this one we do not have a percentage of improvement because
most of the wrong detections was due the lack of knowledge of the domain
of the spreadsheet.

Next we present the results of running our smell detector according to the
catalog refinements. It should be noticed that no new smells have been imple-
mented.

PPPPPPPPSmell
Level

Low smells Medium smells High smells Not smells Total

Empty cells 115 4 0 274 393
Patterns 9 5 0 90 101
Std. Dev. cells 21 0 0 234 255
String Dist. 13 2 7 290 312
QFD 64 13 6 121 204
Ref2empty 9 9 8 24 50

Total: 231 33 21 1033 1315

Table 6: Refined catalog results.

As the results included in Table 6 show, we were able to detect 285 manually
validated smells out of 1315 detected by our smell detector. Thus we have 21.7%
of correct smells detected. Moreover, 54 out of 231 (18.9%) presents a medium
or high level probability of the occurrence of a problem in the spreadsheet. As
a result of our refinement, we have improved our smell detection from 90% to
78% of false positive smells.

Based on our analysis we present in Table 7 the EUSES categories for which
we believe each smell can be effectively used.

PPPPPPPPSmell
Category

Database Financial Grades Homework Inventory Modeling

Empty cells X
Patterns X
Std. Dev. X
String Dist. X X X X X X
QFD X X X X
Ref2empty X X X X X X

Table 7: The use of smells in EUSES categories.

The table show that all smells are applicable in at least two categories and
two of them (string distance and references to empty cells) are applicable in all
categories.



12

7 SmellSheet Detective

To analyze the selected spreadsheet sample we implemented the tool Smell-
Sheet Detective which detects the smells introduced in the Section 3. This
implementation was made using the Java programming language [16], the Google
Web Toolkit (GWT) [12], the Apache POI library [3] and the Google libraries
to work with spreadsheets from the Google Docs [13]. We decided to support
spreadsheets written in the Google Docs platform because it is becoming more
and more used. In fact, the popular Microsoft Office suite has also its online ver-
sion [18]. Indeed, the migration from desktop to online applications is becoming
very common. Nevertheless, we also support spreadsheet written using desktop
applications, as can be seen in Figure 3.

Fig. 3: SmellSheet Detective architecture.

The tool can receive spreadsheets, as we mentioned before, from Google Docs
or directly from the computer where it is running. If the Google Docs source is
used, a valid Google account login is required. The tool then selects all the
spreadsheets in the account and shows them to the user. After selecting a par-
ticular spreadsheet, the user can select a single sheet to be analyzed, or otherwise
the entire spreadsheet is used. If we use the direct upload source, the user can
browse the spreadsheets in the computer and select one. The sheet selection
works in a similar way as explained.

After the selection process, the SmellSheet Detective searches the sheets
selected for bad smells. The detection of smells is done as explained in Section 3.

Finally, the tool generates a comma-separated value file with the outputs.
Each row will contain information about a single sheet: the first value is the
name of the spreadsheet/sheet and the next numbers are the ones reported by
the different parts of the tool implementing the detection of the smells empty
cells, standard deviation, string distance, functional dependencies, pattern finder
and references to blank cells.



13

We have also defined a model-based spreadsheet environment that guides
end users to introduce correct data [7–9]. We are now integrating the Smell-
Sheet Detective in this environment. These tools are available at ssaapp.

di.uminho.pt.

8 Related Work

Fowler [11] was the first to introduce the concept of smell, to create a list of 22
smells and pointing a possible solution for each one of them. In the sequence of
Fowler study, Mantyla et al. [19] has created a taxonomy for the smells listed
by Fowler so they could be easier to understand. They created five groups of
smells, namely, the bloaters, the object-oriented abusers, the change preventers,
the dispensables and the couplers.

Hermans et al. [10] adapted Fowler’s work to detect inter-worksheets smells.
Their work differs from the work we present here in the fundamental approach to
define spreadsheet smells: while Hermans adapts Fowler’s smells to the spread-
sheet realm, we analyze a large corpus, and based on that, we define, validate,
evaluate and refine spreadsheet specific smells. We believe that the two ap-
proaches are orthogonal and as a consequence a full catalog should include both
smells.

The analysis of possible errors in spreadsheets was also studied by several re-
searchers, namely, Panko et al. [22] who proposed a revised taxonomy for spread-
sheet errors [23], Correia et al. [6] who used Goal Question Metric to measure
the maintainability of spreadsheets, and Abraham et al. [2] who developed a tool
for debugging spreadsheets.

9 Conclusion

In this paper we have presented a detailed study on spreadsheet smell detection.
We have presented a catalog of smells that are spreadsheet specific and we have
validated it using a large spreadsheet repository. Furthermore, we have refined
the catalog by manually evaluating the results obtained. The smell detection has
been implemented in the SmellSheet Detective tool, and we have presented
our preliminary results that show that we are able to detect a significant amount
of smells using our tool. Also, we have confirmed that more than 20% of the
detected smelly cells point to a possible problem in the spreadsheet.

In the future, we intend to extend the work presented in this paper in two
different ways. Firstly, we believe that the number and the type of smells that
belong to a spreadsheet smell catalog can be further extended. Secondly, ever
since the smells were first proposed for software repositories, they are usually
associated with refactorings that can eliminate them. These are promising re-
search directions that we are already exploring and whose results we plan to
bring out in the near future.



14

References

1. Abraham, R., Erwig, M.: Inferring templates from spreadsheets. In: Proc. of the
28th Int. Conf. on Software Engineering. pp. 182–191. ACM, New York, NY, USA
(2006)

2. Abraham, R., Erwig, M.: Goaldebug: A spreadsheet debugger for end users. In:
ICSE ’07: Proceedings of the 29th international conference on Software Engineer-
ing. pp. 251–260. IEEE Computer Society, Washington, DC, USA (2007)

3. Apache POI: http://poi.apache.org
4. Chiang, F., Miller, R.J.: Discovering data quality rules. The Proceedings of the

VLDB Endowment. 1, 1166–1177 (August 2008)
5. Codd, E.F.: A relational model of data for large shared data banks. Commun.

ACM 13(6), 377–387 (1970)
6. Correia, J.P., Ferreira, M.A.: Measuring maintainability of spreadsheets in the wild.

In: ICSM. pp. 516–519. IEEE (2011)
7. Cunha, J., Fernandes, J.P., Mendes, J., Saraiva, J.: MDSheet: A Framework for

Model-driven Spreadsheet Engineering. In: Proceedings of the 34rd International
Conference on Software Engineering. ICSE’12, ACM (2012), to appear.

8. Cunha, J., Mendes, J., Fernandes, J.P., Saraiva, J.: Embedding and evolution of
spreadsheet models in spreadsheet systems. In: IEEE Symp. on Visual Languages
and Human-Centric Computing. pp. 179–186. IEEE CS (2011)

9. Cunha, J., Visser, J., Alves, T., Saraiva, J.: Type-safe evolution of spreadsheets.
In: Int. Conf. on Fundamental Approaches to Software Engineering. pp. 186–201.
FASE’11/ETAPS’11, Springer-Verlag, Berlin, Heidelberg (2011)

10. Felienne Hermans, M.P., van Deursen, A.: Detecting and visualizing inter-
worksheet smells in spreadsheets. In: Proceedings of the 34rd International Con-
ference on Software Engineering. ICSE’12, ACM (2012), to appear.

11. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston, MA, USA (1999)

12. Google Development Toolkit (GWT): http://code.google.com/intl/pt-PT/

webtoolkit/

13. Google Docs: http://docs.google.com
14. Heitlager, I., Kuipers, T., Visser, J.: A practical model for measuring maintainabil-

ity. In: Proceedings of the 6th International Conference on Quality of Information
and Communications Technology. pp. 30–39. IEEE Computer Society, Washington,
DC, USA (2007)

15. Ii, M.F., Rothermel, G.: The euses spreadsheet corpus: A shared resource for sup-
porting experimentation with spreadsheet dependability mechanisms. In: In 1st
Workshop on End-User Software Engineering. pp. 47–51. St. Louis, Missouri, USA
(2005)

16. Java: http://www.java.com
17. Levenshtein, V.: Binary Codes Capable of Correcting Deletions, Insertions and

Reversals. Soviet Physics Doklady 10, 707 (1966)
18. Live, M.O.: http://www.officelive.com
19. Mäntylä, M., Vanhanen, J., Lassenius, C.: A taxonomy and an initial empirical

study of bad smells in code. In: Proceedings of the International Conference on
Software Maintenance. pp. 381–384. ICSM ’03, IEEE Computer Society, Washing-
ton, DC, USA (2003)

20. Mäntylä, M.V., Lassenius, C.: Subjective evaluation of software evolvability using
code smells: An empirical study. Empirical Softw. Engg. 11, 395–431 (September
2006)



15

21. Nardi, B.A.: A Small Matter of Programming: Perspectives on End User Comput-
ing. MIT Press, Cambridge, MA, USA, 1st edn. (1993)

22. Panko, R.R., Aurigemma, S.: Revising the panko-halverson taxonomy of spread-
sheet errors. Decision Support System 49, 235–244 (May 2010)

23. Panko, R.R., Halverson Jr, R.P.: Spreadsheets on trial: A survey of research on
spreadsheet risks. In: Proceedings of the 29th Hawaii International Conference on
System Sciences Volume 2: Decision Support and Knowledge-Based Systems. pp.
326–335. HICSS ’96, IEEE Computer Society, Washington, DC, USA (1996)

24. Rajalingham, K., Chadwick, D.R., Knight, B.: Classification of spreadsheet errors.
In: Symposium of the European Spreadsheet Risks Interest Group (EuSpRIG).
Amsterdam (2001)

25. Scaffidi, C., Shaw, M., Myers, B.: The ‘55m end-user programmers’ estimate revis-
ited. Tech. rep., Carnegie Mellon University, Pittsburgh (2005)


