
A Purely Functional Combinator Language for
Software Quality Assessment∗

Pedro Martins1, João P. Fernandes1, and João Saraiva1

1 HASLab / INESC TEC
Universidade do Minho, Portugal
{prmartins, jpaulo, jas}@di.uminho.pt

Abstract
Quality assessment of open source software is becoming an important and active research area.
One of the reasons for this recent interest is the consequence of Internet popularity. Nowadays,
programming also involves looking for the large set of open source libraries and tools that may
be reused when developing our software applications. In order to reuse such open source software
artifacts, programmers not only need the guarantee that the reused artifact is certified, but also
that independently developed artifacts can be easily combined into a coherent piece of software.

In this paper we describe a domain specific language that allows programmers to describe in
an abstract level how software artifacts can be combined into powerful software certification pro-
cesses. This domain specific language is the building block of a web-based, open-source software
certification portal. This paper introduces the embedding of such domain specific language as
combinator library written in the Haskell programming language. The semantics of this language
is expressed via attribute grammars that are embedded in Haskell, which provide a modular and
incremental setting to define the combination of software artifacts.

1998 ACM Subject Classification D.2.11 Software Architectures, D.4.1 Process Management

Keywords and phrases Process Management, Combinators, Attribute Grammars, Functional
Programming

Digital Object Identifier 10.4230/OASIcs.SLATE.2012.51

1 Introduction

Software quality assessment is a relevant research topic, and the implications of quality
assessment are even more intricate and interesting when we consider open source software
(OSS). With this is mind, the Certification and Re-engineering of Open Source Software
(CROSS) project1 was presented with the global goal of assessing the quality of general-
purpose OSS software.

While we observe a growing integration of OSS in various public and industrial organiza-
tions, the fact is that there are no substantial standards or analysis tools that can provide
an assertive quantification of the overall quality of such products. This means that their use
still incorporates several risks.

In the context of CROSS and of the work presented in this paper, our general intention
is to be able of certifying OSS. We understand a Certification as the process of analyzing a
software solution while producing an information report about it. Certifications are expected

∗ This work is funded by the ERDF through the Programme COMPETE and by the Portuguese Govern-
ment through FCT - Foundation for Science and Technology, project ref. PTDC/EIA-CCO/108995/2008.

1 http://twiki.di.uminho.pt/twiki/bin/view/Research/CROSS/ [Accessed in 25 March, 2012]

© Pedro Martins, João P. Fernandes, and João Saraiva;
licensed under Creative Commons License NC-ND

1st Symposium on Languages, Applications and Technologies (SLATE’12).
Editors: Alberto Simões, Ricardo Queirós, Daniela da Cruz; pp. 51–69

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634164?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/OASIcs.SLATE.2012.51
http://twiki.di.uminho.pt/twiki/bin/view/Research/CROSS/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

52 A Purely Functional Combinator Language for Software Quality Assessment

to process an OSS solution and provide a technical analysis of it, decreasing the exposure to
risk associated to the adoption of OSS.

To be more concrete, the challenges undertaken within CROSS are four-fold: i) to select
and address several OSS-specific certification problems; ii) to develop techniques for the
analysis of both code and its documentation; iii) to develop a certification infra-structure
for OSS projects that is open to contributions and freely available; and iv) to embark in
several collaborations with leading IT companies so that the overall results of the project are
available for them.

The work described in this paper contributes to goals i) and ii) above. Indeed, we introduce
a combinator language that allows users to easily construct tailor made certifications that
can actually be the result of gluing together simpler certifications. The language that we
propose is being used as a central piece of a more elaborated goal in the lines of iii): we
want to develop an infra-structure, a Web Portal, that works both as a repository of software
analysis tools and as a service that allows the analysis and certification of OSS. Such service
has to maintain the open source spirit of heterogeneous and distributed collaboration: the
portal has to store all the tools produced and, more important, allow any user to create new
certifications by arranging the tools inputs/outputs in the appropriate order. Also, users
should be able of combining already existing certifications into more complex analyses.

The language that we introduce in this paper aims at allowing an easy configuration
of the flow of information among processes/tools that run either in parallel or in chain to
create certifications, and at the automatic analysis and generation of low-level scripts that
implement such configuration.

This paper is organized as follows: In section 2 we provide an overview of the motivation
and potential challenges this work faces. In section 3 we introduce our combinator language
together with small examples of its usage. In section 4 we present an Attribute Grammar-
based type checker mechanism to control the flow of information inter-processes, which also is
responsible for the script generation, as it is explained in section 5. In section 6 we provide an
overview of related works, in section 7 we discuss opportunities for improving and extending
our work and in section 8 we conclude the paper.

2 Motivation

We have already mentioned that the work presented in this paper is integrated within CROSS,
a project whose aim is to develop program understanding techniques capable of measuring
the degree of quality of open source software while being able to cope with its collaborative,
distributed and heterogeneous character.

The techniques for analyzing source code to produce in the context of CROSS should,
either individually or combined with others, result in the production of reports called
Certifications. In the context of our work in this paper, we have developed an XML-based
representation for these reports. Also, certifications are often composed by smaller units that
are capable of communicating with each other in order to achieve a state where the overall
mechanics of each unit and the flow of information among them is capable of producing
quantifiable results. In the remaining of this paper, we will address ourselves to this smaller
units that contribute to a general goal as Components.

In detail, a Component is therefore a bash tool, that is capable of accessing and producing
meta-data via the standard channels (the standard input, STDIN, and the standard output,
STDOUT). Also, a component must be able of receiving arguments that define the type
of the information that is received via STDIN and the type of the information that is to

P. Martins, J. P. Fernandes, and J. Saraiva 53

be channelled through STDOUT. Also, components are often developed independently by
different, heterogeneous and distributed teams, and their development and their integration in
more complex certifications closely follows the philosophy of open source software development
itself.

In Figure 1 we sketch the flow of information that has been implemented in order to
produce a sample Certification called Certification 2. This is a certification that expects
Java programs and that analyzes them according to two distinct sub-processes that are
independent with respect to each other and therefore can be executed in parallel. One of
these processes chains a series of software units, namely Java Slicer, Interface Analysis and
csv2Report. The other, which is itself a certification called Certification 1, implements a
Cyclomatic Dependency analysis while producing an information report. Finally, and since
all certifications must produce reports that conform to our format, the two distinct flows of
information are aggregated by a Reports aggregator, a component whose single responsibility
is precisely to aggregate outputs.

Interface
Analysis

Java
Slicer csv2Report

Cyclomatic
Dependency

Certification 1

csvJava

Java

R
eports

aggregator

Report

Report

Certification 2

Figure 1 The flow of information implemented in Certification 2.

Several aspects of constructing certifications as illustrated in Figure 1 deserve further
notice. For once, certification developers do not need to worry about concrete details of the
sub-components or sub-certifications to use. Indeed, these sub-units must already exist in
the certification framework, and the developer only needs to make sure that information
flows, both semantically and syntactically, along the global certification process. This
means that the output type of a component/certification must match the input type of the
component/certification that immediately follows it. In these lines, for example, if a Slicer
extracts the interface of a program, it can not feed a component that analyses concurrency
requirements or super classes, even if we consider the same language being analyzed. Another
thing to notice is that validations of this kind are automatically ensured by our system, as
explained in section 4, that performs syntactic type checking.

In contrast to the approach that we propose in this paper, a traditional approach to
implement a certification such as the one in Figure 1 would imply the cumbersome task of
manually writing a script implementing the same features. Typically, such a script must
be capable of launching processes in sequence and pipe their results, launching processes in
parallel, timeout the processes and warn users if any of them is taking too long to run while
minimizing this impact in processes that ran without problems, for example.

For demonstration purposes, we present in Appendix A an example of a script implement-
ing Certification 2 in Perl. In fact, even being this a long and error-prone solution, it actually
shows a simplified version of the script only. Furthermore, the implementation effort would
significantly increase with more and more complex certifications (i.e., with certifications with
larger numbers of sub-components). Furthermore, in this approach it is also very hard to
systematically analyze the flow of information and to perform tests such as checking the
existence of circular dependencies or ensuring that the types of inputs and outputs among
components/certifications match.

SLATE’12

54 A Purely Functional Combinator Language for Software Quality Assessment

In resume, we believe that having a large set of manually-written scripts is not a good
practice: one can never be sure how well the script was written and how well it handles and
processes errors. It is also very important to notice that, if the target system changes, this
approach would require manually re-writing every script to support the new requirements
and specifications.

In this paper we present a purely functional combinator language which allows an easy and
intuitive combination of components/certifications and an easy creation of new certifications
together with a script that implements them, and also with automatic inter-processes type
checking and automatic code generation.

3 A Combinator Language for Certifications

The combinator language that we propose is written in Haskell, and starts by defining the
data-types for certifications and components. These data-types are introduced in Listing 1
as Certification and Component, respectively.

Listing 1 Data types for Certification and Component.
data Certification = Certification Name ProcessingTree
data Component = Component Name InputList OutputList BashCall

data Language = Java -- .java
| C_Source -- .c
| C_Header -- .h
| Cpp -- .cpp
| Haskell -- .hs
| XML -- .xml
| Report -- Report XML

type Arg = String
type Name = String
type BashCall = String
type InputList = [(Arg , Language)]
type OutputList = [(Arg , Language)]

A Certification has a name (e.g. Certification 1 as in Figure 1) and defines the particular
information flow to achieve a desired global analyzis. This flow is represented by data-type
ProcessingTree, that we introduced in Listing 3 and that we describe in detail later.

A Component is represented by a name, the list of arguments it receives and the list
of results it produces. These lists, that are represented by type synonyms InputList and
OutputList, respectively, have similar definitions and consist of varying numbers of arguments
and results. The arguments(results) that are defined(expected) for a particular component
are then passed to concrete bash calls. This is the purpose of type BashCall, which consists
of the name of the process to execute on the system.

In the context of Figure 1, for example, the component Java Slicer may be executed by
the bash call JSlicer with arguments -j and -i in order to slice the interface out of a piece
of Java code. In a different scenario, executing the same process with arguments -j and -s
would result in the slicing of the superclasses of the Java code (actually, if this execution
occurred in the particular example of Figure 1, it would break the flow of information due to
input/output mismatches).

For a generic Java Slicer component that could also be used in the context of Figure 1,
we may define the instance of the Component data-type presented in Listing 2.

P. Martins, J. P. Fernandes, and J. Saraiva 55

Listing 2 A sample instance of the Component data-type.
Component "Java Slicer " [("-j", Java)]

[("-i", Java), ("-s", Java)] "./ jSlicer "

Listing 3 Data-type for ProcessingTree.
data ProcessingTree = RootTree ProcessingTree

| SequenceNode ProcessingTree ProcessingTree
| ParallelNode ProcessingList ProcessingTree
| ProcessCert Certification
| ProcessComp Component Arg Arg
| Input

data ProcessingList = ProcessingList ProcessingTree ProcessingList
| ProcessingListNode ProcessingTree

In order to represent the flow of information defined for a certification, we have defined
the data-type ProcessingTree, which is introduced in Listing 3.

The simplest processing tree that we can construct is the one to define a certification
with a single component. This is expressed by constructor ProcessComp, which also expects
a name to be associated to the component and the specification of the options to run the
component with.

A certification can also be defined by a single sub-certification, here represented by
ProcessCert.

In addition to these options, more complex certifications can be constructed by running
processes in sequence, using SequenceNode, and in parallel, using ParallelNode. Constructor
ParallelNode takes as arguments a processing list and a processing tree. The first argument
represents a list of trees whose processes can run in parallel. The second argument is used
to fulfill our requirement that all results of all parallel computations must be aggregated
using a component. Therefore, this processing tree must always be a component (and this is
ensured by our type checking mechanism in a way that we describe in detail in section 4)
that is capable of aggregating information into one uniform, combined output.

The ProcessingTree data-type can be used, for example, to implement the global informa-
tion flow of Certification 1 presented in Figure 1, which results in the instance presented in
Listing 4.

Having in hand the data-types that we have defined so far, we could already create, in a
manual way, certifications with all the capabilities that we propose to offer. As an example
of this, Certification 2 of the previous section could be defined as presented in Listing 5.

Listing 4 A sample instance of the ProcessingTree data-type.
RootTree

ProcessComp
Component " Cyclomatic Dependency "

[("-j",Java)]
[("-r", Report)]
"./ exec"

"-j"
"-r"

SLATE’12

56 A Purely Functional Combinator Language for Software Quality Assessment

Nevertheless, expressing certifications in this manual approach would be of impractical
use. This is precisely the main motivation to develop a language where simple components
can be combined into more complex ones, which themselves can grow as large as needed in
order to implement extensive certifications. So, instead of the certification implementation
shown above, we suggest the equivalent representation that is introduced in Listing 6.

Listing 6 An example of a Certification using our Combinator Language.
javaSlicer =

Component
"Java Slicer "
[("-j",Java)]
[("-i", Java), ("-s", Java)]
"./ jSlicer "

interfaceAnalysis =
Component

" Interface Analysis "
[("-j",Java)]
[("- csv",CSV)]
"./ iAnalysis "

csv2Report =
Component

" csv2Report "
[("- csv",CSV)]
[("-r", Report)]
"./ csv2Report "

cyclomaticDependency =
Component

" Cyclomatic Dependency "
[("-j",Java)]
[("-r", Report)]
"./ cDepend "

reportsAggregator =
Component

" aggregator "
[("-r", Report)]
[("-r", Report)]
"./ csv2Report "

certification2 =
Input >- (javaSlicer ,"-j","-i")

>- (interfaceAnalysis ,"-j","-csv ")
>- (csv2Report ,"- csv","-r") >|

Input >- Input >- (cyclomaticDependency ,"-j","-r")
+> " Certification 1" >|>

(reportsAggregator ,"-r","-r")
+> " Certification 2"

With the addition of this code being smaller, elegant and easy to read and understand,
the fact is that it will also be statically analyzed and type checked, and the script code
that actually implements the certification it defines will be automatically generated. These
features will be introduced in the remaining of this paper, together with the combinators
that we use in our language, that we present in detail next.

P. Martins, J. P. Fernandes, and J. Saraiva 57

Listing 5 A sample instance of the Certification data-type.
Certification

" Certification 2"
ParallelNode

ProcessingList
SequenceNode

SequenceNode
ProcessComp

Component
"Java Slicer "
[("-j",Java)]
[("-i", Java), ("-s", Java)]
"./ jSlicer "

"-j"
"-i"

ProcessComp
Component

" Interface Analysis "
[("-j",Java)]
[("- csv",CSV)]
"./ iAnalysis "

"-j"
"-csv"

ProcessComp
Component

" scv2Report "
[("- csv",CSV)]
[("-r", Report)]
"./ csv2Report "

"-csv"
"-r"

ProcessingListNode
ProcessCert

Certification
" Certification 1"
ProcessComp

Component
" Cyclomatic Dependency "
[("-j",Java)]
[("-r", Report)]
"./ cDepend "

"-j"
"-r"

ProcessComp
Component

" aggregator "
[("-r", Report)]
[("-r", Report)]
"./ csv2Report "

"-r"
"-r"

SLATE’12

58 A Purely Functional Combinator Language for Software Quality Assessment

The Sequence Processing Combinator

For sequencing operations, we define the combinator >-. This combinator defines processes
that are to be executed in a chain, i.e, where the output of a process serves as input to the
process that follows it. When sequencing processes, it is also the case that if one of process
in the chain fails the entire chain will also fail.

The use of combinator >- must always be preceded by the use of constructor Input, which
signals the beginning of an information flow. Then, as many components and certifications
as needed can be used, as long as they again connected by >-. In Listing 7 we show an
example of a chain of events defined using >-.

Listing 7 An example of Sequence of Processes using the Sequence Combinator.
Input >- (jSlicer ,"-j","-i") >- (iAnalysis ,"-i","-csv ") >- certif

Combinator >- can be used to sequence certifications, components and other processing
trees that are defined using the remaining combinators of our language. When it encounters
a certification, the combinator connects the processes before it to the processing tree of the
certification, and ensures that the result of this processing tree is then channeled to the
processes that follow it. This is the case of the sub-certification called certif in Listing 7.
When sequencing components, users need to supply to >- both the component and its
input/output parameters. In the particular example of Listing 7, jSlicer is to be called
with input parameter -j to state that the process accepts Java code as input and with output
argument -i to state that it slices the interfaces out of that code.

It is worthwhile to notice that the arguments that are specified within components are very
important in that they allow checking the flow of information inter-processes for correctness,
as the input and output types must match when the information is channeled. When using >-
to channel certifications, the user is constrained by the input and output types that were
associated to it, and this is an information that must be carefully observed to ensure that
the involved types do match.

Finally, the result of a sequence defined using >- is a processing tree that implements the
combination of processes.

The Parallel Processing Combinator

Now, we introduce the combinator that enables the parallel composition of processes, This
type of composition is actually supported by two combinators, >| and >|>. The first one
is responsible for launching a varying number of processes in parallel, while the second is
mandatory after a sequence of >| uses and chains all outputs of all processes to a component
that is capable of aggregating them. In Listing 8 we show an example of how these combin-
ators work together.

Listing 8 An example of Parallelization of Processes using the Parallel Combinators.
Input >- cert3 >|
Input >- cert1 >- cert5 >|
Input >- (jSlicer ,"-j","-x") >- cert8 >|> (aggr ,"-x","-r")

Combinator >| takes either a processing tree, a component, a certification or a set of
processes constructed using the other combinators. The arguments of >| must always begin
by constructor Input, to give a clear idea of the flow of information. In the case of this listing
it is indeed easy to spot where the information enters a parallel distribution.

P. Martins, J. P. Fernandes, and J. Saraiva 59

As for combinator >|>, it is mandatory for it to appear in the end of a parallelized set
of processes. It is used to aggregate all the outputs of all the child processes into a single
standard output, and it is able of combining varying numbers of parallel processes using an
aggregation component.

It is worthwhile to explain further the relationship between the parallel combinators >| and
>|>. In the trivial cases, >|> can actually replace the use of >|. This is the case of the process
Input >|> (aggr,"-x","-r"), which is equivalent to Input >- (aggr,"-x","-r"), as
both processes channel the input to the aggregation component aggr. Finally, combinator >|
can never appear alone in a certification, due to the constraint that all parallel processes
must be aggregated.

A Combinator to Create Certifications

Our combinator language includes also a combinator to create certifications and to associate
names to them. This is precisely the purpose of combinator +>, which always combines a
processing tree, given as its left argument, with a String, given to its right. It then creates a
certification associating the name with the processing tree.

As an illustration of the use of +>, consider again the process implementations of Listings 7
and 8. In both cases, the result of running the implemented code is a processing tree (i.e., and
element of type ProcessingTree), that needs to be given a name to become a certification (i.e.,
an element of type Certification). By simply appending, for example, +> "certification"
to the end of both codes, we would precisely be creating certifications named certification
with the respective trees of processes. In the case of Listing 7, this would result in the code
show in Listing 9.

Listing 9 Using a Combinator to construct a Certification.
Input >- (jSlicer ,"-j","-i")

>- (iAnalysis ,"-i","-csv ")
>- certif
+> " certification "

An important remark about +> is that it analyzes the processing tree that it receives
as argument and checks its correctness. This includes testing whether the implied types
match, which means analyzing all the parallelized and sequenced processes for their input
and output types, and see whether or not they respect the flow of information. Also, it
is ensured that the processing tree produces a report which is a mandatory feature for a
certification in our system.

Later in this paper, in section 4, we explain in more detail the features that are imple-
mented by our type analysis and how they are actually implemented under our framework.

The ’Finalize’ Combinator

The last combinator of our language is #>>, that combines a processing tree with a flag
instructing it to either produce a script implementing that tree or to simply check its types
for correctness. The examples presented in Listing 10 show the two possible uses for this
combinator.

Listing 10 Using the finalize combinator.
Input >- (comp1 ,"-j","-x") >- (comp2 ,"-k","-o") #>> ’t’
Input >- cert1 >- cert2 #>> ’s’

SLATE’12

60 A Purely Functional Combinator Language for Software Quality Assessment

In the first case, we are demanding a check on the types of running component comp1
after component comp2. This means that we are interested in knowing whether the return
type of comp1 is the same as the input type of comp2.

With the second case, we are asking for the script that implements chaining certification
cert2 after certification cert1 and also checks if the types match. In section 5 we explain in
more detail how the script generation is achieved.

An Example Scenario

The examples that we presented so far were used to illustrate in simple ways the use of our
combinator language. Still, we believe to have already demonstrated the simplicity that is
involved in its use to create more and more complex certifications. In this section, we explore
this argument further by introducing and describing the certification process of Listing 11.

Listing 11 Example of a parallel process in the middle of a sequence of processes.
Input >- (comp1 ,"-s","-ast ") >- parallel >-

(comp2 ,"-h","-r") >- cert

parallel = Input >- (comp3 ,"- ast","-x") >|
Input >- (comp4 ,"- ast","-x") >|
Input >- (comp5 ,"- ast","-x") >|> (compAggr ,"-x","-h")

In this example we have introduced a parallel computation in the middle of a sequence of
processes. An example of where such a scenario could be useful is in the case of having a set
of processes to analyze an Abstract Syntax Tree (AST), but having an input as source code.
This code then needs to be converted to an AST using, in our illustration, comp1.

Following a manual approach to implementing a script for this scenario would lead to a
complex development process. Indeed, one would have to manually edit it to make sure the
process corresponding to comp1 feeds each process on the parallel computation (that in this
case is composed by 3 sub-processes but that could easily grow further).

Furthermore, imagine that we do not want the results of the parallel computation,
but rather we want them to be compared against a repository of results to analyze the
characteristics of our AST. For this, a certification cert has been implemented, but it does
not take as input the same format that is returned by our parallel processes. A possible
solution using our combinator language is to channel the result of the parallel processes to
an auxiliary component comp2 that converts the formats so the information can be fed to
the certification. But this is something that is not easily implemented by hand.

The overall proposal of performing everything manually would be considerably difficult
and error-prone. One would have to mess with legacy scripts, potentially built by different
programmers, to understand them, and to create the correct chain of information. And
further difficulties still need to be resolved if one wants to ensure script robustness, and that
the processes are controlled in terms of processing times and failures, for example. And
this significative effort of manually building scripts is furthermore severely compromised
considering script evolution. Indeed, small changes in particular certification sub-processes
may lead to severe overall changes being required.

We believe that our combinator approach has the advantage of not only making it easier
to create flows of information among process, that can be easily edited, but also of being
highly modular. Indeed, our combinators receive as arguments small fragments that can be
edited, managed and transformed in simple ways. Also, it does not require a significant effort

P. Martins, J. P. Fernandes, and J. Saraiva 61

for a programmer to change a particular certification, making it able of producing different
results or improving it by introducing new safe processing mechanisms.

4 Type Checking on Combinators

In the previous section, we have introduced our combinator language for the development of
software certifications. In this section, we introduce a set of validations that are automatically
guaranteed to the users of our system.

For once, and since we have chosen to use Haskell in our implementation, we inherit
the advanced features of both the language and its compilers. In particular, the powerful
type system of ghc helps us providing some static guarantees on the certifications that are
developed. Indeed, the order in which the combinators of our language are applied within
a certification is not arbitrary, and the uses that do not respect it will automatically be
flagged by the compiler. The simplest example of this situation is the attempt to construct
a processing tree without explicitly using constructor Input, but of course more realistic
examples are also detected, e.g., not wrapping up a set of parallel computations with the use
of >|> as well as the application of an aggregator.

Apart from static analyzes that are ensured by the compiler, we have also implemented
some dynamic ones. Indeed, we also want to analyze if the types match in the flow of
information defined for a certification. This means that the input type of a process must
match the output type of the process feeding it. Taking the example on Figure 1, the output
type of Interface Analysis must be the same as the input type of csv2Report, which in this
case is csv.

In our setting, we perform such tests on elements of type ProcessingTree, that we use
our combinators to construct. These elements are then analyzed using validations that are
expressed as attribute grammars (AGs) [8]. The reasons for choosing this approach are
essentially of two different natures: i) for once, we are analyzing tree-based structures, for
which the AG formalism is particularly suitable; ii) secondly, because AGs have a declarative
nature which in our context contributes to intuitive implementations that are easy to reason
about and to further extend. In fact, we believe that implementing in our framework advanced
AG-based and well studied techniques such as the detection of circular dependencies [5] and
the use of higher-order attributes [17].

The analyzes that we have implemented in an AG-style rely heavily in the concept of
functional zippers [6]. Indeed, every element that we may want to analyze (i.e., upon which
we define analyzing attributes) first needs to be wrapped up inside a Zipper. A more detailed
description of Zippers and of how we use them can be found in section 6.

As we have already mentioned, our type checking is performed on trees of the type of
ProcessingTree and, because we used an AG-based approach, this analysis is broken down into
tree nodes which, in our case, are represented by the Haskell constructors of the ProcessingTree
data type. The type checking is computed as the value of an attribute called typeCheck. This
attribute, of type Boolean, indicates whether or not the analyzed types are correct. Apart
from this attribute two other are involved: input and output, that support typeCheck. These
attributes are of type Language (see Listing 1) and for each tree node give the input and the
output types of that subtree.

Next, we will explain how these three attribute are calculated in each tree node.

SLATE’12

62 A Purely Functional Combinator Language for Software Quality Assessment

Type Checking Component nodes

Components are the simplest units of our processing trees, and represent simple processes
without any actual flow of information. This means that their type is always correct, and
that the value produced for attribute typeCheck is always True.

As for the attributes input and output, they are computed analyzing the component and
its associated element of the Component data type, against the invocation that is made for
it in a ProcessingTree. Indeed, whenever a component is associated to a certification, an
element such as ProcessComp comp inp out is defined. But comp itself is an element of type
Component, i.e., has the form Component name inplist outlist call. So, our validation starts by
detecting whether or not inp (respectively out) is an option of inplist (respectively outlist). In
case it is, attribute input (respectively output) returns the Language option associated with
inp (out). Otherwise an error is raised.

Type Checking Certification nodes

Certifications are, similarly to components, simple nodes of a processing tree.
In our setting, an interesting feature about certifications is that they must always be

created using combinator +>. Therefore, everytime this combinator is employed, as in
tree +> name, we automatically inspect the value of attribute typeCheck that is computed
for tree. If this value is True, we create the certification Certification name tree; otherwise, no
certification is constructed and an error is raised.

Actually, it is not only necessary that a processing tree type checks in order for us to
be able of producing a certification out of it. Indeed, a requirement of our system is that
certifications must always produce a report within our format. Therefore, we also check if the
output attribute computed for tree is Report prior to the creation of an actual certification.

Finally, when we consider sub-certifications within a certification, again we use the fact
that they need to be created using +>. Indeed, if the construction of a sub-certification
succeeds, then it is always true that the tests so far described have also succeeded. Therefore,
for such certifications, i.e., for certifications under ProcessCert nodes, we can always ensure
that it type checks. Also, because we use an AG based analysis the attributes input and
output are very simple to implement: we return the value of the same attribute that is
synthesized at the sub-tree of ProcessCert nodes.

Type Checking Sequence nodes

The sequence node construction is useful whenever we have a processing tree that is followed
by another. This node channels the information from the first processing tree into the second
one and returns the result of this second processing tree.

The input and output attributes for this node are very simple to compute. In fact, input
is the input type of the first processing tree, and output is the output type of the second
processing tree.

Similarly, the typeCheck attribute is also very simple to determine: apart from checking
if the output attribute of the first tree is equal to the input attribute of the second one, our
AG-based implementation also demands the typeCheck attribute on each sub tree individually
and checks whether both have value True.

P. Martins, J. P. Fernandes, and J. Saraiva 63

Type Checking Parallel nodes

Parallel nodes are the hardest to type check. The reason for this is that, in a parallel
processing definition, all its sub processes must have the same input type and the same
output type, and this output type must the same as the input type of the component that
aggregates all the results that are computed in parallel.

Parallel nodes always have two children: the second child, of type ProcessingTree, is a
component that aggregates all the results of the processes that run in parallel, which are
given as the first child of the node, of type ProcessingList.

The first validation we perform is to check whether the output value of the ProcessingList
matches the input value of the ProcessingTree. If it does not, an error is raised; otherwise,
the processes within the ProcessingList need to be type checked.

Now, type checking processing lists is more complex in that it needs to analyze all the
inputs of all the sub processes, which can be components, certifications or processing trees
and see if they match, and do the exact same thing for the outputs. In an AG setting this
implementation can be achieved as follows: we use the equality of the input and output
attributes for the current element of the list and for the subsequent elements. By type
definition the processing list can never be empty and must always contain at least one element
so the attribute will always return a value.

The input and output attributes for parallel nodes are simple to compute: the input is the
input of one of the elements of the processing list, as they are all the same, and the output is
the output of the aggregator component. One important note is that, due to the importance
of all the types within a processing list being correct, we have followed a safe approach: the
input and output attributes for a processing list are always given only after the type checking
for the entire list is performed.

5 Script Generation

We have shown a how set of processes can elegantly be combined into a certification, either
in a sequence, in parallel or in any combinations of these two. We have also shown how this
combinators are easy to read, understand and modify, and how we implemented a supporting
type checking mechanism that guarantees a correct match of types throughout the processing
chain.

In this section we describe how we can generate Perl scripts that implement the certific-
ations that are created using our combinators. These scripts can be seen as the low level
representation of our certifications: they describe the processing chain, handle the individual
processes for their completeness and manage the flow of information throughout all the
processes the certification is made of.

The script generation follows the same AG-based strategy that we have applied to type
check our certifications. The basic idea behind it is that each tree node, that represents a
part of the processing tree, generates the corresponding sub-piece of the global script, and
that the overall meaning of the AG is the entire, fully working, script.

In Listing 12 we present an example of a script that was generated by the following
combination: Input >- (comp1 ,"-j","-x") >- (comp2 ,"-k","-o").

In this script both components are executed via the system call command capture_exec,
their existence is verified and their STDERR output is checked for problems. Afterwards,
their results are channelled to the process that comes next, which in the case of the first
component is the second component, and in the case of the second component is the STDOUT
of the script since the computations ended.

SLATE’12

64 A Purely Functional Combinator Language for Software Quality Assessment

Listing 12 Example of a script.
#!/ usr/bin/perl
use strict ;
use warnings ;
use IO:: CaptureOutput qw/ capture_exec /;
use IO:: File;
$| = 1;
my $stdout0 = $ARGV [0]; # This is actually stdin

my $cmd1 = "./ comp1 -j -x";
my ($stdout1 , $stderr1 , $success1 , $exit_code1)

= capture_exec ($cmd1 . "<<END\n" . $stdout0 . "\ nEND");
if ($?) { die "** The process $cmd1 does not exist! **"; }
if (not $success1)

{ die "** The process $cmd1 failed with msg: $stderr1 ! **";}

my $cmd2 = "./ comp2 -k -o";
my ($stdout2 , $stderr2 , $success2 , $exit_code2)

= capture_exec ($cmd2 . "<<END\n" . $stdout1 . "\ nEND");
if ($?) { die "** The process $cmd2 does not exist! **"; }
if (not $success2)

{ die "** The process $cmd2 failed with msg: $stderr2 ! **";}

print $stdout2 ;

The scripts that we generate perform process control and scheduling of computations both
on chained and in parallel flows of information while still being readable and understandable.
Nevertheless, constructing such scripts manually is still an error-prone task even for small
certifications with small number of processes. A larger certification (with, e.g, over a dozen
sub-processes) would imply a significant amount of time to be implemented and debugged,
just to name some phases of the development process.

In fact, this situation would further deteriorate if we were considering integrating in
our framework more advanced scripting features. We could, for example, be interested
in time-outing the processes independently to ensure they do not go past a certain time
frame, in controlling better the input and output information from processes (checking, for
example, if input information is able to be processed though STDIN, i.e, respects the specific
implementations on different programming languages and environments2, etc) or in ensuring
that, anytime an error occurs, the script actually creates a small report that is integrated in
the final certification instead of just showing information through the standard STDERR.

We believe, however, that following an AG-based approach similar to our own would
facilitate the integration of these features in structured and simple ways as one-of tasks that
once achieved become automatically available for any certification, old and new. Furthermore,
because tree nodes are modular units of an AG implementation, it is even easier to upgrade
small parts of the script as needed. For example, implementing timeout features on parallel
processes would imply changing only the corresponding attribute on the desired tree nodes.

Generating scripts automatically presents several difficulties that are orthogonal to any
generation mechanism, including to our own AG-based setting. Code translation is challenged

2 http://en.wikipedia.org/wiki/Here_document [Accessed in 25 March, 2012]

http://en.wikipedia.org/wiki/Here_document

P. Martins, J. P. Fernandes, and J. Saraiva 65

by the usual concerns of assuring that the result is both syntactically and semantically perfect,
and that all constructors/primitives/declarations of the target language are correctly declared
and used. Implementing multiple processes, for example, implies a tight control on the
variables that carry their results and their inputs. In a chain of processes from A to B, the
variable that stores the information produced by A must be the one that feeds B, and all
the variables must have different names (and if they do not, they must be used in different
execution contexts). Also, this mechanism is even harder to implement within parallel
processing, where all the outputs are aggregated into one single process (remember Listing
3, where a parallel tree node has always a processing list and a component that aggregates
information).

To implement the generation of a script we have followed a simple rule for the variables
scope: their name follows the order in which their corresponding process appears in the tree.
So, for example, if the script implements two processes, where the process A receives the
input, processes it and sends it to process B, whose output is the certification report, all
the variables related to A (first process) end in 1, and all the variables related to B (second
process) end in 2. The name of the variables is always the same (except for the last character
that is the number) and in this way we guarantee that variables remain exclusive to the
process they are related to.

If the certification is composed by a sequence from a processing tree to another processing
tree, than the names of the variables on the second processing tree start with 1 plus the
number of variables on the first processing tree. Such mechanism is very easy to implement
in our AG setting: we have created a very simple attribute whose meaning is the number of
sub-processes per tree node. So if the first processing tree of a sequence has four sub-processes,
then the variables on that processing tree are named from 1 to 4, and on the second processing
tree the variable names start in 5.

For parallel computations this mechanism is very simple, except for a few requisites.
First, we must ensure that whatever comes before the parallel computation feeds all its
sub-processes. To do so, we ensure that any information is first assigned to a variable from
which all the sub processes read their input. Also, the results from all sub-processes are
channelled to a variable that aggregates them. It is important to notice that the outputs are
not combined: they are simply channelled to a variable that feeds the aggregator component
of the parallel computation, and it is the responsibility of such aggregator to read various
inputs via STDIN, instead of reading a single instance that is the aggregation of all the
results. We do so to preserve the information instead of risking changing it by combining
functions.

On the sub-processes of a parallel computation the exclusivity of the names of the vari-
ables names is not important, since these are different processes with different execution
environments. Nevertheless, it is important to preserve exclusivity inside the processes them-
selves, which we easily do simply by recursively calling the attributes that were responsible
for creating the script in the first place.

After defining the scope rules for variables, the script generation via the attribute toScript
is easy to perform, once again thanks to our AG-based mechanism. The code generation
follows the syntactic rules of the target language (in this case Perl) and ensures that the
constructors/primitives/parenthesis are written and in the correct form.

The attribute toScript on the root of the processing tree creates the headings necessary to
the script (such as declaring global variables or importing Perl libraries) and in each tree node
we generate the corresponding Perl code, which implies defining system calls by composing
processes.

SLATE’12

66 A Purely Functional Combinator Language for Software Quality Assessment

6 Related Work

In [2] an implementation of the orchestration language Orc [7] is introduced as an embedded
domain specific language in Haskell. In this work, Orc was realized as a combinator library
using the lightweight threads and the communication and synchronization primitives of the
Concurrent Haskell library [11]. Despite the similarities on the use of combinators written in
Haskell, this paper differentiates from ours because we do not rely on any existing orchestration
language. Rather, we generate low level Perl scripts from combinators whose inputs are
direct references to system processes (components). Also, our processes management does
not rely on Concurrent Haskell, but rather on the parallelization features of the target system
via system calls on the script.

The use of attribute grammars as the natural setting to express the embeding of DSLs in
Haskell is proposed in [12, 13, 14, 15]. These embeddings use powerful circular, lazy functional
programs to execute DSLs. Such circular, lazy evaluators are a simple target implementation
of AGs used by several systems [9, 16]. To make such implementations more efficient we
have adapted well-know AG [5] and program calculation [3, 4] techniques to refactor circular
programs into strict ones.

Zippers were originally conceived by [6] to represent a tree together with a subtree that is
the focus of attention, where that focus may move left, right, up or down within the tree. By
providing access to the parent and child elements of a structure, zippers are very convenient
in our setting: attributes are often defined by accessing other attributes in parent/children
nodes. In our work we have used the zipper library of [1]. This library is generic, in that
it works for both homogeneous and heterogeneous datatypes, as any data-type for which
an instance of the Data [10] type class is available can be immediately traversed using this
library.

7 Future Work

Further improvements in the presented library would be specially important and have greater
impact in the combinators analysis mechanisms.

A possible improvement is on the type checking mechanism. This mechanism is already
on a solid state and perfectly checks for all kinds of types mismatches along the flow of
information, but their output is still a simple error to the user, warning him/her about the
fact that, somewhere along the chain of processes, something somewhere has a type error.

With huge certifications it becomes very difficult to localize a type error. One improvement
we are looking into is on the warnings produced by the typeCheck attribute. Such warning
could display valuable information such as showing until which part of the process the types
are ok or actually indicating the specific line along the combinators where the type validity
breaks.

Another important improvement would be in the number of AG-based analysis we perform.
In this state, the library only checks for types errors and generates a script, but the world of
AGs is old and heavily studied, and there are a huge amount of works with algorithms that
when implemented would, almost for free, greatly improve our library. A perfect example
of a well-known AG-based algorithm we are looking forward to implement are circularity
checks along the processing tree, where an interdependency between the process A and the
process B could actually lead to a deadlock on the final script.

The script itself could also be the subject of some improvements, such as performing
individual timeouts on processes, do a better control on the inputs and outputs and improve
the warnings to the user.

P. Martins, J. P. Fernandes, and J. Saraiva 67

8 Conclusion

In this paper we have presented a combinator library that supports the scheduling of processes,
both chained or as parallel computations. Together with the combinators, we have presented
multiple examples of how computations can be elegantly rearranged into new process work
flows, and how such combinators relate with each other to easily create complex certifications.

We have also introduced AG-based, purely functional mechanisms, that are not only cap-
able of performing automatic type checking on processes work flows but also of automatically
generating scripts.

Implemented in an AG environment, our type checking system automatically guarantees
that the input and output types of each sub-processes are right to the definition of a process
work flow and of a certification, and do not break such definitions, while also managing to
automatically create low-level implementations of certifications in the form of Perl scripts.

We believe the advantages of our system are two fold: first, the combinators create an
intuitive and simple yet powerful environment to create not only certifications but also
processes work flows in general, while ensuring their validation.

Secondly, our AG approach can be easily transformed with any change that both the
definitions of certifications or of processes work flows needs to support. This mechanism is
modular, easily extensible and upgrades on code generation or type checking in the form of
new features and functionalities are easy to design and implement in a modular and concise
way.

The combinator library, together with built-in definitions of certifications and components,
an example of a script, one of a component and a README, are available at http://wiki.
di.uminho.pt/twiki/bin/view/Personal/PedroMartins/CombinatorLibrary.

A Perl script for Certification Management

#!/usr/bin/perl
use strict;
use warnings;
use IO::CaptureOutput qw/capture_exec/;
use IO::File;
$| = 1;
my $stdout0 = $ARGV[0]; # This is actually stdin

my $cmd1 = "./script+1.pl -c -r";
my ($stdout1, $stderr1, $success1, $exit_code1) =
capture_exec($cmd1 . "<<END\n" . $stdout0 . "\nEND");
if ($?) { die "**** The process $cmd1 does not exist! ****"; }
if (not $success1) { die "**** The process $cmd1 failed with msg: $stderr1 ! ****"; }

#Before starting a parallel computationg we default the stdout to 0
$stdout0 = $stdout1;

my $handle2 = new IO::File();
my $pid2 = open($handle2, "-|");
if ($pid2 == 0) {
my $cmd1 = "./script+1.pl -r -x";
my ($stdout1, $stderr1, $success1, $exit_code1) =
capture_exec($cmd1 . "<<END\n" . $stdout0 . "\nEND");
if ($?) { die "**** The process $cmd1 does not exist! ****"; }

SLATE’12

http://wiki.di.uminho.pt/twiki/bin/view/Personal/PedroMartins/CombinatorLibrary
http://wiki.di.uminho.pt/twiki/bin/view/Personal/PedroMartins/CombinatorLibrary

68 A Purely Functional Combinator Language for Software Quality Assessment

if (not $success1) { die "**** The process $cmd1 failed with msg: $stderr1 ! ****"; }
print $stdout1;
exit;
}

my $handle3 = new IO::File();
my $pid3 = open($handle3, "-|");
if ($pid3 == 0) {
my $cmd1 = "./script+1.pl -r -x";
my ($stdout1, $stderr1, $success1, $exit_code1) =
capture_exec($cmd1 . "<<END\n" . $stdout0 . "\nEND");
if ($?) { die "**** The process $cmd1 does not exist! ****"; }
if (not $success1) { die "**** The process $cmd1 failed with msg: $stderr1 ! ****"; }
print $stdout1;
exit;
}

my $handle4 = new IO::File();
my $pid4 = open($handle4, "-|");
if ($pid4 == 0) {
my $cmd1 = "./script+1.pl -r -x";
my ($stdout1, $stderr1, $success1, $exit_code1) =
capture_exec($cmd1 . "<<END\n" . $stdout0 . "\nEND");
if ($?) { die "**** The process $cmd1 does not exist! ****"; }
if (not $success1) { die "**** The process $cmd1 failed with msg: $stderr1 ! ****"; }
print $stdout1;
exit;
}

Lets grab all the results of the parallel processes
my $stdout4 = <$handle2>. " " . <$handle3>. " " . <$handle4>;
my $cmd5 = "./script+1.pl -x -x";
my ($stdout5, $stderr5, $success5, $exit_code5) =
capture_exec($cmd5 . "<<END\n" . $stdout4 . "\nEND");
if ($?) { die "**** The process $cmd5 does not exist! ****"; }
if (not $success5) { die "**** The process $cmd5 failed with msg: $stderr5 ! ****"; }

print $stdout5;

References

1 Michael D. Adams. Scrap your zippers: a generic zipper for heterogeneous types. In
Proceedings of the 6th ACM SIGPLAN workshop on Generic programming, WGP ’10, pages
13–24, New York, NY, USA, 2010. ACM.

2 Marco Devesas Campos and L. S. Barbosa. Implementation of an orchestration language
as a haskell domain specific language. Electron. Notes Theor. Comput. Sci., 255:45–64,
November 2009.

3 João Paulo Fernandes, João Saraiva, Daniel Seidel, and Janis Voigtländer. Strictification of
circular programs. In PEPM’11: Procs. of the 20th ACM SIGPLAN Workshop on Partial
Evaluation and Program Manipulation, pages 131–140. ACM, 2011.

P. Martins, J. P. Fernandes, and J. Saraiva 69

4 João Paulo Fernandes, Alberto Pardo, and João Saraiva. A shortcut fusion rule for circular
program calculation. In Proceedings of the ACM SIGPLAN Haskell Workshop, pages 95–
106, New York, NY, USA, 2007. ACM Press.

5 João Paulo Fernandes and João Saraiva. Tools and Libraries to Model and Manipulate
Circular Programs. In PEPM’07: Proceedings of the ACM SIGPLAN 2007 Symposium on
Partial Evaluation and Program Manipulation, pages 102–111. ACM Press, 2007.

6 Gérard Huet. The zipper. Journal of Functional Programming, 7(5):549–554, 1997.

7 David Kitchin, Adrian Quark, William Cook, and Jayadev Misra. The orc programming lan-
guage. In Proceedings of the Joint 11th IFIP WG 6.1 International Conference FMOODS
’09 and 29th IFIP WG 6.1 International Conference FORTE ’09 on Formal Techniques
for Distributed Systems, FMOODS ’09/FORTE ’09, pages 1–25, Berlin, Heidelberg, 2009.
Springer-Verlag.

8 Donald Knuth. Semantics of Context-free Languages. Mathematical Systems Theory, 2(2),
June 1968. Correction: Mathematical Systems Theory 5 (1), March 1971.

9 Matthijs Kuiper and João Saraiva. Lrc - A Generator for Incremental Language-Oriented
Tools. In Kay Koskimies, editor, 7th International Conference on Compiler Construction,
volume 1383 of LNCS, pages 298–301. Springer-Verlag, April 1998.

10 Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a practical design pattern for
generic programming. In Proceedings of the 2003 ACM SIGPLAN international workshop
on Types in languages design and implementation, TLDI ’03, pages 26–37, New York, NY,
USA, 2003. ACM.

11 Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent haskell. In Pro-
ceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’96, pages 295–308, New York, NY, USA, 1996. ACM.

12 João Saraiva. Purely Functional Implementation of Attribute Grammars. PhD thesis,
Department of Computer Science, Utrecht University, The Netherlands, December 1999.

13 João Saraiva and Doaitse Swierstra. Data Structure Free Compilation. In Stefan Jähnichen,
editor, 8th International Conference on Compiler Construction, CC/ETAPS’99, volume
1575 of LNCS, pages 1–16. Springer-Verlag, March 1999.

14 João Saraiva and Doaitse Swierstra. Generic Attribute Grammars. In D. Parigot and
M. Mernik, editors, Second Workshop on Attribute Grammars and their Applications,
WAGA’99, pages 185–204, Amsterdam, The Netherlands, March 1999. INRIA Rocquen-
court.

15 Doaitse Swierstra, Pablo Azero, and João Saraiva. Designing and Implementing Combin-
ator Languages. In Doaitse Swierstra, Pedro Henriques, and José Oliveira, editors, Third
Summer School on Advanced Functional Programming, volume 1608 of LNCS Tutorial,
pages 150–206. Springer-Verlag, September 1999.

16 Doaitse Swierstra, Arthur Baars, and Andres Löh. The UU-AG attribute grammar system,
2004. http://www.cs.uu.nl/groups/ST.

17 Doaitse Swierstra and Harald Vogt. Higher order attribute grammars. In H. Alblas and
B. Melichar, editors, International Summer School on Attribute Grammars, Applications
and Systems, volume 545 of LNCS, pages 48–113. Springer-Verlag, 1991.

SLATE’12

http://www.cs.uu.nl/groups/ST

	slate
	Introduction
	Motivation
	A Combinator Language for Certifications
	Type Checking on Combinators
	Script Generation
	Related Work
	Future Work
	Conclusion
	Perl script for Certification Management

	blank-page

