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Abstract
This paper presents techniques to model circular lazy programs in a
strict, purely functional setting. Circular lazy programs model any
algorithm based on multiple traversals over a recursive data struc-
ture as a single traversal function. Such elegant and concise circular
programs are defined in a (strict or lazy) functional language and
they are transformed into efficient strict and deforested, multiple
traversal programs by using attribute grammars-based techniques.
Moreover, we use standard slicing techniques to slice such circular
lazy programs.

We have expressed these transformations as an Haskell library
and two tools have been constructed: the HaCirc tool that refac-
tors Haskell lazy circular programs into strict ones, and the OCirc
tool that extends Ocaml with circular definitions allowing program-
mers to write circular programs in Ocaml notation, which are trans-
formed into strict Ocaml programs before they are executed. The
first benchmarks of the different implementations are presented and
show that for algorithms relying on a large number of traversals the
resulting strict, deforested programs are more efficient than the lazy
ones, both in terms of runtime and memory consumption.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.2.2 [Software
Engineering]: Design Tools and Techniques; D.3.3 [Programming
Languages]: Language Constructs and Features—lazy evaluation,
eager/strict evaluation

General Terms Algorithms, Design, Languages

Keywords Multiple Traversal Algorithms, Circular Program-
ming, Intermediate Data Structures, Traversal Scheduling

1. Introduction
Circular lazy programs, as introduced by Richard Bird [2], are a
famous example that demonstrates the power of a lazy evaluation
mechanism. Bird’s work showed that any multiple traversal algo-
rithm can be expressed in a lazy language as a single traversal
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circular function, being the repmin program the reference exam-
ple in this case. Such a (virtual) circular function may contain a
circular definition, that is, an argument of a function call that is
also a result of that same call. Although circular definitions induce
non-termination under a strict evaluation mechanism, they can be
immediately evaluated using a lazy evaluation strategy. The lazy
engine is able to compute the right evaluation order, if that order
exists. Indeed, using this style of circular programming, the pro-
grammer does not have to concern him/herself with the definition
and the scheduling of the different traversal functions, since a sin-
gle (traversal) function has to be defined. Moreover, because there
is a single traversal function, the programmer does not have to de-
fine intermediate gluing data structures to convey values computed
in one traversal and needed in following ones, either.

On the contrary, defining multiple traversal programs within a
strict, purely functional setting can be a complex task: additional
data structures have to be defined and constructed/destructed to
explicitly pass values computed in one traversal and needed in
following ones. Furthermore, there are algorithms that rely on a
large number of traversals whose scheduling is not a trivial one. As
a result, expressing such algorithms in a strict setting leads to longer
solutions which are harder to write, understand and maintain.

The purpose of this paper is three-fold. Firstly, we present
techniques to model and transform circular lazy programs into
strict multiple traversal (equivalent) ones. This refactoring of cir-
cular programs is expressed in terms of attribute grammar tech-
niques [14]. We have informally presented this approach in [24]. In
this paper, we give its formal definition and its implementation as
an Haskell library: the CircLib library. Two tools have been con-
structed to transform Haskell and Ocaml based circular programs
into their strict counterparts. In this way, we make this concise
and elegant style of expressing multiple traversal algorithms also
available to non-lazy functional programmers. Moreover, we use
partial evaluation techniques to derive deforested versions of the
strict programs. Secondly, because our techniques break up circu-
lar definitions into several strict functions, we can directly apply
standard slicing techniques to slice circular lazy programs. That is,
given a circular program we derive a program that performs the
computations needed to produce some of its results (backward slic-
ing), or the computations that use some of its arguments (forward
slicing). Thirdly, we conduct the first systematic benchmarking of
circular, strict and deforested programs. The results show that for
algorithms relying on large number of traversals the strict, defor-
ested programs are more efficient than the lazy ones, both in terms
of runtime and memory consumption.

This paper is organized as follows: Section 2 presents circular
programs, the notation used, and it introduces the running exam-
ple used throughout the paper. Section 3 presents the derivation of
strict programs from circular ones. Section 4 presents the slicing
of circular programs. In Section 5 we discuss the class of circular
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programs considered. Section 6 presents the tools developed and
Section 7 shows benchmark results. Section 8 shows our conclu-
sions. Finally, in appendices, we include the API library.

2. Circular Programs
Circular programs were first proposed by Bird [2] as an elegant and
efficient technique to eliminate multiple traversals of data struc-
tures. As the names suggests, circular programs are characterized
by having what appears to be a circular definition: arguments in
a function call depend on results of that same call. That is, they
contain definitions of the form: (...,x,...) = f ... x ...

In order to motivate the use of circular programs, Bird intro-
duces the following programming problem, widely known as the
repmin problem: consider the problem of transforming a binary leaf
tree into a second tree, identical in shape to the original one, but
with all the tip values replaced by the minimum tip value.

In a strict and purely functional setting, solving this problem
would require a two traversal strategy: the first traversal would
compute the original tree’s minimum value, and the second traver-
sal would replace all the tip values by the minimum value, therefore
producing the desired tree result. However, a two traversal strategy
is not essential to solve the repmin problem. An alternative solu-
tion can, on a single traversal, compute the minimum tip value and,
at the same time, replace all tip values by that minimum value.
Bird showed how the single traversal, presented next, may be ob-
tained by transforming the original program using the following
techniques: tupling, fold-unfold and circular programming.

repmin (Tip n , m) = (Tip m , n)
repmin (Fork (l, r), m) = (Fork (t1, t2), min m1 m2)

where (t1, m1) = repmin (l, m)
(t2, m2) = repmin (r, m)

transform t = nt
where (nt, m) = repmin (t, m)

Bird’s work showed the power of circular programming, not
only as an optimization technique to eliminate multiple traversal
of data, but also as a powerful, elegant and concise technique to ex-
press multiple traversal algorithms. Circular programs are also used
in the construction of Haskell compilers [17, 9], to express pretty
printing algorithms [25], breadth-first traversal strategies [18], type
systems [1] and aspect-oriented compilers [5]. As an optimization
technique, circular programs are used, for example, in the defor-
estation of accumulating parameters [29]. Circular programs can
also be obtained through partial evaluation [16] and continuations
[3]. As Johnsson [11] and Swierstra and Kuiper [15] originally
showed, circular programs are the natural representation of attribute
grammars in a lazy setting [27, 4, 22, 6].

2.1 Notation
To demonstrate our techniques, we use the language given in Fig. 1.
A program is a sequence of definitions. The language natively in-
corporates integers (0,1,...), with the usual operators, charac-
ters (’a’,’b’,...,’z’) and strings (character sequences). It
also makes use of lists, the empty list being represented by [], the
insertion of an element x in the head of a list l being represented
by x:l and the concatenation of two lists, l1 and l2, being rep-
resented by l1 ++ l2. The semantics of the language is that of
standard lazy functional languages.

2.2 The Table Formatter Program
The repmin problem is a famous example which nicely exploits and
demonstrates the power of circular programming. However, when
defining more realistic multiple traversal problems, like for exam-
ple the four traversal pretty printing algorithm presented in [25], the
programmer has to define additional gluing data structures to pass

Expressions
e ::= v variables

| n constants
| (e1, ..., en) tuples
| C(v1, ..., vn) constructors

Attributions
a ::= v1 = v2 variable copying

| v1 = C(v2, ..., vn) contructor value
| v1 = f e function application
| v = n constant value
| (v1, ..., vn) = vm e recursive calls

Function and Data-Types definitions
Decl ::= v e1 = e2 function definition,

| v e1 = e2 where a1 ... an with a where clause
| T = C1 t1 | ... | Cn tn type definition

t ::= () | (t1, ..., tn) | Int | Char | String | T

Figure 1. Abstract syntax

values to future traversals. Furthermore, the scheduling of traver-
sals can be a complex task, as well.

To show more clearly the properties of circular programming we
will use a more realistic example. Let us consider that we want to
define a program that formats HTML style tables. Fig. 2 shows an
example of a possible input (left) and correspondent output (right).

The straightforward solution to construct such a program is to
compute the heights and widths of each element in the table, before
we define the formatting. They can be computed as follows: the
height of an element is the height of a data element (i.e., a string
with height 1) or the height of a nested table. The height of a row
is the maximum height of its elements. And, the height of a table
is the sum of the heights of its rows plus the line separators. The
width of an element is the length of the data element,or the width
of the nested table. Like for the height of a column, the width of
a column is the maximum width of the elements in that column,
and the width of a table is the sum of the widths of its columns
(plus the column separators). In the input HTML example, we have
annotated tag TD with the height of the element (superscript) and
its width (subscript).

Having defined the heights and widths of the elements in a table,
the next step is to do the formatting. Obviously, we will need to add
some vertical and horizontal glue (spaces) so that we can obtain the
desired output. In our example, in the first column of the second
row we need to add 2 spaces of horizontal glue (the element has
width 14 whilst the nested table has 12: see associated subscripts).
Such two spaces have to be used 7 times as vertical glue since that
column has that height.

The immediate implementation of this algorithm would rely
on a two traversal strategy. First we traverse the HTML tree to
compute the correct heights and widths of each element, and in
a second traversal we produce the formatting using those values.
Note, however, that in order to compute the width of our outermost
table, we need to compute the width of each column first. Thus,
we need to know the width of the nested table. According to this
approach that table has to be traversed twice as well. As a result, in
the first traversal of an outermost table we need to perform the two
traversals to its nested tables. So, the computations related to the
first and second traversals are intermingled. Moreover, the values
of the height and width of the nested table have to be passed to the
second traversal of the outermost table: they are needed to defined
the necessary vertical and horizontal glue. That is to say that in
a straightforward implementation of this program an intermediate
data structure has to be defined and constructed to pass explicitly
the height and width of a nested table from the first to the second
traversal.

Next, we present the elegant and concise Table circular program
that relies on a single traversal. Note that to construct such a pro-
gram the programmer did not have to define and construct/destruct



〈TR〉〈TD〉 The first line 〈/TD〉〈TD〉 of a 〈/TD〉〈/TR〉
〈TABLE〉

〈TR〉〈TD〉〈TABLE〉
〈TR〉〈TD〉 This 〈/TD〉〈TD〉 is 〈/TD〉〈/TR〉

〈TR〉〈TD〉 another 〈/TD〉〈TD/〉〈/TR〉

〈TR〉〈TD〉 table 〈/TD〉〈TD/〉〈/TR〉
〈/TABLE〉
〈/TD〉〈TD〉 table 〈/TD〉〈/TR〉

〈/TABLE〉

7

14

1

4

24

5

1 1

1

7

1

12

5

1

1

|--------------------|
|The first line|of a |
|--------------------|
||----------| |table|
||This |is| | |
||----------| | |
||another| | | |
||----------| | |
||table | | | |
||----------| | |
|--------------------|

Figure 2. HTML Table Formatting

gluing data structures nor to schedule the different traversals. Such
data structures and the scheduling of computations will be defined
by the static analysis and transformations we present in Section 3.

HTML like tables are defined by the following recursive data
type definitions:
Table = RootTable Rows Elems = EmptyElems
Rows = EmptyRows | ConsElems(Elem,Elems)

| ConsRows(Row,Rows) Elem = OneStr String
Row = OneRow Elems | OneTable Table

Next, we present the single traversal circular program. As referred
before, for each table the program computes the desirable format
(lines), its height (mh) and width (mw). The function that processes
the rows returns three things: the format of the rows, the height of
those rows and the list of widths of the columns (in our example,
this list will be [14, 5]). Thus, the width of the table is the sum
of those widths plus the separators (22 in our example). Each row
needs to know the available width of each column, to add glue in the
format, if necessary. Thus, this function receives as argument the
list of available widths of the columns. This list is the computed list
of widths. As we can see below, a circular dependency is defined.
evalTable :: Table -> ([String],Int,Int)
evalTable (RootTable rows) = (lines,mh,mw)
where (lines1,mh,mws) = evalRows (rows,mws)

mw = (sum mws)+(length mws)+1
lines = sepLine (mws, lines1)

When processing the rows, we accumulate the heights of each row
(mh), and we zip the widths of the columns with the maximum
values of the rows. In our example, the two rows produce the
following two lists of widths [14, 4] (first) and [12, 5]. The result of
zipwith_max is [14, 5], that is, the maximum width of each column.
evalRows (ConsRows(row,rows),aws) = (lines,mh,mws)
where (lines1,mh1,mws1) = evalRow (row ,aws)

(lines2,mh2,mws2) = evalRows (rows,aws)
mh = mh1 + mh2 + 1 -- (+1 is for the separator)

mws = zipwith_max (mws1, mws2)
lines = addSep (aws,lines1,lines2)

evalRows (EmptyRows,aws) = ([],0,[])

For each individual row, we receive as argument the available
widths of its columns, and we have to compute its format, height
and the widths (that will be used to compute the widths of the table
elements). One result of the function evalElems is the maximum
height (mh) of the elements in the row. We need to pass it to those
same elements, in order to add vertical glue. Once again we use
a circular definition: the height computed is the height passed as
argument.
evalRow (OneRow els,aws) = (lines, mh, mws)
where (lines1,mh,mws) = evalElems (els,mh,aws)

lines = addBorder lines1

The elements of one row receive as argument the available height
of the row and the list of maximum widths. It returns the format,
the height of the row and the widths.

evalElems(ConsElems(el,els),ah,aws)=(lines,mh,mws)
where aws2 = tail aws

(lines1,mh1,mw1) = evalElem el
(lines2,mh2,mws2) = evalElems(els,ah,aws2)
mws = mw1:mws2
mh = max (mh1, mh2)
lines = glue(aws,mw1,ah,mh1,lines1,lines2)

evalElems (EmptyElems,ah,aws) = ([],0,[])

Finally, the function that processes individual elements, returns
their format, height and width.
evalElem (OneStr str) = ([str],1,length str)
evalElem (OneTable table) = (lines1,mh,mw1)
where (lines1,mh1,mw1) = evalTable table

mh = mh1 + 1

The functions addSep, sepLine, addBorder and glue, add line
separators, horizontal and vertical borders, and glue table lines,
respectively.

This table formatter is a circular program: circular definitions
occur twice as we can see in the program. These programs can
be immediately evaluated under a lazy evaluation mechanism. The
lazy engine will be able to schedule the computations and convey
values between different traversal functions at execution time. Un-
der a strict evaluation setting, however, such programs induce non-
termination. Next, we will show how to transform this circular pro-
gram into a strict and deforested multiple traversal program.

3. From Circular to Strict Programs
In this section we will describe a program transformation technique
to derive a strict program from its lazy circular definition. A strict
evaluation setting is attractive not only because we obtain imple-
mentations that are not restricted to a lazy semantics execution
model, but also because we obtain very efficient implementations
in terms of memory and time consumption. The resulting program
can be correctly executed under both a strict and a lazy execution
model.

3.1 Detection of Circular Definitions
Let us analyze in detail one of the most intricate function alter-
natives of the above program: the function evalTable applied at
the node RootTable, where a circular definition occurs. Figure 3
shows the induced dependency relation (represented as a graph),
which follows from a flow analysis of the total program.

For each alternative function definition a dependency graph is
induced. Such graphs are labeled with the data type constructor
that the alternative definition refers to. Furthermore, in these graphs
we use undirected (solid) lines to connect the types involved in a
tree-like structure: result type on top and arguments at the bottom.
The variable names representing formal arguments(results) of the
function definition are displayed at the left(right) of the resulting
type. Such variable names are displayed in all occurrences of that
data type in the different induced graphs. Notice, for example, that



RootTable:

Table

Rows

lines

aws mhlines

mh mw

mws

Figure 3. Dependency graph of function evalTable

the results produced by evalTable: lines, mh and mw, are drawn
to the right of Table’s position. Arrows are used in the graphs to
represent dependencies between variables. For example, the arrow
with origin in the variable mws and destination in the variable aws
represents that mws is used to compute aws. We use black lines to
represent direct dependencies and dashed-black lines to represent
indirect dependencies. Later, we will present the formal process to
calculate these dependencies.

As we can easily see in Figure 3, there is an evaluation order
to evaluate the so-called circular definition, since no value depends
directly nor indirectly on itself.

Dependencies from a result to an argument, however, induce
additional traversals to the tree.

The detection of such circular definitions in the abstract syntax
tree of the programs under consideration is a straightforward func-
tion. Thus, we omit its definition here.

3.2 Partitionable Circular Programs
This section discusses the class of circular programs for which
strict programs can be derived. That is, circular programs whose
circularity may be eliminated, by statically analyzing the depen-
dencies induced by them. These dependencies are established in
the program’s functions, between function arguments and function
results, and the static analysis consists in determining an alternative
evaluation order for them.

The algorithms that compute the alternative evaluation order
establish the number of visits and an interface for every data-type
X of the circular program. We denote the interface of data-type X
by Interface(X). Interface(X), as computed by these algorithms,
usually has the following shape:

Interface(X) = [(args1, results1), . . . , (argsn, resultsn)]

with argsi ={arguments of the ith function defined
over elements of type X}

resultsi = {results of the ith function defined
over elements of type X}

Thus, by computing Interface(X), for every data-type X, the
scheduling algorithms specify, for every visit to X, which argu-
ments are used and which results are computed. Roughly speaking,
Interface(X) fixes the types for every one of the traversal functions
for type X. Interface Interface(X) induces a partial order on the ar-
guments and results of the functions defined over X .

The largest class of circular programs for which strict multiple
traversal programs can be derived is the class of partitionable
circular programs. Informally, a circular program is partitioned if
for each data-type there is an interface, such that in any function
defined over the data-type, its results are computable in an order
which is included in the partial order induced by the interface.

For every constructor C of a circular program, let DP (C) be
the relation of direct dependencies, between variable occurrences,
defined in the function of the circular program that traverses ele-
ments built using C (defined inC, for short). Formally, let DP (C)
be the relation

DP (C) = {V ar1 → V ar2 | V ar2 depends on V ar1 in C}

A program variable (directly) depends on another if the latter
is used to compute the former (whether this computation requires
complex processing of the latter, or simply be the copy of its value).
These dependencies are easily inferred from the program, in the
program sentences that match our functional language’s three first
attribution rules: in the first rule (v1 = v2), the variable v1 de-
pends on the variable v2, in the second rule (v1 = C(v2, ..., vn)),
v1 depends on the variables v2...vn and in the third (v1 = f e), v1

depends on all the variables that occurr in e. We present such de-
pendencies in Figure 4 (black lines were used to represent this type
of dependencies). Next, we also present the derived DP relation,
for the constructor RootTable of the Table program.

DP (RootTable) = {(RootTable, 1, lines) → (RootTable, 0, lines),
(RootTable, 1, mh) → (RootTable, 0, mh),
(RootTable, 1, mws) → (RootTable, 0, mw),
(RootTable, 1, mws) → (RootTable, 1, aws),
(RootTable, 1, mws) → (RootTable, 0, lines)}

Each dependency is established between two program variables,
each of which is represented by a tuple with three components: the
first component represents the constructor, say C, where the depen-
dency is detected and the third component represents the variable
name. The second component contains an integer value, say i; this
value represents the data-type Xi, in C : X1 X2 . . . Xn → X0,
that is an argument of the traversal function that induces the depen-
dency.

For example, we have RootTable : Rows → Table, and the
variable (RootTable, 1, lines) states the occurrence of a variable,
named lines, computed by traversing an element of type Rows,
which is the first argument of the constructor RootTable.

Furthermore, the dependency
(RootTable, 1, lines) → (RootTable, 0, lines) states that, in the

definition of the function that traverses elements built using the
constructor RootTable (let such an element be (RootTable x)), the
result value lines is computed by traversing x (i.e., using the lines
value computed by traversing a value of type Rows). In other words,
the result value lines, represented by (RootTable, 0, lines), de-
pends on the lines value produced by traversing the first argument
of RootTable, being this value represented by (RootTable, 1, lines).

Having defined the relation DP (C), we are now ready to give
the definition of partitionable circular program.

Definition (Partitionable Circular Program). Let PO(X) be
the partial order induced by Interface(X). A circular program
is a partitionable circular program if for every constructor C :
X1 X2 . . . Xn → X0, the relation

DP (C) ∪
Sn

i=0 PO(〈C, i〉), where 〈C, i〉 = Xi,
is non-circular. In this case we say that the interfaces are

compatible.•
A non-circular relation of dependencies between variables is

a relation that does not include, at the same time, a dependency
between a variable a and a variable b, and a dependency between
the variable b and the variable a, i.e., by a non-circular relation we
mean a cycle-free relation.

The concept of partitionable circular programs is inspired in
the similar concept for attribute grammars. In [7], Engelfried and
Filè proved that deciding whether an attribute grammar is parti-
tionable or not is a NP-complete problem. Kastens [13] defined a
subclass of partitionable attribute grammars, the so-called ordered
attribute grammars, that can be checked by an algorithm that de-
pends polynomially in time on the size of the attribute grammar.
We define a slightly different class of circular programs, that we
shall call L-ordered circular programs.

Definition (L-Ordered Circular Program). A circular pro-
gram is a L-ordered circular program if there exist total orders
TO(X) for every data-type X such that for every constructor C that
defines values of type X, C : X1 X2 . . . Xn → X0, the relation

DP (C) ∪
Sn

i=0 TO(〈C, i〉) is cycle free.•



The total orders TO(X) are easily converted into interfaces: cut
them into maximal segments of function arguments and function
results.

3.3 Ordered Circular Programs
In this section we present an adaptation of Kastens’ attribute
scheduling algorithm [13, 21, 20] to circular programs. The basic
idea of this algorithm is the following: for each data-type X defined
in the program, a partial order DS(X) over the program variables
that occur in the function defined on X is computed. It determines
an evaluation order for values in X, applicable in any context where
X may occur. As a result, an element X.a → X.b ∈ DS(X) in-
dicates that a must be computed before b in any node that is an
instance of X .

The existence of such an order is a sufficient but not necessary
condition for the well-definedness of circular programs. Note that
Kastens’ ordering algorithm makes a worst case assumption by
merging all (indirect) dependencies on variables of a data-type,
in any context the data-type may occur, into a single dependency
graph. This pessimistic approach, however, is crucial for L-ordered
programs: it must always be possible to compute the variables of X
in the order specified by DS(X), irrespective of the actual context
of X.
Step 1: DP =

S
C∈Constructors DP (C), where Constructors

is the set of the program’s constructors, is computed; this is the
relation of direct dependencies between variable occurrences in the
program.

The circular program is not ordered if DP is cyclic.
Step 2: IDP =

S
C∈Constructors IDP (C) is computed; this is

the relation of induced dependencies between variable occurrences.
IDP projects indirect dependencies into dependencies between
variable occurrences as follows: every dependency between vari-
ables of one occurrence of a symbol, say X, induces a dependency
between corresponding variables of all occurrences of X. Formally
it is defined as follows:

IDP (C) = DP (C) ∪ { 〈C, i, a〉 → 〈C, i, b〉
| 〈C′, j, a〉 → 〈C′, j, b〉 ∈ IDP+

∧ 〈C, i〉 = 〈C′, j〉}
The circular program is not ordered if IDP is cyclic.
Figure 4 shows the IDP relation (black and dashed lines were

used to represent it) induced by the Table circular program (in fact,
for simplicity and readability, Figure 4 omits the representation
of the dependencies established, in IDP , between two argument
variables and between two result variables, e.g., the dependency
(RootTable, 1, mw) → (RootTable, 1, lines) is omitted).

The relation IDS =
S

X∈Data−Types IDS(X), where Data−
Types is the set of the program’s data-types, defines the Induced
Dependencies among variables:
IDS(X) = { X.a → X.b | (C, i, a) → (C, i, b) ∈ IDP

∧ 〈C, i〉 = X }
The IDS relation, for the Table program, is presented next.

IDS(Table) = {}
IDS(Rows) = {Rows.aws → Rows.lines, Rows.mws → Rows.aws,

Rows.mws → Rows.lines}
IDS(Row) = {Row.aws → Row.lines, Row.mws → Row.aws,

Row.mws → Row.lines}
IDS(Elems) = {Elems.ah → Elems.lines, Elems.aws → Elems.lines,

Elems.mh → Elems.ah, Elems.mh → Elems.lines,
Elems.mws → Elems.aws, Elems.mws → Elems.lines}

IDS(Elem) = {}
Step 3: the “interfaces” for the data-type symbols are determined.
That is, the algorithm statically establishes the number of visits to a
data-type X and for each of those visits it defines which arguments
are used to compute which results. Several orders are possible.
Kastens’ algorithm maximizes the size of the interfaces so that the
number of visits is minimized. In order to compute such interfaces
we define successively

AX,1 = Results(X)− {X.a | X.a → X.b ∈ IDS+}
AX,2n = { X.a | X.a ∈ Arguments(X)

∧ ∀X.b : X.a → X.b ∈ IDS+

⇒ ∃m < 2n : X.b ∈ AX,m}
−

S2n−1
k=1 AX,k

AX,2n+1 = { X.a | X.a ∈ Results(X)

∧ ∀X.b : X.a → X.b ∈ IDS+

⇒ ∃m < 2n + 1 : X.b ∈ AX,m}
−

S2n
k=1 AX,k

where Arguments(X) is the set of argument variables of the
function defined over X , and Results(X) is the set of result
variables of that same function. The sets AX,k, with 1 ≤ k ≤
m form a disjoint partition of Arguments(X) ∪ Results(X).
The algorithm uses a “backward” sort, hence, the evaluation order
corresponds to a decreasing order of index k. Thus, the subsets are
in such a way that AX,k contains the arguments which contribute
directly to the computation of results in AX,k−1.

Having computed the disjoint partitions of Arguments(X) ∪
Results(X) for each data-type X, the graphs DS(X) are defined
as follows:
DS(X) = IDS(X)

∪ {X.a → X.b | X.a ∈ AX,k

∧ X.b ∈ AX,k−1 ∧ 2 ≤ k ≤ m}

We are now ready to give the definition of ordered circular
program.

Definition (Ordered Circular Program). A circular program
is an ordered circular program if the relation
EDP =

S
C∈Constructors

DP (C)S
{((C, i, a) → (C, i, b)) | X.a → X.b ∈ DS

∧ < C, i >= X}
is cycle free. •
If the constructed relation is circular, the program is rejected,

although circularities also arise for some programs that are not
truly circular. We will return to this subject on Section 5. On
the contrary, if the constructed relation is not circular, it can be
topologically sorted in order to determine a total order on the
variable occurrences of a constructor. That is, on the variables that
occur in the program’s part that specifies how to compute results
when input matches a constructor. This order can be interpreted
as a sequence of abstract computations to be performed on that
constructor. Moreover, the fact that a circular program is ordered
also proves that it always terminates for all possible finite inputs1.

A circularity can originate from two sources. Either the pro-
gram is not L-ordered (i.e., it is indeed not possible to determine
an alternative evaluation order for the circular program) and no in-
terface exist, or it is L-ordered (therefore it would be possible to
transform the circular program into a strict one), but Step 3 selected
a non-compatible interface. In this case, one could try to enforce a
different disjoint partition of Arguments(X) ∪ Results(X) by
adding artificial dependencies. If a circular program is ordered, it is
always possible to transform it into a strict, multiple traversal one.
The scheduling algorithm defines the interfaces of data-type X as
follows:

Interface(X) = [(AX,m, AX,m−1), . . . , (AX,2, AX,1)]

This is the crucial step of Kastens’ algorithm and it is this that
makes the algorithm polynomial. Many partial orders comply with
a IDS relation, but Step 3 fixes a particular choice: the one that
maximizes the interfaces.

Let us now prove that the Table program is an ordered circular
program. First, we define the sets AX,k of disjoint partitions of
variables for all data-type symbols X of Table. We obtain

1 provided that the auxiliary functions used in the program also terminate.
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Figure 4. Dependency graph DP (black lines), IDP (black and dashed lines)

ATable,1 = {Table.lines, Table.mh,

Table.mw}
ATable,2 = {}
ARows,1 = {Rows.lines, Rows.mh}
ARows,2 = {Rows.aws}
ARows,3 = {Rows.mws}
ARows,4 = {}
ARow,1 = {Row.lines, Row.mh}
ARow,2 = {Row.aws}

ARow,3 = {Row.mws}
ARow,4 = {}
AElems,1 = {Elems.lines}
AElems,2 = {Elems.ah, Elems.aws}
AElems,3 = {Elems.mh, Elems.mws}
AElems,4 = {}
AElem,1 = {Elem.lines, Elem.mh,

Elem.mw}
AElem,2 = {}

Next, we compute the partial orders DS(X) over the variables
of Arguments(X) ∪Results(X). As a result we have

DS(Table) = {}
DS(Rows) = {Rows.aws → Rows.lines, Rows.mws → Rows.aws,

Rows.mws → Rows.lines, Rows.aws → Rows.mh}
DS(Row) = {Row.aws → Row.lines, Row.mws → Row.aws,

Row.mws → Row.lines, Row.aws → Row.mh}
DS(Elems) = { Elems.ah → Elems.lines, Elems.aws → Elems.lines,

Elems.mh → Elems.ah, Elems.mh → Elems.lines,
Elems.mws → Elems.aws, Elems.mws → Elems.lines
Elems.mh → Elems.aws, Elems.mws → Elems.ah}

DS(Elem) = {}
As we can easily notice, all the DS dependency relations are

cycle free. Furthermore, we can observe the graphs shown in Fig-
ure 4 to notice that the dependency relations DP of the constructors
are also cycle free. So, the Table program is ordered. We have the
following partitions for the data-types symbols:

Interface(Table) = [({}, {Table.lines, Table.mh, Table.mw})]
Interface(Rows) = [({}, {Rows.mws}),

({Rows.aws}, {Rows.lines, Rows.mh})]
Interface(Row) = [({}, {Row.mws}),

({Row.aws}, {Row.lines, Row.mh})]
Interface(Elems) = [({}, {Elems.mh, Elems.mws}),

({Elems.ah, Elems.aws}, {Elems.lines})]
Interface(Elem) = [({}, {Elem.lines, Elem.mh, Elem.mw})]

It is worthwhile to note that the scheduling algorithm just broke
up the circular definitions of the Table circular program into two
partitions (or traversals). That is the case of evalRows’ circular
invocation, inside function evalTable: the algorithm schedules
a two traversal strategy, where the first traversal computes the
minimum widths of the table rows (mws) and the second traversal
computes the table’s height (mh) and, using the mws information
(passed to the aws argument of the second traversal function), the
formatted table lines (lines).

3.4 The Visit-Sequence Paradigm
The result of the circular program scheduling algorithm is a set of
interfaces, that can be interpreted as a sequence of abstract compu-
tations that have to be performed by a multiple traversal program.
In the context of attribute grammars, such abstract computations
are usually called visit-sequences. They are constructed according

to the following idea: for every constructor C a fixed sequence of
abstract computations is associated. They abstractly describe which
computations have to be performed in every visit of the program to
a particular type of nodes in the tree. Such nodes are the instances
of C.

Two kinds of abstract computations or instructions are used:
eval (x) that computes variable x and visit (X, v) that visits
data-type X for the vth time. In a visit-sequence program, the
number of visits to a data-type X is fixed: it corresponds to the
number of elements in Interface(X). We denote the number of
visits of data-type X by v(X). Furthermore, each visit v to X, with
1 ≤ v ≤ v(X), has a fixed interface: the element in position v of
sequence Interface(X). This interface consists of a set of argument
variables that may be used during the visit v and another set of
result variables that are guaranteed to be computed by the visit v to
X. We denote these two sets by Argsv(X) and Resv(X), where
Argsv(X) = AX,2∗(v(X)−v+1), and Resv (X) = AX,2∗(v(X)−v)+1.

The visit-sequence of a constructor is usually presented as a
list of the two basic instructions. Visit-sequences, however, are
the input of our techniques to derive purely functional programs.
Thus, they are divided into visit-sub-sequences vss(C, v), delim-
ited by begin v and end v, containing the instructions to be per-
formed on visit v to the constructor C, where C is a construc-
tor of X, and 1 ≤ v ≤ v(X). In order to simplify the presen-
tation, visit-sub-sequences are also annotated with define and us-
age variable directives. Every visit-sub-sequence vss(C, v) is an-
notated with the interface of visit v to X. Therefore vss(C, v) is
annotated with arg(Argsv(X)) and res(Resv(X)). Every in-
struction eval (x) is annotated with the directive uses (bs) that
specifies the list of variable occurrences used to evaluate x, i.e.,
the occurrences that x depends on. The instruction visit (Xi, v)
causes child i of constructor C, where C : X1 X2 . . . Xn → X0,
to be visited for the vth time. The visit uses the variable occurrences
of Argsv(Xi) as arguments and returns the variable occurrences of
Resv(Xi). Thus visit (Xi, v) is annotated with inp and out
where inp is the list of the elements of Argsv(Xi) and out is the
list of elements of Resv(Xi).

Figure 5 presents the annotated visit-sub-sequences derived
from the Table circular program. The boxed variables correspond
to values that are defined in one visit-sub-sequence and used in
a different one. An implementation of this visit-sequences has to
have a special mechanism to handle such occurrences: they induce
values that have to be passed between different traversals of the
evaluator.

As we have discussed in Section 2, in the multiple traversal eval-
uator of the table fomatter, the height, the width and the formatted



lines of the nested tables have to be passed from the first to the
second traversal of its outer one. This can be seen in the visit-sub-
sequences of ConsElems: those values are computed in the first
sub-sequence and used in the second one.

3.5 Computing Strict Functions
In imperative programming the implementation of visit sequences
is straightforward: values needed in later visits are stored in the
nodes of the original tree. Thus no problem arises when a later visit
uses values computed in previous ones. In a purely functional set-
ting values cannot be stored in the original tree. As a consequence,
values needed in future traversals must be explicitly passed around.

The rules to transform visit-sequences into pure strict functions
are described in [22]. Such strict functions mimics the imperative
approach: values needed later are stored in a new tree, called a
visit tree. Such values have to be preserved from the traversal that
creates them until the last traversal that uses them. Thus, each
traversal builds a new visit tree containing in its nodes the values
needed in future visits. The functions that represent the subsequent
traversal find the values they need either in their arguments or in
the tree nodes, exactly as in the imperative approach. A set of visit
tree types is defined, one per traversal. Subtrees that are not needed
in future traversals are discarded from the visit trees concerned. As
result any data no longer needed is indeed no longer referenced.
Next, we present a fragment of the program that is obtained by
applying such rules.

The type for the first visit of the strict program is the type of the
original tree. The tree type for the second traversal is:

data Rows2 = ConsRows2 (Row2, Rows2)
| EmptyRows2

data Row2 = OneRow2 (Int, Elems2)
data Elems2 = ConsElems2 (Int, Int, String, Elems2)

| EmptyElems2

Note, for example, that type of ConsElems2 constructor includes
now references to the values that have to be passed from the first to
its second traversal: the height, the width and the formatted string
of the element (string or nested table). There is no reference to
the Elem type because it induces a single traversal subtree. Next,
we show a fragment of the strict, multiple traversal program. We
include only the functions where circular definitions occurred in its
circular program counterpart.

visit_Table1 :: Table -> ([String], Int, Int)
visit_Table1 (RootTable rows) = (lines, mw, mh)
where (rows2, mws) = visit_Rows1 rows

mw = (sum mws) + (length mws) + 1
(lines1, mh) = visit_Rows2 (rows2, mws)
lines = sepLine (mw, lines1)

visit_Rows1 (ConsRows (row,rows))
= (ConsRow2 (row2, rows2), mws)
where (rows2,mws2) = visit_Rows1 rows

(row2 ,mws1) = visit_Row1 row
mws = zipwith_max (mws1, mws2)

visit_Rows1 EmptyRows = (NoRow2 , [])

visit_Rows2 (ConsRows2 (row,rows),aws) = (lines,mh)
where (lines1, mh1) = visit_Row2 (row, aws)

(lines2, mh2) = visit_Rows2 (rows, aws)
lines = addSep (aws, lines1, lines2)
mh = mh1 + mh2 + 1

visit_Rows2 (EmptyRows2, aws) = ([], 0)

visit_Row1 (OneRow elems)
= (OneRow2 (mh1, elems2), mws1)
where (elems2, mws1, mh1) = visit_Elems1 elems

visit_Row2 (OneRow2 (mh1,elems),aws) = (lines,mh1)
where lines1 = visit_Elems2 (elems, mh1, aws)

lines = addBorder lines1

Observe that the two circular definitions of the original circular
program are broken into two traversal functions, both strict in their
arguments.

3.5.1 Deforestation by Partial Evaluation
The strict program derived in the previous section relies on (pos-
sibly) large number of gluing intermediate data structures to con-
vey information between different traversals. Such redundent struc-
tures can, however, be eliminated by using partial evaluation tech-
niques [12]. Indeed, they are static parameters (i.e., known at com-
pile time) of the visit-functions. Thus, we can specialize the func-
tions with these arguments. As a result, we obtain a complete data
structure free program [23]. Such programs consist of a set of par-
tially parameterized functions, each performing the computations
scheduled for the traversal they represent. The functions return, as
one of their results, the function for the next traversal. The main
idea is that for each visit-sub-sequence we contruct a function, that
besides computing the expected results, also returns the function
that defines the following traversal. Any state information (like val-
ues inducing inter traversal dependencies) needed in future visits
is passed on by partially parameterizing a more general function.
Next, we show a fragment of the strict, deforested Table program
obtained by partial evaluation of the strict one.
lambda_RootTable1 :: ([Int] -> (Int,[String]),[Int])

-> (Int,Int,[String])
lambda_RootTable1 rows = (lines,mw,mh1)
where (rows2,mws1) = rows

mw = (sum mws1)+(length mws)+1
(lines1, mh1) = rows2 mws1
lines = sepLine (mw, lines1)

lambda_ConsRows1 (row,rows)
= (lambda_ConsRow2 (row2,rows2), mws)
where (rows2,mws2) = rows

(row2 ,mws1) = row
mws = zipwith_max (mws1, mws2)

lambda_EmptyRows1 = (lambda_NoRow2,[])

lambda_ConsRows2 (row,rows,aws) = (lines , mh)
where (lines1,mh1) = row aws

(lines2,mh2) = rows aws
lines = addSep (aws, lines1, lines2)
mh = mh1 + mh2 + 1

lambda_EmptyRows2 aws = ([],0)

lambda_OneRow1 elems
= (lambda_OneRow2 (mh1,elems2), mws1)
where (elems2,mws1,mh1) = elems

lambda_OneRow2 (mh1,elems,aws) = (lines,mh1)
where lines1 = elems (mh1,aws)

lines = addBorder lines1

Due to the page limit of this paper we did not show the complete
strict and deforested programs. However, the reader can obtain their
Haskell or Ocaml versions using the tools described in Section 6.

Although we have used a first-order circular program as the run-
ning example, the techniques introduced by the higher-order exten-
sion to attribute grammars [26] directly apply to the transformation
of higher-order circular functions, as well. Circular programs mod-
elling algorithms that rely on a large number of traversals tend to
have functions with a large number of arguments and results. Such
programs, however, can be easily expressed in Haskell as a first
class attribute grammar [4]. Our techniques directly apply to such
Haskell-definitions.

The transformation presented in this section constructs standard
strict multiple traversal programs. These programs can be now fur-
ther transformed using other well-known techniques. For example,
we can use the Hylo system [19] to refactor the derived strict pro-
gram (which uses explicit recursion) into an hylomorphism. That is



plan ROOTTABLE
begin 1 arg() ,

visit (Rows, 1)
inp()
out(Rows.mws),

eval (Table.mw)
uses(Rows.mws),

eval (Rows.aws)
uses(Rows.mws),

visit (Rows, 2)
inp(Rows.aws)
out(Rows.lines, Rows.mh),

eval (Table.lines)
uses(Rows.mws, Rows.lines),

eval (Table.mh)
uses(Rows.mh),

end 1 res(Table.lines, Table.mh, Table.mw)

plan ONETABLE
begin 1 arg()
visit (Table, 1)

inp()
out(Table.lines, Table.mh, Table.mw),

eval (Elem.mh)
uses(Table.mh)

eval (Elem.mw)
uses(Table.mw)

eval (Elem.lines)
uses(Table.lines)

end 1 res(Elem.lines, Elem.mh, Elem.mw)

plan CONSELEMS
begin 1 arg()
visit (Elems2, 1)

inp()
out(Elems2.mh, Elems2.mws),

visit (Elem, 1)
inp()

out( Elem.lines , Elem.mh , Elems.mw ),

eval (Elems1.mh)
uses(Elems.mh, Elems2.mh),

eval (Elems1.mws)
uses(Elem.mw, Elems2.mws)

end 1 res(Elems1.mh, Elems1.mws)
begin 2 arg(Elems1.ah, Elems1.aws)
eval (Elems2.ah)

uses(Elems1.ah),
eval (Elems2.aws)

uses(Elems1.aws),
visit (Elems2, 2)

inp(Elems2.ah, Elems2.aws)
out(Elems2.lines),

eval (Elems1.lines)
uses(Elems1.aws, Elem.mw , Elem.mh ,

Elems1.ah, Elem.lines , Elems2.lines),
end 2 res(Elems1.lines)
plan EMPTYELEMS
begin 1 arg() ,

eval (Elems.mws)
uses(),

eval (Elems.mh)
uses(),

end 1 res(Elems.mh, Elems.mws)
begin 2 arg(Elems.ah, Elems.aws) ,

eval (Elems.lines)
uses(),

end 2 res(Elems.lines)

plan CONSROWS
begin 1 arg()
visit (Rows2, 1)

inp()
out(Rows2.mws),

visit (Row, 1)
inp()
out(Row.mws),

eval (Rows1.mws)
uses(Row.mws, Rows2.mws),

end 1 res(Rows1.mws)
begin 2 arg(Rows1.aws)
eval (Row.aws)

uses(Rows1.aws),
visit (Row, 2)

inp(Row.aws)
out(Row.lines, Row.mh),

eval (Rows2.aws)
uses(Rows1.aws),

visit (Rows2, 2)
inp(Rows2.aws)
out(Rows2.lines, Rows2.mh),

eval (Rows1.mh)
uses(Row.mh, Rows2.mh)

eval (Rows1.lines)
uses(Rows1.aws, Row.lines, Rows2.lines)

end 2 res(Rows1.lines, Rows1.mh)
plan EMPTYROWS
begin 1 arg()
eval (Rows.mws)

uses()
end 1 res(Rows.mws)
begin 2 arg(Rows.aws)
eval (Rows.mh)

uses()
eval (Rows.lines)

uses()
end 2 res(Rows.mh, Rows.lines)

plan ONEROW
begin 1 arg()
visit (Elems, 1)

inp()

out(Elems.mws, Elems.mh ),

eval (Row.mws)
uses(Elems.mws),

end 1 res(Row.mws)
begin 2 arg(Row.aws)
eval (Row.mh)

uses(Elems.mh),
eval (Elems.ah)

uses( Elems.mh ),

visit (Elems, 2)
inp(Elems.ah, Elems.aws)
out(Elems.lines),

eval (Elems.aws)
uses(Row.aws),

eval (Row.lines)
uses(Elems.lines),

end 2 res(Row.mh, Row.lines)

plan ONESTR
begin 1 arg()
eval (Elem.mh)

uses()
eval (Elem.lines)

uses(str)
eval (Elem.mw)

uses(str)
end 1 res(Elem.lines, Elem.mh, Elem.mw)

Figure 5. The visit-sub-sequences induced by the Table circular program.

to say that we can express a circular program as an hylomorphism.
In the next section we present the use of program slicing techniques
to slice circular programs.

4. Slicing Circular Programs
Although the programming language community has done a con-
siderable amount of work on program slicing [10, 28], there is little
work done on slicing of lazy functional languages. In this section,
we use use standard slicing techniques to perform static slicing of
circular lazy programs. Note that, the standard techniques for static
slicing do not directly handle circular definitions due to potential
copy-back conflicts as explicitly mentioned in [10].

The transformations presented in the previous section rely heav-
ily in the construction of program dependency graphs and the
scheduling of the computations they induce. Such dependency
graphs are also the building blocks of program slicing techniques.
Having broken the circular dependencies, we can use slicing tech-
niques to perform slicing of circular programs. In fact, in the Cir-
cLib library we have expressed the dependency graphs in a generic
relation library2, which implements forward, backward slicing and
chopping. Therefore, we can easily define slicing of circular pro-
grams by applying such slicing functions to the scheduled depen-
dencies. Next, we present the result of a backward slicing of the
circular table formatter. In this slicing we are interested in com-
puting the width of the given table. That is to say that the slicing
criteria is the width (result mw) of the table.

visit_Table1 :: Table -> Int
visit_Table1 (RootTable rows) = mw
where mws1 = visit_Rows1 rows

mw = (sum mws1) + (length mws1) + 1

visit_Rows1 (ConsRows (row,rows)) = mws
where mws2 = visit_Rows1 rows

mws1 = visit_Row1 row
mws = zipwith_max mws1 mws2

visit_Rows1 EmptyRows = []

visit_Row1 (OneRow els) = mws
where mws = visit_Elems1 els

2 See the Uminho Haskell Library available at http://wiki.di.
uminho.pt/wiki/bin/view/PURe/PUReSoftware

visit_Elems1 (ConsElems (el,els)) = mw1:mws2
where mws2 = visit_Elems1 els

mw1 = visit_Elem1 el
visit_Elems1 EmptyElems = []

visit_Elem1 (OneStr str) = length str
visit_Elem1 (OneTable table) = mw1
where mw1 = visit_Table1 table

The result of the backward slicing is the sub-program that in-
cludes the definitions of the original one that contribute to compute
the width of the table. All other definitions are sliced-out.

In this simple example, the resulting program performs a single
tree traversal. For more complicated programs, however, the result
of a slice may be a program that performs multiple tree traversals.
In this case we can generate one of the three implementations
presented in the paper, that is circular, strict or deforested programs.
This is the case if we consider, in our example, as the slicing criteria
the result that computes the table (lines). The resulting programs
are very similar to the ones we have presented, with the exception
that the top function returns one result only: the formatted table.

5. Class of Programs Considered
In the previous section we have studied the Table language and
processor in great detail. It should be noticed that this running
example is just a simple two traversal program. Things get much
more complicated if we consider more practical examples. For
example, in [25] we have presented an optimal pretty printing
algorithm that performs four traversals over the abstract syntax tree
describing the program to print. As a consequence, the strict version
of that program needs four gluing intermediate data structures to
convey information between the different traversals. Moreover, the
scheduling of the four traversals is not trivial at all. Like in the
Table example, it has several subtrees that have to be traversed
in different visits to the parents. Indeed, we believe that would be
extremely difficult to hand-write such a program in a strict setting.
In that paper, however, we have expressed the pretty printing as an
attribute grammar and we have derived its strict implementation.

Although we can derive strict implementations from circular
definitions, our techniques do not consider all possible well-formed
circular programs. By well-formed circular programs we mean the
set of circular program that can be evaluated without inducing non-
termination. It is well-known that AG scheduling algorithm per-

http://wiki.di.uminho.pt/wiki/bin/view/PURe/PUReSoftware
http://wiki.di.uminho.pt/wiki/bin/view/PURe/PUReSoftware


forms an approximation on the dependencies to compute the eval-
uation order. As a consequence, there are programs that are consid-
ered circular by the scheduling algorithm, although no circularity
really exists. Moreover, there are other circular programs that do
rely on dynamic scheduling (lazy evaluation) to compute the evalu-
ation order. One example of such circular programs is the breadth-
first numbering algorithm presented in [18].

Nevertheless, most of algorithms needed in practical examples
belong to the class of ordered circular programs. Thus, they can be
analyzed and transformed by our techniques. The single example
we found in the literature that can not be (directly) considered is
the breadth-first numbering. However, the tricky example presented
by Okasaki can be slightly modified and expressed as an ordered
circular program3.

6. Tools and Libraries for Circular Programming
The techniques presented in this paper have been implemented: a
library has been written and two tools constructed.

The CircLib Library: It is a library written in Haskell to manipu-
late circular programs (its API is given in appendix A). This library
introduces two data types to model circular programs and visit se-
quences in Haskell, and it defines functions that implement all the
formal definitions and techniques presented in this paper. It also in-
cludes slicing functions. CircLib is a reusable library that can be
used to break-up circular dependencies. It can be used not only to
transform circular lazy programs into strict ones, but also to express
circular programs as hylomorphisms, to implement attribute gram-
mar systems, to express circular XML transformations, etc. This
library is the building block of the two tools described next.

The HaCirc Tool: It is an Haskell refactor. It refactors an Haskell
circular program into its strict counterparts; it can be seen as a
strictification tool. The HaCirc tool is also able to slice circular
programs.

The OCirc Tool: In order to allow Ocaml programmers to express
their multiple traversal programs in this elegant style of circular
programming we have a similar tool for Ocaml. This tool trans-
forms circular programs written in the Ocaml notation, into correct
strict Ocaml programs.

There are two versions of the HaCirc and OCirc tools: a batch
version that given as input a circular Haskell(Ocaml) program
generates its strict/deforested Haskell(Ocaml) program, and a web-
based interactive tool(s) that allows the tool(s) to be used online4.
The reader may use these tools to produce, for example, the Ocaml
or Haskell strict programs of the repmin and the Table processor
from the circular definitions presented in this paper (and available
there). The slicing of circular programs can also be performed using
the online tools.

7. Benchmarks
In order to benchmark the different implementations of circular
programs, we conducted several experiments. We show results of
two circular programs: the Table formatter example and the proces-
sor of the MicroC language. MicroC is a tiny subset of the C lan-
guage. The former induces a simple two traversal strict program,
while the later induces a six traversal program. We consider the
three implementations presented in this paper, i.e., lazy, strict and
deforested programs. The results presented next were obtained in

3 In fact, the definition of breadth-first numbering in a strict setting was
proposed by Okasaki as an exercise in one IFIP WG 2.8 meeting.
4 The tools are available online at http://wiki.di.uminho.pt/
wiki/bin/view/Joao/CircularProgramming

an Intel Centrino 1.4 GHz with 512 MB of RAM memory, under a
Linux Mandrake 10.0 OS. We have used the ghc 6.4 compiler.

The Table Formatter: The three Table formatters were tested
with three different input tables: a table with depth 150 (a typical
3x3 matrix, with one nested table, with depth 149), one with depth
250 and another with depth 350. The results obtained are presented
in Table 1.

Circular Strict Deforested
Table Mem Time Mem Time Mem Time
depth (Kb) (sec) (Kb) (sec) (Kb) (sec)

Haskell 150 260 72.85 140 71.6 130 68.55
250 450 266.69 240 260.00 220 255.65
350 600 677.04 320 646.95 300 642.93

Table 1. Performance results of the three different Table formatters.

The results show that the three implementations have similar
running times, although the deforested program is always slightly
faster than the others. In terms of memory consumption, the de-
forested consumes half of the memory needed by the circular pro-
gram. A two traversal program, however, does not forces the lazy
mechanism to keep a large set of suspended computations. Next,
we consider a more complex example, that relies on a six traversal
strategy.

The MicroC Processor: The MicroC language processor gen-
erates assembly for a simple stack-based machine and it includes
the advanced pretty-printing algorithm that performs four traver-
sals to compute its prettiest representation [25]. As input we con-
sider typical MicroC programs, with 1360, 2720 and 4080 lines.
The runtimes (in seconds) are the accumulation of 10 executions.
The memory consumption refers to the memory used in one run,
and it was obtained with the built-in ghc memory profiler.

Circular Strict Deforested
Input Mem Time Mem Time Mem Time
size (Kb) (sec) (Kb) (sec) (Kb) (sec)

Haskell 1360 1600 17.63 3400 16.41 900 5.9
2720 2800 36.06 6100 32.44 1600 12.21
4080 4400 54.48 12000 47.75 3000 18.49

Table 2. Performance results of the three MicroC processors.
The above results show that the deforested Haskell program

has the best running time of the different implementations of the
MicroC processor: it is 2.8 times faster than the lazy program.
The deforested implementation is also always more efficient than
the strict one: 2.6 times faster. One would expect, however, that
the aggressive optimizations performed by this advanced compiler
would be able to perform the deforestation automatically, by using
techniques like the cata-build rule. In fact, the strict implementation
builds (intermediate) trees that are later consumed. However, as one
can see in the definition of the strict Table program, the function
that builds the intermediate structure also returns additional results.
Thus, the cata-build rule does not apply [8] and the compilers are
not able to perform such optimizations. This can also be seen in the
results of the memory usage of the programs.

8. Conclusion
This paper presented techniques and tools to model and manipulate
circular programs. These techniques transform circular programs
into strict, purely functional programs. Partial evaluation and slic-
ing techniques are used to improve the performance of the evalu-
ators and to slice circular lazy programs, respectively. These tech-
niques have been implemented to build the Haskell library CircLib
which has been used to construct two tools to model and manipu-
late circular programs in Haskell and Ocaml. As a result, we can
model in a strict or lazy setting a multiple traversal algorithm as a
single traversal circular function without the need of additional re-
dundant intermediate data structures and having to define complex
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traversal scheduling strategies. Circular definitions are well-known
and heavily used in the AG community. With this work we make
this powerful style of programming available to other programming
paradigms, namely the non-lazy functional one. Moreover, the pre-
sented slicing techniques allows the programmer to extract differ-
ent aspects of a circular program. Finally, the first experimental
results show that the strict deforested Haskell programs are more
efficient than the Haskell lazy circular programs.

A. The CircLib Haskell library
In this section we present the API of the Haskell library that implements the
re-schedulling of the circular definitions. We start by defining a data-type
CP , to represent circular programs, and the functions that manipulate it5:

data CP
= CP {constrs :: [Constr],

types :: [DT ],
prods :: Map Constr [DT ],
args :: Map DT [V arName],
results :: Map DT [V arName],
deps :: Map Constr [Dep]
semantics :: Map Constr (Map V arName Function)}

type V ar = (Constr, Int, String)
type Dep = ((Int, Name), (Int, Name))

where Constr, DT , V arName and Function are of type String.

dp :: CP → Rel V ar V ar
idp :: CP → Rel V ar V ar
ids :: CP → Rel (DT, Name) (DT, Name)
a :: CP → DT → Int → Set (DT, Name)
ds :: CP → DT → Rel (DT, Name) (DT, Name)
edp :: CP → Rel V ar V ar
isOrdered :: CP → Bool
interface :: CP → DT → Interface
type Interface = [(Set (DT, Name), Set (DT, Name))]

We model visit-sequences we the following data-structures and function.
data V isitSequences = VS (Map Constr [V isitSubSequence])
data V isitSubSequence = VSS { n :: Int,

prod :: [DT ],
arg :: [V arName],
res :: [V arName],
instructions :: [Instruction] }

data Instruction = Eval { variable :: V ar,
uses :: [V ar]}

| Visit {visit :: (Int, Int),
inp :: [Name],
out :: [Name] }

visit_sequences :: CP → V isitSequences

The slicing of circular programs is perfomed by the functions:
backward_slice :: CP → Criteria → V isitSequences
forward_slice :: CP → Criteria → V isitSequences

type Criteria = [V arName]
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