
Strictification of Circular Programs ∗

João Paulo Fernandes
Universidade do Porto &

Universidade do Minho, Portugal
jpaulo@fe.up.pt

João Saraiva
Universidade do Minho,

Portugal
jas@di.uminho.pt

Daniel Seidel Janis Voigtländer
Universität Bonn,

Germany
{ds,jv}@iai.uni-bonn.de

Abstract
Circular functional programs (necessarily evaluated lazily) have
been used as algorithmic tools, as attribute grammar implementa-
tions, and as target for program transformation techniques. Classi-
cally, Richard Bird [1984] showed how to transform certain multi-
traversal programs (which could be evaluated strictly or lazily) into
one-traversal ones using circular bindings. Can we go the other
way, even for programs that are not in the image of his technique?
That is the question we pursue in this paper. We develop an ap-
proach that on the one hand lets us deal with typical examples cor-
responding to attribute grammars, but on the other hand also helps
to derive new algorithms for problems not previously in reach.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features; D.1.1 [Programming
Techniques]: Applicative (Functional) Programming

General Terms Design, Languages

Keywords program transformation

1. Introduction
Circular programs were first introduced by Bird [1984] to avoid
multiple traversals originating from nested function calls. He fuses
several traversals of the same input data structure by tupling their
results and applying unfold/fold-transformation steps [Burstall and
Darlington 1977]. Possible intra-traversal dependencies—if infor-
mation gathered in one traversal is used in another—are captured
by circular definitions in the transformed program, which given cer-
tain conditions are well-behaved under a lazy evaluation strategy.
Subsequently, this kind of transformation was recast in terms of
attribute grammars [Johnsson 1987; Kuiper and Swierstra 1987],
and indeed circular programs have become one successful imple-
mentation technique for attribute grammars [de Moor et al. 2000;
Saraiva 1999]. Circular programs have also been used as an algo-
rithmic tool [Jones and Gibbons 1993; Okasaki 2000] and as target
for transformation techniques other than pure elimination of multi-

∗ This work was supported as a joint project by Fundação para a Ciência e
Tecnologia (FCT), grant No. FCT/Proc 441.00, and Deutscher Akademis-
cher Austausch Dienst (DAAD), grant No. 50106501. The Portuguese part-
ners are also supported under the SSaaPP research project, PTDC/EIA-
CCO/108613/2008. Additionally, João Paulo Fernandes was supported by
FCT, grant No. SFRH/BPD/46987/2008, and Daniel Seidel was supported
by Deutsche Forschungsgemeinschaft (DFG), grant No. VO 1512/1-1.

c©ACM, 2011. This is the author’s version of the work. It is posted here by permission
of ACM for your personal use. Not for redistribution. The definitive version was
published in Proceedings of the ACM SIGPLAN Workshop on Partial Evaluation and
Program Manipulation, January 24-25, 2011, Austin, Texas, USA.

ple traversals [Fernandes et al. 2007; Pardo et al. 2009; Voigtländer
2004].

In this paper, we are interested in transforming circular pro-
grams into non-circular ones. In essence, we want to go in the oppo-
site direction of the transformation that Bird [1984] proposed (and
that Chin et al. [1999] systematized, and made more effective by
exploiting strictness analysis). Why would we be interested in that,
other than out of curiosity? We do care about efficiency: it is well
known that circular programs, while nominally avoiding multiple
traversals, can actually lead to high space and time costs through
introduction of extra thunks, countermanding any potential bene-
fit. Specifically, when looking for an implementation strategy for
attribute grammar systems, lazily evaluated circular programs are
an easy, but not necessarily the most practical route. Instead, one
may ultimately want to go for a strict functional language as target.
An early approach for such strictification is already inherent in the
work of Kuiper and Swierstra [1987]. They provide two mappings
from attribute grammars to functional programs: one that leads to
a possibly multi-traversal, non-circular program and one that leads
to a single-traversal, typically circular program. To get from a cir-
cular program to a non-circular one, it may be possible to apply the
second mapping in reverse and then the first mapping in forward
mode. Actually, that is exactly the opposite of the use that Kuiper
and Swierstra propose to make of their mappings, and of course,
it will only work if the circular program at hand is indeed the im-
age of some non-circular program under the respective mappings in
the opposite directions. Similarly, trying to somehow “simply” in-
vert the original transformation technique of Bird [1984] would up
front limit the class of programs we could hope to deal with. Hence,
we are instead looking for an independent approach to eliminating
circular definitions.

The latter also sets our work here apart from earlier work of
Fernandes and Saraiva [2007]. They used attribute grammar tech-
niques to transform lazy circular programs into programs exe-
cutable both lazily (e.g., in Haskell) and strictly (e.g., in OCaml).
Essentially, they recover the attribute grammar (dependencies) that
correspond to a given circular program, ostensibly only evaluable in
a lazy language, via syntactic analysis. Then, they use a (complex)
scheduling algorithm from the attribute grammar world [Kastens
1980] to statically determine an admissible evaluation order, and
implement it via a non-circular functional program. Thus, the need
for a lazy evaluation engine to determine an admissible evaluation
order dynamically at runtime is avoided. Again, this approach only
works for circular programs that already correspond to an attribute
grammar in a rather direct way. Instead, our aim here is to deal
more generally with circular programs, however arising, also ones
which do not correspond to an attribute grammar or are images of
some non-circular program under any of the known techniques for
going from non-circular to circular. A case in point is our dealing
with a circular breadth-first tree numbering program due to Jones
and Gibbons [1993] and Okasaki [2000].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634165?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

We start in Section 2 by considering the classical repmin exam-
ple and using it to introduce our approach to transforming circular
programs into non-circular ones. We employ type-based analysis
and general program transformation techniques. Our transforma-
tion in this example could be completely automatic, and indeed this
is the case for typical examples that would also be in the reach of
attribute grammar techniques. To emphasize this point, we consider
a practical example from a programming language environment in
Section 3. But automation, or even just formal presentation of a
fixed transformation technique, is not our goal here. Rather, we
are interested in the interplay and connection of program manip-
ulation techniques with the aim of transforming circular into non-
circular programs. Indeed, we perform an extended case study in
Section 4 for an algorithmic circular programming idea originally
due to Jones and Gibbons [1993] and then used by Okasaki [2000]
in a comparison of breadth-first numbering algorithms. The circu-
lar program considered there is particular in that it does not corre-
spond to an attribute grammar, nor can it be seen as an image of
a multi-traversal program under the transformation of Bird [1984].
Instead, it embodies an independent algorithmic use of circular def-
initions. As such, it poses a challenging problem, and it turns out
that in deriving a non-circular version from it we have to invest
some creativity. The overarching approach, however, will still be
the one from Section 2, and the bits of creativity we invest will
pay off in terms of interesting algorithmic variations we arrive at.
Interestingly, Okasaki [2000] discussed various implementations,
in a strict language, of breadth-first numbering that he and others
had come up with. He only gave the circular program for compar-
ison, without relating it in any way to any of the strict algorithms.
With our derivations, we can actually bridge the gap and get, from
the circular program, new alternatives for strict implementation of
breadth-first numbering.

As languages in this paper, we use Haskell and—to emphasize
when programs are non-circular and can be evaluated strictly—
OCaml. To also be able to make concrete statements about effi-
ciency, we provide measurements and discussion in Section 5. We
conclude in Section 6 and give a perspective for using our trans-
formation approach from this paper as a facilitator for further opti-
mization techniques.

Before we start, it seems worth pointing out that our approach
here is orthogonal to the lambda-abstraction strategy of Pettorossi
and Proietti [1988]. They avoid circular definitions by transforming
multi-traversal, non-circular programs into single-traversal, non-
circular programs that use higher-order. We instead go from single-
traversal, circular programs to multi-traversal, non-circular pro-
grams that stay first-order. Of course, one could envision com-
bining these transformation routes to replace circularity by higher-
orderness while preserving single-traversal behavior.

2. Our General Strategy, and an Example
Our general strategy for transforming a lazy circular into a strict
non-circular program is:

1. Find out which parts of the output of a circular call depend on
which parts of its input. (Several approaches would be possible
to do so, for example classical syntactic dependency analysis.
Our main approach will be type-based.)

2. Naively split the circular call into several ones, each computing
only one of the outputs, and exploit the information gained in
the first step to decouple these different calls.

3. Specialize the different calls (using slicing, partial evaluation,
. . .) to work only with those pieces of input and output that are
actually relevant in each case.

We demonstrate it based on the following circular program, due to
Bird [1984]:

data Tree a = Leaf a | Fork (Tree a) (Tree a)

repmin :: Tree Int→ Int→ (Tree Int, Int)

repmin (Leaf n) m = (Leaf m,n)

repmin (Fork l r) m = (Fork l ′ r ′,min m1 m2)

where (l ′,m1) = repmin l m

(r ′,m2) = repmin r m

run :: Tree Int→ Tree Int

run t = let (nt ,m) = repmin t m in nt

Our goal is to remove the circularity in run . So we need to find out
which parts of the output of the circular call

(nt ,m) = repmin t m

depend on which parts of its input. For this example, there is
a very easy way to exploit type information. Note that the type
Tree Int → Int → (Tree Int, Int) assigned to repmin above is
not the most general one that would be possible. Indeed, if we omit
the explicit type signature and ask Haskell to infer a type from the
defining equations of repmin , the answer will be:

repmin :: Ord a ⇒ Tree a → b → (Tree b, a)

If we had used a non-polymorphic version min specialized to type
Int, the answer would have been:

repmin :: Tree Int→ b → (Tree b, Int)

In any case, we can see that the second output of repmin cannot
possibly depend on the second input of repmin (unless Haskell’s
arguably impure strict evaluation primitive seq would be used,
which we assume not to be the case for the programs we transform).
The argument is that there is no way how the polymorphic input of
unknown type b could be used to influence the computation of an
Int. (We will later make use of a more precise formulation of this
kind of reasoning.) What we can deduce from this is that for any
t :: Tree Int and m1, m2 of the same (but arbitrary) type,

snd (repmin t m1) ≡ snd (repmin t m2)

Indeed, for any t and m ,

snd (repmin t m) ≡ snd (repmin t ⊥) (1)

for the undefined value ⊥.
This information comes in very useful. Note that we could

always equivalently (but less efficiently, with two traversals, and
still circular) have written the definition of run above as:

run :: Tree Int→ Tree Int

run t = let (nt ,) = repmin t m

(,m) = repmin t m

in nt

But now we can use (1) to deduce that this is equivalent to:

run :: Tree Int→ Tree Int

run t = let (nt ,) = repmin t m

(,m) = repmin t ⊥
in nt

which is a non-circular program.
It is not a particularly efficient program, of course, because it

twice uses the full repmin though only parts of the inputs and
outputs are actually relevant in each case. Let us try to remedy
this. First for the second call, namely (,m) = repmin t ⊥.
Clearly, it would be beneficial to have a more specialized function,
repminsnd , which takes only a tree argument and produces only

the second output of the original repmin . Of course, we can easily
define such a function:

repminsnd :: Tree Int→ Int

repminsnd t = snd (repmin t ⊥)

and then replace the above call by simply m = repminsnd t .
Moreover, using standard techniques (general unfold/fold-transfor-
mations [Burstall and Darlington 1977], or even an algorithmic
variant [Pettorossi and Proietti 1996]), one can derive from the
above a direct definition of repminsnd :

repminsnd :: Tree Int→ Int

repminsnd (Leaf n) = n

repminsnd (Fork l r) = min (repminsnd l) (repminsnd r)

Similarly, we can replace the other call in the above definition of
run , namely (nt ,) = repmin t m , by nt = repminfst t m
with:

repminfst :: Tree Int→ b → Tree b

repminfst (Leaf n) m = Leaf m

repminfst (Fork l r) m = Fork (repminfst l m)

(repminfst r m)

Ultimately, by simple inlining, this leads to a program consisting of
repminfst , repminsnd , and:

run :: Tree Int→ Tree Int

run t = repminfst t (repminsnd t)

which is non-circular, can be evaluated strictly, and indeed corre-
sponds exactly to the program from which Bird [1984] derived the
circular version that we started this section with. It can trivially be
rewritten in OCaml as:

type ’a tree = Leaf of ’a | Fork of (’a tree) ∗ (’a tree)

let rec repminfst t m =

match t with

Leaf n → Leaf m

| Fork (l , r)→ Fork (repminfst l m, repminfst r m)

let rec repminsnd t =

match t with

Leaf n → n

| Fork (l , r)→ min (repminsnd l) (repminsnd r)

let run t = repminfst t (repminsnd t)

Our plan is to apply the approach demonstrated on the repmin
example to more complicated programs. As seen above, the key
is the discovery of dependencies between inputs and outputs, in
a preferably lightweight manner. In the example, we have used a
type-based argument, namely that from the inferred function type

repmin :: Tree Int→ b → (Tree b, Int)

we can see that the second output cannot depend on the second
input. We also promised that there is a precise formulation for such
reasoning. Indeed, we next review work in short that provides the
desired information systematically.

2.1 Type-Based Useless-Variable Elimination
Kobayashi [2001] proposed a method for detecting dead code via
type inference. The basic idea is that if some subexpression in a
program can be replaced by a special value () of a special type ()
without affecting the type of the “main-expression” of the pro-
gram, then it is guaranteed that the subexpression in question has
no impact whatsoever on the result computed by the program. In-
stead of the special value () of the special type () we employ the

undefined value ⊥ of polymorphic type, otherwise our procedure
is exactly as Kobayashi’s. Our intended use is a bit different: rather
than detecting dead code as such, we want to discover input-output-
dependencies. But, of course, the latter problem can be reduced to
the former: we simply surround a function call of interest with a
projection onto some of its output components, pose the resulting
expression as main-expression, and any pieces of the input that
will be detected as useless then are known to not influence the part
of the output we are interested in. Concretely, for the repmin ex-
ample we invoke Kobayashi’s method on both

let repmin (Leaf n) m = (Leaf m,n)

repmin (Fork l r) m = (Fork l ′ r ′,min m1 m2)

where (l ′,m1) = repmin l m

(r ′,m2) = repmin r m

in fst (repmin t m)

and

let repmin (Leaf n) m = (Leaf m,n)

repmin (Fork l r) m = . . .

in snd (repmin t m)

The output (with ⊥ instead of (), as mentioned above) is:

let repmin (Leaf n) m = (Leaf m,⊥)

repmin (Fork l r) m = (Fork l ′ r ′,⊥)

where (l ′,m1) = repmin l m

(r ′,m2) = repmin r m

in fst (repmin t m)

and

let repmin (Leaf n) m = (⊥,n)

repmin (Fork l r) m = (⊥,min m1 m2)

where (l ′,m1) = repmin l m

(r ′,m2) = repmin r m

in snd (repmin t ⊥)

respectively. That is how we learn that the second output of repmin
does not depend on its second input. Also, Kobayashi’s method
comes with an optimality statement, in the sense that it finds the
maximum of what is possible in terms of replacing subexpressions
with () while preserving the type of the overall expression. So from
the above result we can also deduce that the first output of repmin
indeed depends on both its inputs.

Moreover, Kobayashi [2001] also presents an algorithm that
actually eliminates the detected dead code. Basically, it simply
removes all function arguments and results that were singled out as
special during type inference. Continuing our example, this leads
exactly to the functions repminfst and repminsnd shown earlier in
Section 2, for use in replacements of the calls fst (repmin t m)
and snd (repmin t ⊥).

We see that much of what we need for our strictification tool-
box does already exist. We add the ideas of splitting a circular call
into separate ones, decoupling, and putting all the pieces together.
In fact, our contribution is a way of combining known approaches
for general program analysis and transformation such that stric-
tification of circular programs becomes possible. As we will see
with more complicated examples later on, one cannot always use
Kobayashi’s method and/or unfold/fold-transformations “out of the
box”, though.

3. A Simple Programming Environment
In this section, we apply our approach to a circular program of
practical interest, one that deals with the scope rules of a sim-

ple programming language.1 A program in that language con-
sists of a sequence of instructions, where each instruction may
either be the declaration or the use of a variable, e.g., p =
[use x ;decl x ;decl x ;use y ;]. Such programs may be de-
scribed by the following data type:

type Prog = [It]

data It = Decl Var | Use Var

type Var = String

Now, in order to be well formed, programs in the language, or Prog
values, should obey the following scope rules:

1. all variables used must be declared. The declaration of a vari-
able, however, may occur after its first use.

2. a variable must be declared at most once.

We aim to develop a semantic function that analyzes a sequence
of instructions and computes a list containing the variable identi-
fiers of the instructions which do not obey the above rules. We re-
quire that the list of invalid identifiers follows the sequential struc-
ture of the input program. Thus, the semantic meaning of process-
ing the example sentence is [x , y]: variable x has been declared
twice, and the use of variable y has no binding occurrence at all.

The list of semantic errors encountered in a program (repre-
sentable as type Errors = [Var]), is obtained by checking, for
each variable declaration, whether it has already appeared or not.
For this, our implementation needs to go on accumulating (in an
element of type Env = [Var]) the variables that are declared in a
program. Furthermore, each variable that is used must be declared
somewhere in the program, so we need to know the global environ-
ment of the program (the list of all variables declared in it).

The following program implements the desired semantic analy-
sis. A circular call is defined in run so that the global environment
of an instruction sequence is used while still being constructed.

sem :: Prog→ Env→ Env→ (Errors, Env)

sem [] dcls = ([], dcls)

sem (Decl var : p) dcls envg

= let (errsp , envp) = sem p (var : dcls) envg

errsprog = if var ∈ dcls then var : errsp else errsp

in (errsprog , envp)

sem (Use var : p) dcls envg

= let (errsp , envp) = sem p dcls envg

errsprog = if var ∈ envg then errsp else var : errsp

in (errsprog , envp)

run :: Prog→ Errors

run prog = let (errs, env) = sem prog [] env in errs

Our goal is now to transform this program into a non-circular
one. We follow the same derivation procedure as in the previous
section, and obtain:

semsnd :: Prog→ Env→ Env

semsnd [] dcls = dcls

semsnd (Decl var : p) dcls = semsnd p (var : dcls)

semsnd (Use var : p) dcls = semsnd p dcls

semfst :: Prog→ Env→ Env→ Errors

semfst [] = []

semfst (Decl var : p) dcls envg

= let errsp = semfst p (var : dcls) envg

1 Due to space limitations, we consider a simplified version of the Algol 68
rules only. The complete definition is given by de Moor et al. [2000], and is
used in the Eli attribute grammar-based system [Kastens et al. 2007].

in if var ∈ dcls then var : errsp else errsp

semfst (Use var : p) dcls envg

= let errsp = semfst p dcls envg

in if var ∈ envg then errsp else var : errsp

run :: Prog→ Errors

run prog = semfst prog [] (semsnd prog [])

As we see, the strictification procedure was able to realize that in
a non-circular setting the global environment needs to be available
(totally, due to the use-before-declare discipline) before semantic
errors can be computed; it also tells us how that environment can
be obtained.

The above program makes no essential use of lazy evaluation,
and can be rewritten as an OCaml program (which we omit here due
to space restrictions). In the next section we show that the principles
we have been using so far still apply to circular programs that do
not correspond directly to attribute grammars.

4. Breadth-First Numbering
Inspired by the work of Jones and Gibbons [1993] on breadth-first
labelling, Okasaki [2000] gives the following circular program for
numbering the inner nodes of a tree in breadth-first order:2

data Tree a = Empty | Fork a (Tree a) (Tree a)

bfn :: Tree a → [Int]→ (Tree Int, [Int])

bfn Empty ks = (Empty, ks)

bfn (Fork l r) ˜(k : ks) = (Fork k l ′ r ′, (k + 1) : ks ′′)

where (l ′, ks ′) = bfn l ks

(r ′, ks ′′) = bfn r ks ′

run :: Tree a → Tree Int

run t = let (nt , ks) = bfn t (1 : ks) in nt

4.1 A First Approach: Offsets
As mentioned in the introduction, a bit of creativity is needed to
deal with the above circular program. Driven by the observation
that the second output of bfn is “somehow” obtained from its sec-
ond input by incrementing list elements, potentially repeatedly, we
first derive a variant of bfn which in its second output returns just
those increments/offsets, rather than the result of actually adding
them to the second input. The desired relationship between the two
functions is:

bfn t ks ≡ let (nt , ds) = bfnOff t ks in (nt , zipPlus ks ds)

where

zipPlus :: [Int]→ [Int]→ [Int]

zipPlus [] ds = ds

zipPlus ks [] = ks

zipPlus (k : ks) (d : ds) = (k + d) : (zipPlus ks ds)

The desired function is obtained pretty straightforwardly as fol-
lows:

bfnOff :: Tree a → [Int]→ (Tree Int, [Int])

bfnOff Empty ks = (Empty, [])

bfnOff (Fork l r) ˜(k : ks) = (Fork k l ′ r ′,

1 : (zipPlus ds ds ′))

where (l ′, ds) = bfnOff l ks

(r ′, ds ′) = bfnOff r (zipPlus ks ds)

2 We use a lazy pattern match (notation: ˜(k :ks)) in the second equation of
bfn , where Okasaki uses a strict one. The lazy version is more convenient
for our derivation later on.

and can be used inside run as follows:

run :: Tree a → Tree Int

run t = let (nt , ds) = bfnOff t (1 : ks)

ks = zipPlus (1 : ks) ds

in nt

We see that there are now essentially two apparent circular depen-
dencies: ds appears to depend on ks and ks on ds , plus ks depends
on itself. Let us first deal with the former. Splitting the call to bfnOff

as follows:

run :: Tree a → Tree Int

run t = let (nt ,) = bfnOff t (1 : ks)

(, ds) = bfnOff t (1 : ks)

ks = zipPlus (1 : ks) ds

in nt

and applying the “type-based analysis plus specialization” ap-
proach from Section 2 (more specifically, involving Kobayashi’s
analysis as discussed in Section 2.1, since pure Haskell type infer-
ence is not enough to provide the required information here, due,
e.g., to the call zipPlus ks ds in bfnOff) leads to:3

run :: Tree a → Tree Int

run t = let nt = fst (bfnOff t (1 : ks))

ds = bfnOff,snd t

ks = zipPlus (1 : ks) ds

in nt

bfnOff,snd :: Tree a → [Int]

bfnOff,snd Empty = []

bfnOff,snd (Fork l r) = 1 : (zipPlus ds ds ′)

where ds = bfnOff,snd l

ds ′ = bfnOff,snd r

Note that it was not possible to specialize the call fst (bfnOff t (1 :
ks)) to some function bfnOff,fst with fewer input dependencies.
On the good side, we have managed to eliminate the circularity
between ks and ds , being left with only the circular dependency of
ks on itself in the equation ks = zipPlus (1 : ks) ds . Let us look
at that equation in a bit more detail, in particular “expanding” the
lists to see how their elements relate to each other:

[k0, k1, . . .]

≡ zipPlus [1, k0, k1, . . .] [d0, d1, . . . , dn]

≡ (1 + d0) : (zipPlus [k0, k1, . . .] [d1, . . . , dn])

≡ (1 + d0) : ((1 + d0) + d1) : (zipPlus [k1, . . .] [d2, . . . , dn])

≡ (1 + d0) : ((1 + d0) + d1) : (((1 + d0) + d1) + d2) :

(zipPlus [k2, . . .] [d3, . . . , dn])

≡ . . .

≡ (tail (scanl (+) 1 [d0, d1, . . . , dn]))

++ (zipPlus [kn , . . .] [])

≡ (tail (scanl (+) 1 ds)) ++ [kn , . . .]

≡ (tail (scanl (+) 1 ds)) ++ [last (scanl (+) 1 ds), . . .]

≡ (tail (scanl (+) 1 ds)) ++ (repeat (last (scanl (+) 1 ds)))

Note that the last line contains no elements from [k0, k1, ...], so we
have discovered a non-circular definition for ks . Using it instead of
the equation ks = zipPlus (1:ks) ds leads to a version of run that

3 Here is why we used a lazy pattern match above. Without it, we would
have a bogus dependency of the second output of bfnOff on its second
input (namely requiring that the second input is not the empty list when the
first input is a Fork). It would be possible to work around that by using that
bfnOff is never called with the empty list inside run and ensuing recursive
calls. But working with a lazy pattern match right away is more convenient.

does not anymore contain circular definitions at all. Admittedly,
arriving at the above takes some creativity. But since both scanl and
zipPlus / zipWith are pretty well known functions, the discovery
that the circular binding involving zipPlus can be replaced with
straight calls to scanl is actually not all too far-fetched.

The only thing that now seems to prevent us from executing run
in a strict language is the call to repeat , which creates an infinite
list. Actually, in OCaml this is not a real problem, because despite
being strict, OCaml has some simple support for infinite lists.
However, we can actually do away with infiniteness completely,
because it is easy to see that this part of the list ks will not actually
ever be needed. After all, bfnOff never consumes more elements
from its second argument than bfnOff,snd produces (for the same
input tree, in the list ds). Hence, we can finally rewrite run into:

run :: Tree a → Tree Int

run t = let nt = fst (bfnOff t (1 : ks))

ks = tail (scanl (+) 1 (bfnOff,snd t))

in nt

where bfnOff and bfnOff,snd are the functions shown earlier in this
subsection.

The version of the program that we have now arrived at reads as
follows when transliterated to OCaml:

open List

type ’a tree = Fork of ’a ∗ (’a tree) ∗ (’a tree) | Empty

let rec zipPlus ks ds =

match ks with

[] → ds

| (k :: ks ′) →match ds with

[] → ks

| (d :: ds ′)→ (k + d) :: zipPlus ks ′ ds ′

let rec bfnOff t ks =

match t with

Empty → (Empty, [])

| Fork (, l , r) →
let ks ′ = tl ks in

let (l ′, ds) = bfnOff l ks ′ in

let (r ′, ds ′) = bfnOff r (zipPlus ks ′ ds) in

(Fork (hd ks, l ′, r ′), 1 :: (zipPlus ds ds ′))

let rec bfnOff,snd t =

match t with

Empty → []

| Fork (, l , r)→
let ds = bfnOff,snd l and

ds ′ = bfnOff,snd r

in 1 :: (zipPlus ds ds ′)

let rec scanl f n xs =

match xs with

[] → [n]

| (x :: xs ′) → n :: (scanl f (f n x) xs ′)

let run t = fst (bfnOff t (scanl (+) 1 (bfnOff,snd t)))

While having succeeded in turning a lazy, circular into a strict, non-
circular program, there is an unpleasant thing about the result: we
see recomputation of the same intermediate results zipPlus ds ds ′

in bfnOff,snd and bfnOff . That is the price so far of replacing a
single (though circular) traversal by two separate ones. Fortunately,

it is easy to avoid the recomputations by changing bfnOff,snd to
store all the relevant intermediate results:

let top t =

match t with

Empty → []

| Fork (ds, ,)→ ds

let rec bfnOff,snd t =

match t with

Empty → Empty

| Fork (, l , r) →
let tds = bfnOff,snd l and

tds ′ = bfnOff,snd r

in Fork (1 :: (zipPlus (top tds) (top tds ′)), tds, tds ′)

and then reusing them in bfnOff . The latter means that the tree
result of bfnOff,snd should be passed as an additional argument to
bfnOff . But since that tree has exactly the same shape as the input
tree, and since bfnOff already recurses over that input tree while
completely ignoring its content (only using the tree’s shape), it is
actually possible to avoid introducing an extra argument, instead
directly using the result of bfnOff,snd to drive the computation of
bfnOff :

let rec bfnOff t ks =

match t with

Empty → (Empty, [])

| Fork (ds ′′, l , r)→
let ks ′ = tl ks in

let (l ′, ds) = bfnOff l ks ′ in

let (r ′,) = bfnOff r (zipPlus ks ′ ds) in

(Fork (hd ks, l ′, r ′), ds ′′)

let run t = let tds = bfnOff,snd t

in fst (bfnOff tds (scanl (+) 1 (top tds)))

or, alternatively:

let rec bfnOff t ks =

match t with

Empty → Empty

| Fork (, l , r)→
let ks ′ = tl ks in

let l ′ = bfnOff l ks ′ and

r ′ = bfnOff r (zipPlus ks ′ (top l)) in

Fork (hd ks, l ′, r ′)

let run t = let tds = bfnOff,snd t

in bfnOff tds (scanl (+) 1 (top tds))

Efficiency-wise, we have found that (the Haskell analogons of)
these two alternatives just given are on a par. But an interesting
difference between the two is that the second one, as opposed
also to the original, circular program, has very good potential for
parallel evaluation: in it, the two bfnOff -calls are independent of
each other. However, we have not explored this aspect further, yet.

A completely different alternative for avoiding zipPlus-recom-
putations, instead of introducing an intermediate data structure to
store results, is to use the relationship

bfn t ks ≡ let (nt , ds) = bfnOff t ks in (nt , zipPlus ks ds)

with which we started the derivation in this subsection. Through it,
we can rewrite the Haskell definition of run above the transliterated
OCaml program (starting with open List) into:

run :: Tree a → Tree Int

run t = let nt = fst (bfn t (1 : ks))

ks = tail (scanl (+) 1 (bfnOff,snd t))

in nt

After all, we have by the above relationship that bfn and bfnOff

compute the same value in the first component of their output
pair. The essence with this solution (which would equally well be
possible in OCaml, of course) is that we have originally refactored
bfn into bfnOff to facilitate the removal of the circular dependency,
but after we have done the specialization to/for bfnOff,snd , we can,
for the other traversal, switch back to the original function.

In either case (using bfn or bfnOff for the second traversal in
run , without or with employing an intermediate structure), we have
now a two phase solution instead of the original circular definition.
The first phase computes a list of “level beginnings”, e.g., with

t = Fork ’a’ (Fork ’b’ Empty Empty)

(Fork ’c’ (Fork ’d’ (Fork ’e’ Empty Empty) Empty)

(Fork ’f’ Empty Empty))

we get:

scanl (+) 1 (bfnOff,snd t) ≡ [1, 2, 4, 6, 7]

The second phase uses such a list to do the actual numbering,
either relying on zipPlus-calls (but with potential for independent,
parallel processing of subtrees) or without (but with a necessarily
more sequential processing). In the next subsection now, we derive
an alternative for the first phase.

4.2 A Second Approach: Prefixes
Instead of using, as in the previous subsection, that the second
output of the original bfn is obtained from its second input (ks) by
element-wise adding a finite list (ds) to a finite prefix (of ks), we
can also start from just the observation that exactly a finite prefix
will be changed, without taking into account that this happens by
repeatedly incrementing. So we now start again from the original
bfn and first derive a variant which in its second output returns that
finite prefix, rather than the whole second input with that prefix
changed. The desired relationship between the two functions is:

bfn t ks ≡ let (nt , ps) = bfnPre t ks in (nt ,merge ks ps)

where

merge :: [Int]→ [Int]→ [Int]

merge [] ps = ps

merge ks [] = ks

merge (: ks) (p : ps) = p : (merge ks ps)

The desired function is obtained pretty straightforwardly as fol-
lows:

bfnPre :: Tree a → [Int]→ (Tree Int, [Int])

bfnPre Empty ks = (Empty, [])

bfnPre (Fork l r) ˜(k : ks) = (Fork k l ′ r ′,

(k + 1) : (merge ps ps ′))

where (l ′, ps) = bfnPre l ks

(r ′, ps ′) = bfnPre r (merge ks ps)

and can be used inside run as follows:

run :: Tree a → Tree Int

run t = let (nt , ps) = bfnPre t (1 : ks)

ks = merge (1 : ks) ps

in nt

Similar expansion and calculation as for the equation ks =
zipPlus (1 : ks) ds in Section 4.1 establishes that the equation
ks = merge (1:ks) ps means ks = ps ++(repeat (last (1:ps))).

Moreover, since bfnPre never consumes more elements from its
second argument than it produces in its second output, we know
that no element of list ks beyond those from ps will ever be needed,
so we can directly write:

run :: Tree a → Tree Int

run t = let (nt , ps) = bfnPre t (1 : ks)

ks = ps

in nt

Inlining, and splitting the call to bfnPre as follows:

run :: Tree a → Tree Int

run t = let (nt ,) = bfnPre t (1 : ps)

(, ps) = bfnPre t (1 : ps)

in nt

leaves us with a circular dependency of ps on itself. Applying the
“type-based analysis plus specialization” approach from Section 2
leads to:

bfnPre,snd :: Tree a → [Int]→ [Int]

bfnPre,snd Empty ks = []

bfnPre,snd (Fork l r) ˜(k : ks) = (k + 1) : (merge ps ps ′)

where ps = bfnPre,snd l ks

ps ′ = bfnPre,snd r (merge ks ps)

run :: Tree a → Tree Int

run t = let nt = fst (bfnPre t (1 : ps))

ps = bfnPre,snd t (1 : ps)

in nt

but fails to discover any limits on input-output-dependencies. In
particular, the circular dependency of ps on itself persists. Our best
bet now is to again expand the list ps and try to discover internal
relationships between list elements from

[p0, p1, . . . , pn] ≡ bfnPre,snd t [1, p0, p1, . . . , pn]

However, this clearly depends dynamically on the concrete tree t
(in a certain way which we do not want to simply take for granted,
though). So what can we do?

Well, conceptually at least we can still apply our approach of
splitting a circular equation into several ones in the hope of discov-
ering limited dependencies. The equation ps = bfnPre,snd t (1:ps)
thus becomes:

[p0, , . . . ,] = bfnPre,snd t [1, p0, p1, . . . , pn]

[, p1, . . . ,] = bfnPre,snd t [1, p0, p1, . . . , pn]

. . .

[, , . . . , pn] = bfnPre,snd t [1, p0, p1, . . . , pn]

By inspection, in particular observing the behavior of merge , we
find that the i th position of the output list of bfnPre,snd only ever
depends on the i th position of its second argument. Hence, the
above becomes:

[p0, , . . . ,] = bfnPre,snd t [1,⊥,⊥, . . . ,⊥]

[, p1, . . . ,] = bfnPre,snd t [⊥, p0,⊥, . . . ,⊥]

. . .

[, , . . . , pn] = bfnPre,snd t [⊥, . . . , pn−1,⊥]

Note that this is of course not something we could write in the
program, because even the length n of the target list can and will
vary dynamically with t . But assume we had a function h which
given an i and pi−1 (or 1 if i = 0) gives us the value bound to pi

in the relevant (if even existing) line above. More specifically, we
seek a function

h :: Tree a → (Int, Int)→ Maybe Int

such that h t (i , pi−1) is Nothing if bfnPre,snd t (1 : ps) contains
no pi , otherwise is Just pi . Then we could rewrite run as follows:

run :: Tree a → Tree Int

run t = let go (i , p) = case h t (i , p) of

Nothing→ []

Just p′ → p′ : (go (i + 1, p′))

ps = go (0, 1)

in fst (bfnPre t (1 : ps))

The desired h-function can be derived from bfnPre,snd by using
that:

1. Instead of an input list we only need to pass in the single value
that would have resided in the i th position (starting counting
from zero). That is, an input (i , p) to h corresponds to an input
list to bfnPre,snd consisting of i occurrences of ⊥, then p, then
filled up with further ⊥s.

2. Instead of an output list we only need to return information
about whether an i th position exists in it, and if so, the value
of that list element.

3. Lookup in lists interacts in a very simple way with the merge-
function. Namely, an i th position exists in merge xs ys if and
only if it is so in at least one of xs and ys; and moreover, if both
xs and ys contain an i th position, then the value from ys takes
precedence.

The resulting function looks as follows:

h :: Tree a → (Int, Int)→ Maybe Int

h Empty (,) = Nothing

h (Fork l r) (0, k) = Just (k + 1)

h (Fork l r) (i , k) = case h l (i − 1, k) of

Nothing→ case h r (i − 1, k) of

Nothing→ Nothing

Just p′ → Just p′

Just p → case h r (i − 1, p) of

Nothing→ Just p

Just p′ → Just p′

Its first equation corresponds to the first equation of bfnPre,snd . Its
second equation corresponds to the second equation of bfnPre,snd in
the case that we are focussed on the 0th position in input and output.
Finally, its third equation corresponds to the second equation of
bfnPre,snd in the case that we are focussed on a later position,
i.e., the k in (i , k) corresponds to some element of the tail ks in
bfnPre,snd ’s equation, and correspondingly the output, if any, is to
come from the call merge ps ps ′ with ps ≡ bfnPre,snd l ks and
ps ′ ≡ bfnPre,snd r (merge ks ps). Then, of the four branches of
the nested case-expressions in the definition of h ,

• the first corresponds to the case where neither ps nor ps ′ (which
is actually equivalent to bfnPre,snd r ks in this case as far as the
(i − 1)st position is concerned) contains an (i − 1)st position;

• the second corresponds to the case where ps does not con-
tain an (i − 1)st position, but ps ′ (essentially equivalent to
bfnPre,snd r ks as before) does;

• the third corresponds to the case where ps does contain an
(i − 1)st position, with value p, but ps ′ (now equivalent to
bfnPre,snd r ps as far as the (i − 1)st position is concerned)
does not; and

• the fourth corresponds to the case that both ps and ps ′ (again
essentially equivalent to bfnPre,snd r ps) contain values in the
(i − 1)st position, of which the one from the call on r takes
precedence due to the call merge ps ps ′.

Thus, we have arrived at a non-circular program suitable for use in
OCaml. However, this time we right away replace, via the relation-
ship

bfn t ks ≡ let (nt , ps) = bfnPre t ks in (nt ,merge ks ps)

from the beginning of this subsection, bfnPre by the original bfn
(for computing the first component of the output pair):

let rec bfn t ks =

match t with

Empty → (Empty, ks)

| Fork (, l , r)→
let (k , ks ′) = (List.hd ks, List.tl ks) in

let (l ′, ks ′′) = bfn l ks ′ in

let (r ′, ks ′′′) = bfn r ks ′′ in

(Fork (k , l ′, r ′), (k + 1) :: ks ′′′)

let rec h t ip =

match t , ip with

Empty, → None

| Fork (, l , r), (0, k)→ Some (k + 1)

| Fork (, l , r), (i , k) →match h l (i − 1, k) with

None → h r (i − 1, k)

| Some p →
(match h r (i − 1, p) with

None → Some p

| Some p′ → Some p′)

let run t = let rec go (i , p) =

match h t (i , p) with

None → []

| Some p′ → p′ :: (go (i + 1, p′)) in

let ps = go (0, 1) in fst (bfn t (1 :: ps))

Essentially, we have arrived at an implementation of a breadth-
first task via iterative deepening! Note that the Haskell version of it
also works well on infinite trees, just as the Haskell versions from
Section 4.1 do.

5. Analysis
Being able to transform circular into non-circular programs is cer-
tainly nice on a conceptual level, but ultimately of course the ques-
tion is what such a transformation does to program efficiency.
The two major factors of interest are runtime and heap consump-
tion. We have performed a whole range of experiments in Haskell
and OCaml. In order to really compare the impact of strictifica-
tion (rather than the power of different compilers), we decided
to plot here the results of systematic measurements in Haskell
only. To simulate strict evaluation, rather than only evaluating a
non-circular program in a lazy fashion, we employed Haskell’s
strict evaluation primitives (seq and friends). So generally we com-
pare three program versions: a circular one, a non-circular one
derived from it (and evaluated lazily), and an explicitly stricti-
fied version of the latter (with strictness primitives judiciously
added where Haskell would otherwise deviate from OCaml’s eval-
uation order). Measurements were performed on a Dell Precision
Workstation T3400 with an Intel R© CoreTM2 Q9550 processor (4 x
2.83GHz) and 3.8GB memory available. Programs were compiled
with ghc-6.12.3, optimizing with -O2. The Criterion library (http:
//hackage.haskell.org/package/criterion) was used for
runtime measurements and GHC’s built-in profiler for heap mea-
surements (for the latter, with stack size increased to 500 MBytes
via the runtime option -K500M). Where appropriate and interesting,

we also comment on the relative efficiency of OCaml vs. Haskell,
as observed via wall-clock measurements. (For OCaml we used
native-code compilation via ocamlopt version 3.11.2, stack size
set with ulimit -s 500000.) We analyze the programs from Sec-
tions 2 and 4, and variants/algorithms that have come up in the lit-
erature [Chin et al. 1999; Okasaki 2000; Pettorossi and Skowron
1987]. We do not show results for the programs from Section 3,
even though we have measured them as well. Those measurements
show that the non-circular versions are on a par with, or better than
(sometimes considerably, depending on the distribution of variable
declarations and uses in the input sequence), the circular version.

5.1 Repmin
First the relation between circular and non-circular variants of the
simple repmin-example is measured using three program versions:
the circular program we started from in Section 2, the non-circular
program we ended up with in Section 2, and a completely strict
version of the latter. It turns out that the circular version is slowest,
despite the fact that it ostensibly saves traversal work compared
to the two non-circular versions. The relative efficiency of the two
non-circular versions depends on the shape of trees. On fully bal-
anced trees we find that the lazily evaluated version is better (also
than the OCaml version, which has about the same performance as
the strict Haskell version):

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600 700 800 900 1000

ru
nt

im
e

(m
ill

is
ec

on
ds

)

number of nodes (*1000)

repmin, runtime for fully-balanced trees

circular
non-circular
strict

while for strongly left-leaning trees we observed that the com-
pletely strict version had a small advantage.

An interesting point of comparison is the results of Chin et al.
[1999]. They consider strictness-guided tupling to prevent the in-
troduction of extra thunks, and also look at circular tupling. In par-
ticular, they perform measurements for various versions of repmin
(which they call mintip) in their Section 6. It turns out that, pos-
sibly due to changes/advances in compiler technology for lazy lan-
guages, our findings today differ from what they observed. In a
nutshell, their results are summarized in Table 3 on page 127, repli-
cated here in part:4

100 times of mintip on a tree of depth 12
Heap Time(s)

(bytes) INIT MUT GC Total
No Tupling (!) 29,679,824 0.02 19.49 0.57 20.08
Tupling with (!) 52,620,228 0.01 27.81 4.14 31.96
No Tupling (?) 24,762,928 0.03 14.51 0.57 15.11
Tupling with (?) 18,211,728 0.02 11.95 0.34 12.31

4 Of the six lines of measurements there, we consider only the first two and
the last two, because the middle two concern a “medium-strict” version of
repmin that we do not have otherwise present in our repertoire.

http://hackage.haskell.org/package/criterion
http://hackage.haskell.org/package/criterion

The first line here corresponds to our non-circular version. The sec-
ond line corresponds to our circular version. The third line cor-
responds to our completely strictified non-circular version. And
finally, the fourth line is the outcome of Chin et al.’s strictness-
guided, circular tupling, i.e., a circular program with extra strict-
ness annotations to prevent the detrimental effects of tupling on
efficiency. In contrast to Chin et al.’s measurements, our plot above
situates “No Tupling (?)” between “No Tupling (!)” and “Tupling
with (!)”, and if we include “Tupling with (?)” in the picture, we
find that it performs almost identically to “No Tupling (?)” (actu-
ally, slightly worse).

We have also run lazily and strictly evaluated versions of
repmin that Pettorossi and Skowron [1987] obtained by applying
the lambda-abstraction strategy [Pettorossi and Proietti 1988]. We
found them to perform worse than all the program versions consid-
ered above. In OCaml, the multi-traversal and the single-traversal,
higher-order program had almost indistinguishable performance,
and were not considerably faster than the original circular ver-
sion in Haskell. As in the case of the results of Chin et al. [1999],
we do not really have a ready explanation for these differences
we observed from what the literature suggests about the relative
performance to be expected when comparing different flavors of
circular and non-circular programs.

5.2 Breadth-First Numbering
Here, let us begin by studying the programs from Section 4.1. We
measure five program versions:

• the circular program we started from in Section 4;
• the non-circular Haskell program we finally ended up with in

Section 4.1, with bfnOff replaced by the original bfn , and with
the main call in run changed to fit with the OCaml versions;

• a completely strict version of the latter;
• a Haskell version of the last OCaml program in Section 4.1,

using an intermediate structure; and
• a completely strict version of the latter.

It turns out that the versions using an intermediate structure are
not really a consistent/substantial runtime improvement over the
original, circular program (but recall that we identified paralleliza-
tion potential for these versions, which might ultimately change the
picture), while the versions doing without an intermediate structure
(but coming without potential for parallelization) do quite well in
sequential evaluation:

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

ru
nt

im
e

(m
ill

is
ec

on
ds

)

number of nodes (*1000)

bfn, runtime for fully-balanced trees

circular
non-circular (4.1)
strict (4.1)
intermediate structure (4.1)
intermediate structure, strict (4.1)

An interesting further observation is that, in contrast to what we
saw in Section 5.1, use of Haskell’s strictness primitives pays off

here, as both the strict programs perform faster than their cor-
responding non-strict versions.5 Moreover, if we look at Haskell
heap consumption even the program versions using an intermedi-
ate structure are better than the original, circular program:

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80 90 100

he
ap

 c
on

su
m

pt
io

n
(M

B
yt

es
)

number of nodes (*1000)

bfn, maximal heap consumption for fully-balanced trees

circular
non-circular (4.1)
strict (4.1)
intermediate structure (4.1)
intermediate structure, strict (4.1)

We also measured the final non-circular Haskell program de-
rived in Section 4.2, with bfnPre replaced by the original bfn (and
with h changed slightly to fit with the OCaml version), and a com-
pletely strict version of it. We found that the strictified version is
about equally good as the completely strict version arising from
Section 4.1 (which was the best one above), and that the same rel-
ative statement holds for wall-clock measurements in OCaml. In
terms of Haskell heap consumption, we found that the lazily evalu-
ated non-circular program arising from Section 4.2 performs almost
exactly like the corresponding one from Section 4.1, and similarly
for the completely strict Haskell versions.

We have already mentioned that Okasaki [2000] studied breadth-
first numbering from an algorithmic perspective. As non-circular
programs, he presents two different algorithms, one level-oriented
(his Figure 5), the other forest/queue-based (his Figure 3). If we
run a Haskell implementation of the level-oriented solution and
a completely strict version of it against the circular breadth-first
numbering program and against our own best version, we get the
following timings (showing that our own program still performs
the best; the same holds in OCaml):

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70 80 90 100

ru
nt

im
e

(m
ill

is
ec

on
ds

)

number of nodes (*1000)

bfn, runtime for fully-balanced trees

circular
strict (4.1)
level-oriented
level-oriented, strict

5 And if we move to OCaml, the runtimes of the strict versions are cut by
about another half.

For Haskell heap consumption, the situation is similar:

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80 90 100

he
ap

 c
on

su
m

pt
io

n
(M

B
yt

es
)

number of nodes (*1000)

bfn, maximal heap consumption for fully-balanced trees

circular
strict (4.1)
level-oriented
level-oriented, strict

Measuring a Haskell implementation of Okasaki’s forest/queue-
based solution and a completely strict version of it, we found that
both perform similarly to the original, circular program in terms of
runtime:

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60 70 80 90 100

ru
nt

im
e

(m
ill

is
ec

on
ds

)

number of nodes (*1000)

bfn, runtime for fully-balanced trees

circular
forest/queue-based
forest/queue-based, strict

while the heap consumption lines are similar to those for the
level-oriented programs above. Surprisingly, we observed the
forest/queue-based solution in OCaml to take about 50% more
time than the corresponding strict Haskell version. (We have not
tried to fine-tune Okasaki’s OCaml version to potentially invert the
situation, which might well be possible.)

6. Conclusion
We have proposed an approach to eliminating circular definitions
from traversal programs in a lazy functional language, and per-
formed benchmarking that shows it effective in practice. One
further potential use of this kind of transformation is as a pre-
processing step for other optimization techniques. For example,
elimination of intermediate results (deforestation) from compo-
sitions of circular programs (with other, circular or non-circular)
programs is a challenging problem. By first eliminating circularity,
we could reduce this problem to one in a more standard setting. Us-
ing techniques like those of Voigtländer [2004] and Fernandes et al.
[2007] we could even end up with circular programs again in the
end. Similarly, we could try to benefit from the technique of Chin
et al. [1999] for the optimization of circular programs. As devel-
oped, that technique applies to a non-circular program as a starting

point. In fact, the authors emphasize that the same effects cannot
be obtained by directly applying strictness analysis to a circular
program. But using our approach, a possible route for optimization
of circular programs would be to first transform into a non-circular
program and then use Chin et al.’s technique.

Acknowledgments
We thank the anonymous reviewers for their comments and sugges-
tions, and Chris Okasaki for remarks on bfn and our variants.

References
R.S. Bird. Using circular programs to eliminate multiple traversals of data.

Acta Informatica, 21(3):239–250, 1984.
R.M. Burstall and J. Darlington. A transformation system for developing

recursive programs. Journal of the ACM, 24(1):44–67, 1977.
W.N. Chin, A.H. Goh, and S.C. Khoo. Effective optimisation of multiple

traversals in lazy languages. In Partial Evaluation and Semantics-Based
Program Manipulation, Proceedings, Technical Report, University of
Aarhus, pages 119–130, 1999.

O. de Moor, S.L. Peyton Jones, and E. Van Wyk. Aspect-oriented compil-
ers. In Generative and Component-Based Software Engineering 1999,
Revised Papers, LNCS 1799:121–133. Springer, 2000.

J.P. Fernandes and J. Saraiva. Tools and libraries to model and manipulate
circular programs. In Partial Evaluation and Semantics-Based Program
Manipulation, Proceedings, pages 102–111. ACM, 2007.

J.P. Fernandes, A. Pardo, and J. Saraiva. A shortcut fusion rule for circular
program calculation. In Haskell Workshop, Proceedings, pages 95–106.
ACM, 2007.

T. Johnsson. Attribute grammars as a functional programming paradigm. In
Functional Programming Languages and Computer Architecture, Pro-
ceedings, LNCS 274:154–173. Springer, 1987.

G. Jones and J. Gibbons. Linear-time breadth-first tree algorithms: An
exercise in the arithmetic of folds and zips. Technical Report 71,
Department of Computer Science, University of Auckland, 1993.

U. Kastens. Ordered attribute grammars. Acta Informatica, 13:229–256,
1980.

U. Kastens, A.M. Sloane, and W.M. Waite. Generating Software from
Specifications. Jones & Bartlett Publishers, 2007.

N. Kobayashi. Type-based useless-variable elimination. Higher-Order and
Symbolic Computation, 14(2–3):221–260, 2001.

M.F. Kuiper and S.D. Swierstra. Using attribute grammars to derive effi-
cient functional programs. In Computing Science in the Netherlands,
Proceedings, pages 39–52. SION, 1987.

C. Okasaki. Breadth-first numbering: lessons from a small exercise in algo-
rithm design. In International Conference on Functional Programming,
Proceedings, pages 131–136. ACM, 2000.

A. Pardo, J.P. Fernandes, and J. Saraiva. Shortcut fusion rules for the deriva-
tion of circular and higher-order monadic programs. In Partial Eval-
uation and Program Manipulation, Proceedings, pages 81–90. ACM,
2009.

A. Pettorossi and M. Proietti. Importing and exporting information in
program development. In Partial Evaluation and Mixed Computation
1987, Proceedings, pages 405–425. North-Holland, 1988.

A. Pettorossi and M. Proietti. Rules and strategies for transforming func-
tional and logic programs. ACM Computing Surveys, 28(2):360–414,
1996.

A. Pettorossi and A. Skowron. Higher order generalization in program
derivation. In Theory and Practice of Software Development, Proceed-
ings, LNCS 250:182–196. Springer, 1987.

J. Saraiva. Purely Functional Implementation of Attribute Grammars. PhD
thesis, Utrecht University, Department of Computer Science, 1999.

J. Voigtländer. Using circular programs to deforest in accumulating pa-
rameters. Higher-Order and Symbolic Computation, 17(1–2):129–163,
2004.

	1 Introduction
	2 Our General Strategy, and an Example
	2.1 Type-Based Useless-Variable Elimination

	3 A Simple Programming Environment
	4 Breadth-First Numbering
	4.1 A First Approach: Offsets
	4.2 A Second Approach: Prefixes

	5 Analysis
	5.1 Repmin
	5.2 Breadth-First Numbering

	6 Conclusion
	Acknowledgments
	 Bibliography

