
Complexity Metrics for ClassSheet Models ?

Jácome Cunha1,2, João Paulo Fernandes1,3, Jorge Mendes1, and João Saraiva1

1 High-Assurance Software Laboratory (HASLab/INESC TEC) &
Universidade do Minho, Portugal

{jacome,jpaulo,jorgemendes,jas}@di.uminho.pt
2 CIICESI, ESTGF, Instituto Politécnico do Porto, Portugal

jmc@estgf.ipp.pt
3 Reliable and Secure Computation Group ((rel)ease),

Universidade da Beira Interior, Portugal
jpf@di.ubi.pt

Abstract. This paper proposes a set of metrics for the assessment of
the complexity of models defining the business logic of spreadsheets. This
set can be considered the first step in the direction of building a quality
standard for spreadsheet models, that is still to be defined.
The computation of concrete metric values has further been integrated
under a well-established model-driven spreadsheet development environ-
ment, providing a framework for the analysis of spreadsheet models under
spreadsheets themselves.

Keywords: Spreadsheets, Models, ClassSheets, Metrics, Quality

1 Introduction

Spreadsheet systems are paradigmatic in terms of widespread use and success.
Indeed, spreadsheets are intensively used in industry in the development of busi-
ness applications specially by non-professional programmers, often referred to as
end users.

The reasons for the tremendous commercial success that spreadsheets ex-
perience undergoes continuous debate, but it is almost unanimous that two key
aspects deserve to be recognized: i) spreadsheets are highly flexible, which inher-
ently guarantees that they are intensively multi-purpose; ii) the initial learning
effort associated with the use of spreadsheets is objectively low.

It is also widely accepted that spreadsheets, in contrast with their success,
tend to be highly error-prone. In this line, several studies can be referenced [14,

? This work is part funded by ERDF - European Regional Development
Fund through the COMPETE Programme (operational programme for com-
petitiveness) and by National Funds through the FCT - Fundação para a
Ciência e a Tecnologia (Portuguese Foundation for Science and Technology)
within projects FCOMP-01-0124-FEDER-010048, FCOMP-01-0124-FEDER-020484,
and FCOMP-01-0124-FEDER-022701. The three first authors were funded by
FCT grants SFRH/BPD/73358/2010, SFRH/BPD/46987/2008, and BI2-2012_PTDC/

EIA-CCO/108613/2008_UMINHO, respectively.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634156?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

16, 17], including one showing that up to 94% of all spreadsheets contain er-
rors [13]. Also, there is a long and frequently-updated list of horror stories that
directly involve spreadsheets, which is maintained by the European Spreadsheet
Risks Interest Group4. It will only take a minute scrolling this list for the inter-
ested reader to be acquainted with how easy it is to cause great (mostly financial)
damage using a simple spreadsheet.

In an attempt to address some of the issues that arise from the use of spread-
sheets, Engels and Erwig [9] proposed the use of models, namely ClassSheets,
to abstractly define the business logic of spreadsheet data. The key idea is that
it is easier to understand, to maintain, and to develop such abstract an con-
cise business logic models than the corresponding, possibly large and complex,
spreadsheet data. Furthermore, they also proposed a first attempt to use Model-
Driven Engineering (MDE) in the context of spreadsheets: from the ClassSheet
model a first spreadsheet (i.e. instance) is produced. This a standard spread-
sheet where some of the business logic, expressed in the model, is embedded as
spreadsheet formulas and visual objects. Such a generated spreadsheet guides
end users inputting correct data, thus avoiding errors. Recently, we have ex-
tended this work to provide a full MDE experience [5]: both ClassSheet models
and spreadsheet data are defined in a widely used spreadsheet system where
the same visual spreadsheet representation and user interaction is provided for
both software artifacts. Most importantly, we developed techniques to allow end
users to evolve either the model or its instance, having the correlated artifact
automatically updated [4]. These techniques are implemented in the MDSheet
framework [6].

The approach provided by the MDSheet framework highly resembles the
way a civil engineer thinks, for example, of a house: first, a model is defined and
thoroughly evolved, and only then a house is actually built. During this evolution
process the engineer computes metrics to reason about the model/house: for
example, determining its area, the number of stairs needed between floors, etc.
Furthermore, he/she also needs to reason/understand the complexity and quality
of the model so that the construction of the house does not become impossible
or too expensive. When developing a ClassSheet model, or when evolving an
existing one, we face the same problem: we need to reason about the model
so that we evolve it in the right direction. That is to say that just like civil
engineers, we need metrics for ClassSheet models so we can understand their
complexity and quality. However, no such set of metrics has been proposed so
far.

In this paper, we build on this limitation to make a first step towards the con-
struction of the first quality standard for spreadsheet models. Indeed, we propose
a comprehensive and representative set of metrics that can be used to provide
complexity considerations of such models, being this the first major contribu-
tion of this paper. The second major contribution of the paper is the empirical
analysis of the proposed metrics. Indeed, we apply our metrics to a significant
set of spreadsheet models, and we suggest how the value of each metric may

4 The horror stories are available at http://www.eusprig.org/horror-stories.htm.

positively or negatively influence the quality of the overall model. Finally, the
third contribution of the paper is that we have implemented the computation of
the metrics that we propose under the environment of [6]. This means that for
any spreadsheet model under such environment, users can automatically obtain
its corresponding value for each of the proposed metrics.

The remaining of this paper is organized as follows. In Section 2 we revise
the spreadsheet modeling framework under which we propose to analyze the
complexity of spreadsheet models. In Section 3 we introduce in detail the set of
metrics that we propose to use in our analysis, and in Section 4 we describe its
implementation. Finally, in Section 5 we compare our work with related works
and in Section 6 we conclude the paper and point some directions for future
research.

2 Modeling Spreadsheets with ClassSheets

In this paper, we propose a set of metrics for spreadsheet models. In particular,
we focus our attention on a particular type of well-established and well-studied
modeling framework for spreadsheets: the ClassSheet framework [9].

ClassSheets are a high-level, object-oriented formalism to specify the business
logic of spreadsheets. ClassSheets allow users to express business object struc-
tures within a spreadsheet using concepts from the Unified Modeling Language
(UML) such as classes and attributes, and in fact a mapping from ClassSheets to
UML has already been proposed [8]. Using ClassSheet models, it is possible to
define spreadsheet tables and to give them names, to define labels for the table’s
columns, to specify the types of the values such columns may contain and also
the way the table expands (e.g. horizontally or vertically).

Using ClassSheets, spreadsheet development is triggered by the definition of
a ClassSheet model, that abstractly defines the structure of a spreadsheet, from
which a concrete spreadsheet instance, in which actual data is to be inputted, is
derived. In order to achieve a practical spreadsheet development environment,
we have in the past proposed to embed ClassSheet models in spreadsheets them-
selves [5]. This feature was further fully integrated in a widely used spreadsheet
system [6], and our approach provided the first coherent and single environ-
ment for creating and evolving spreadsheet models while automatically obtain-
ing conforming instances: the ClassSheet model is defined in one worksheet of
the spreadsheet while the conforming data is updated in another worksheet of
that same spreadsheet.

In Figures 1 and 2 we show an example that was built under the environment
that we have developed: in Figure 1 a ClassSheet model for a personal budget
spreadsheet was defined, and in Figure 2 we can already see that some concrete
values for, e.g. incomes such as salary and expenses with housing were already
inserted in the spreadsheet that one obtains from the model defined previously.
Actually, incomes and housing expenses are ClassSheet classes that are verti-
cally expansible (indicated in the model by rows 6 and 12 being filled with

ellipsis): this means that in the data instances as many concrete incomes and
housing expenses as necessary are possible. One may also note that the model
foresees multiple years for a budget, with year being an horizontally expan-
sible class (indicated in the model by column I being filled with ellipsis). Also,
ClassSheet models are attribute-based: months, for example, are attributes of
the year class. This is indicated with lower-case names such as jan or feb in
the model, but derived attributes are also present, like profitsjan or balancejan.
These derived attibutes consist in spreadsheet formulas, where a standard for-
mula is used as the attribute value, and references are attribute names instead
of usual cell references. Moreover, ClassSheets can also have relationships: the
attributes that intersect both a class that expands vertically and a class that
expands horizontally form a relationship. This is the case of the cells B5 to
H5 which are the attributes of the relationship between the class profits (that
expands vertically) and the class year (that expands horizontally).

Fig. 1: An abstract model for a personal budget spreadsheet.

In the remaining of this paper, we will use the budget spreadsheet model and
its instance as a running example. Also, in our current work we follow the same
philosophy that we have followed in the past: we have chosen to integrate the
calculation of the metrics and the visualization of its results under a traditional
spreadsheet environment. Indeed, one may already observe from Figures 1 and 2

Fig. 2: A concrete spreadsheet for a person’s budget for the first semester of a year.

that a third worksheet named Metrics has been added to our running environ-
ment, and it is in this worksheet that the results of the metrics that we propose
are presented (both numerically as well as graphically), in a way that we describe
in detail in Section 4.

3 Metrics for Spreadsheet Models

In [10] the authors describe a set of metrics to analyze the complexity of Entity
Relationship (ER) diagrams. These metrics are easy to understand and easy to be
interpreted. Unfortunately, they were designed to work only with ER diagrams,
and not in the context of spreadsheets.

In this section we will explain how the metrics presented in [10] can be
adapted for spreadsheet models. More precisely, we will describe in detail how
to adapt each metric to work with ClassSheets.

3.1 Why Entity Relationship Metrics Work for ClassSheets

As we described in Section 2, ClassSheets are a high level formalism with con-
cepts like classes and attributes. This high level concepts allow to compare
ClassSheet models with other paradigms, like, for example, entity relationship
diagrams. In fact, in previous work we have shown that it is possible to infer

ClassSheet models from existing spreadsheets [3]. This inference technique has
several steps, including the creation of an intermediate entity relationship dia-
gram to represent the business logic of the spreadsheet data. It is based on this
diagram that we can compute a ClassSheet representing the spreadsheet under
consideration.

Thus, there is a close connection between entity relationship diagrams and
ClassSheet models, which can be explored in the context of metrics. In the flow-
ing sections we will show that the metrics previously presented for ER diagram
can be adapted to work on ClassSheets. We will explain in detail how to perform
this task.

3.2 Relationships–Classes Ratio Metric

This metric was originally designed to measure the relation between the number
of relationships and the number of entities in an ER diagram.

From the work we presented in [3], we know that an entity in an ER diagram
is represented by a class in a ClassSheet. In fact, a ClassSheet class has a similar
meaning to an ER entity since both represent some kind of real world entity.
In the spreadsheet example we presented in the previous section, the home ex-
penses is a class. Another class is the year. Thus, the number of ER entities is
calculated in ClassSheets as the number of classes. Next, we show the function
that calculates this part of the metric. Note that we use Haskell [15] notation to
express our functions.

nC = subtract 1 . length . filter (not . classExpandsB) . classes

This implementation is very simple: we get the classes from the model, filter
out some special classes that do not represent entities, and subtract one unit
(there is a class involving the model that should not be counted).

The second part of the metric, the number of relationships, is calculated in a
similar way to the ER diagrams. In ClassSheets it is possible to have one attribute
of one class referencing another attribute (similar to a foreign key in the database
realm). Also, there are some special classes called cell classes which represent
M : N relationships. For our running example, the cells B5:H5 in the ClassSheet
model (Figure 1) compose a cell class, that is, a relationship. Moreover, formulas
with references also represent a kind of relationship. For instance, in the running
example, the cell B20 references the two expenses classes, namely Home and Misc.
Thus, representing a relationship from the class personal budget to the expenses
classes.

So, to compute the number of relationships, we calculate the number of at-
tributes that reference other classes, inside or outside formulas, plus the number
of cell classes. If there is more than one attribute in one class referencing an-
other class, this counts as several relationships, since each reference adds some
complexity to the model.

Next, we show the function that calculates the number of relationships:

nR m = fromTabs + fromOthers

where

fromTabs = sum $ map ((+2) . length . nub . g m) cbs

fromOthers = sum $ map (length . nub . f m) cs

cbs = filter classExpandsB $ classes m

cs = filter (\c -> not $ or $ map (classIntersects c) cbs)

$ filter (uncurry (||) . (classExpandsH /\ classExpandsV))

$ classes m

This implementation is more complex than the last one and we refer to the
documentation of the tool for a better explanation of such function. In fact, we
will not show the implementation when its complexity makes the comprehension
of the work decrease, like in this case.

Finally, the metric is calculated using the following formula (all the formulas
are the same as proposed in [10]):

RvsC =

(
nR

nR + nC

)2

The computed value for this metric, and for all the others we will present
next, is always bounded by the interval [0, 1]. This helps to visualize and interpret
the metric results [10].

Intuitively, the greater the number of relationships, the greater the complex-
ity, specially if there are few classes.

For the example ClassSheet presented in Figure 1, this metric is RvsC =
(3/(3 + 4))

2
= 0.184.

3.3 Class Attributes–Classes Ratio Metric

The second metric we adapt to ClassSheets was introduced in [10] to calculate
the relation between the number of entity attributes and the number of entities
in an ER diagram.

As we explained in the previous metric, we know that an ER entity is rep-
resented in ClassSheets by a class. Thus, the attributes of an entity are the
attributes of a ClassSheet class. For instance, in the running example jan and
fev are attributes of the class home expenses. Thus, the metric transposes well
to the ClassSheet realm.

The attribute count is done using the following function:

nCA =

length . filter (cellIsFormula) . concat . grid_to_lists . grid

The function simply calculates the number of cells that are formulas, which,
in this context, means the cells that are attributes.

The function to count of entities was already shown in the previous metric.
Next, we show the formula to compute this metric:

CAvsC =

(
nCA

nCA + nC

)2

Intuitively, the greater the number of attributes in a class, the greater its
complexity is.

For our running example, the metric evaluates as CAvsC = (63/(63 + 4))
2

=
0.915.

3.4 Relationship Attributes–Relationships Ratio Metric

This metric was originally designed to measure the relation existing between
the number of relationship attributes and the number of relationships in an ER
diagram.

As in entity relationship diagrams, ClassSheets can also have relationships
with attributes. For instance, in the running ClassSheet example, cell B5 (with
the content jan=0) is an attribute of the relationship between year and income.
In fact, all the cells in the range B5:H5 are attributes of such relationship.

To compute the number of relationship attributes we use the following func-
tion:

nRA = length . filter (isRel) . concat . grid_to_lists . grid

where isRel (CellFormula (Formula _ (ExpRef _ _))) = True

isRel _ = False

The function gathers all the cell classes, that we previously identified as being
relationships, and counts all the attributes composing them.

The function to compute the number of relationships was already identified.
The formula to compute this metric is given next:

RAvsR =

(
nRA

nRA + nR

)2

The output of this metric means, intuitively, that the greater the number of
attributes, the greater the relationship complexity.

For our running example, this metric evaluates to RAvsR = (88/(88 + 3))
2

=
0.935.

3.5 M:N Relationships–Relationships Ratio Metric

The metric we now explain was first introduced to measure the number of M:N
relationships compared with the total number of relationships in an ER diagram.

In our realm, M:N relationships also exist. In the running example, the re-
lationship between year and income is of this kind. This happens because for
each year the spreadsheet can have several lines of income, and each kind of
income can appear in several years. Thus, the metric can be adapted to work on
ClassSheets.

To calculate the number of M:N relationships, we designed the function nMNR.
Since it is a complex function, and since it would not help the reader to better
understand our work, we do not show it here and refer to our implementation
for more details.

The function to calculate the number of relationships was already described.
To compute the complete metric, we use the following formula, again as in [10]:

MNRvsR =
nMNR

nR

The higher the number of M:N relationships, the higher the metric will mea-
sure. In the case of ClassSheet models, and also in ER diagrams, M:N relation-
ships are more complex to handle than other relationships.

In the running example, this evaluates to MNRvsR = 3/3 = 1.

3.6 1:N and 1:1 Relationships–Relationships Ratio Metric

Analogously to the previous metric, this one measures the relation between the
number of 1:N and 1:1 relationships and the total number of relationships.

We have implemented in Haskell the function n1N&11, but as in the previous
metric, given its complexity, we refer to the implementation for further details.
Nevertheless, if a relationship is not of the kind M:N, then it must be of 1:N or
1:1 kind.

Finally, the ratio is calculated calculated using the formula:

1N&11vsR =
n1N&11

nR

Intuitively, it is better to have more 1:N and 1:1 relationships than M:N.
Thus, the higher this measure gets, the best.

Unfortunately, our running example does not have 1:N nor 1:1 relationships,
and thus the metric measures 0.

3.7 N-ary Relationships–Relationships Ratio Metric

It is common to have n-ary relationships in ER diagrams. Thus, this metric was
introduced to measure the relation between the number of n-ary relationships
and the total number of relationships.

As in the ER realm, in ClassSheets it is possible to have n-ary relationships.
This can be computed counting the number of references outgoing from a binary
relationship, which are given by cell classes, as explained in the next metric. To
do this, it is necessary to add the number of classes that reference other classes
and are referenced back by the same class.

To compute the number of n-ary relationships, we have implemented the
function nNaryR:

nNaryR m = (length . filter ((>0). length . nub . g m) .

filter classExpandsB . classes) m

Essentially, this function computes the number of cell classes, plus the number
of classes that reference other classes and are referenced back by the same class.

The metric is computed calculating the ratio between the number of n-ary
relationships and the total number of relationships:

NaryRvsR =
nNaryR

nR

Similarly to M:N and 1:N relationships, n-ary relationships are more complex
than binary relationships. Thus, intuitively, it is preferable to have this measure
as low as possible.

Unfortunately, our running example does not have n-ary relationships, and
thus the metric measures 0.

3.8 Binary Relationships–Relationships Ratio Metric

The last metric we adapt computes the relation between the number of binary
relationships and the total number of relationships.

As ClassSheet models can have n-ary relationships, they can also have bi-
nary ones. In fact, if a relationship is not n-ary, it is binary. Thus, the function
computes the total number of relationships minus the number of n-ary ones.

The metric is thus calculated through the formula:

BRvsR =
nBR

nR

Once more, it is preferable to have this measure higher, meaning that most
relationships in the model are binary and not n-ary.

For our running example, BRvsR = 3/3 = 1.

3.9 Formulas–Cells Ratio Metric

All the metrics we described until now are adapted from entity relationship
diagrams and are quite interesting to give complexity related to entities/classes,
relationships, and their attributes. But this is not enough for spreadsheet models.
One of the main issues related to spreadsheets, and their models, is formulas
and their complexity. Thus, we need to introduce new metrics that give some
measures about them.

The first metric we introduce computes the relation between the number of
formulas and the number of cells.

The number of formulas in a ClassSheet is given by the following function:

nF m = length $ catMaybes $ concat $ grid_map (aux) (grid m)

where

aux _ (CellFormula (Formula _ (ExpFun _ _))) = Just ()

aux _ (CellFormula (Formula _ (ExpBinOp _ _ _))) = Just ()

aux _ (CellFormula (Formula _ (ExpPar _))) = Just ()

aux _ _ = Nothing

This functions traverses a ClassSheet model and returns the size of the list
of formulas.

The function that calculates the number of cells is shown next, and counts
all the cells in the model that are not empty:

nCe = length . filter (/= (CellValue $ VText "")) .

concat . grid_to_lists . grid

The final metric if given by the formula:

FvsCe =
nF

nCe

Intuitively, the greater the number of formulas in a model, the greater the
complexity of such model.

For the running example, this metric computes the value FvsCe = 41/130 =
0.315.

3.10 Formula References–Formulas Ratio Metric

As the previous metric, this one reports to formulas, in particular, it gives the re-
lation between the number of references in formulas and the number of formulas.
Note that all the other references in the model are already used to calculate other
metrics. In fact, the formula references were the only ones not being explored.

The function, nRe, that computes the references of a formula is complex, and
thus we do not show it here.

The function that calculates the number of formulas in a ClassSheet model
was described in the previous metric. The formula that computes this metric is
now given:

RevsF =

(
nRe

nRe + nF

)2

Intuitively, the greater this measure is the more complex the model we have,
that is, if each formula has many references, it will be more difficult to handle.

For our running example, the measure computed is RevsF = (88/88 + 41)
2

=
0.465.

3.11 Size Metrics

This last metric is also not adapted from [10]. In fact, it calculates a set of general
measures about a model, namely (in parenthesis we show the metrics computed
for our running example),

– the total number of non-empty cells (130);
– the width of the model, that is, the number of columns (10);
– the height, that is, the number of rows (21);
– the number of expandable classes (4);

– the number of input cells (22);
– the number of output cells (41).

These metrics are implemented traversing the ClassSheet model and counting
the corresponding characteristic, which can be seen in the complete implemen-
tation.

In the next section we will show in detail the tool we have designed and
implemented to make these metrics available to users in the environment they
are used to, that is, in a spreadsheet system.

4 The MDSheet Framework

In the course of our work, we developed an OpenOffice/LibreOffice extension
named MDSheet [6]. This tool was first created to implement the embedding of
ClassSheet models, with the possibility to evolve them having the data automat-
ically coevolved [5]. Then, we further improved it with bidirectional transforma-
tions allowing users to evolve the data without being concerned with the model
since the tool synchronizes them automatically [4]. The metrics described in the
previous section were also implemented in the MDSheet framework, being the
implementation explained in this section.

In the user interface, a new button is available in the toolbar (see Figure 3) to
evaluate the metrics for the current model. When such button is pressed, a new

Fig. 3: MDSheet toolbar with button to evaluate the metrics of the current model.

worksheet, named Metrics, is created with the metrics for the current model,
but also with the average of the metrics for the models available in our public
repository of ClassSheet models. An example of such worksheet is depicted in
Figure 4, where column A contains the name of the metrics, column B contains
the results obtained from running the metrics for the current model, and column
C contains the average of the metrics gathered from the repository.

The goal of comparing the metrics of the current model with metrics from
other models is to quickly provide a relative estimate of the quality of the current

Fig. 4: Sheet with metrics generated by MDSheet for the running example.

model. The repository is still a work in progress, and we aim to develop and
collect a comprehensive set of models, such that new users can start working
directly based on a model already available, but also that modelers can use
as a starting or reference point for their work. When the repository becomes
large enough, we will be able to group the models by domains (e.g., finances or
database), and users will have the possibility to compare their model with others
from the same domain, providing a better estimate of the model quality.

When the models repository is updated, so is the MDSheet framework, so
that it contains the most recent metrics.

The MDSheet framework is developed in such a modular way that it can be
very easily improved with the addition of new features, such as we did with the
metrics evaluation. The framework is divided in three main parts, as can be seen
in Figure 5:

Core — This part, developed entirely in Haskell, deals with the abstract rep-
resentation of the models and data. This allowed to define a bidirectional
transformation system at a high level, and also to specify and integrate the
metrics for the models. Currently, this part is only composed by the already
mentioned transformation system and the metrics evaluation code.

Interface — This part is the one that users interact with. It is mainly devel-
oped in OpenOffice Basic (an idiom of the Basic language). For the metrics

OpenOffice

MDSheet
Shared Library

User Interface

Transformation System Metrics Evaluation

Integration Code

Fig. 5: Architecture of our OpenOffice/LibreOffice environment with the MDSheet ex-
tension.

evaluation, it sends a request to the core through the integration code to
evaluate the metrics of the model and then creates the new worksheet with
the result in it.

Integration Code — This part is used to connect the interface to the core of
the MDSheet framework. This connection, developed in C/C++ and Haskell,
is entrusted with the invocation of the core functions and also with the
conversion of the data from the interface to the core and vice versa.

The MDSheet framework (both source code and compiled version) is available
at:

http://ssaapp.di.uminho.pt

5 Related Work

Metrics for spreadsheets have been defined [1, 7, 12] by different authors. Unfor-
tunately, such metrics do not work well for spreadsheet models. In this work, we
adapted and extended existing metrics from the modeling realm to spreadsheet
models. To the best of our knowledge, this is the first attempt of such a work.

In [2] the authors take a first step towards automated assessment of spread-
sheet maintainability. They apply the selected metrics to the EUSES spreadsheet
corpus in order to study their behavior. Their work aims to achieve a main-
tainability model for spreadsheets, whilst we defined a first set of metrics for
spreadsheet models. These metrics can now be used to construct, for example,
a maintainability model for spreadsheet models.

In [11] the authors sketch a new maintainability model that alleviates some
problems reported by other techniques. Since this work was done in an industrial
environment, the authors discuss their experiences with using such a model for IT
management consultancy activities. Again, their model features maintainability

of software. With our work we intend to make available the tools, i.e., the metrics,
necessary to achieve a similar goal, but for ClassSheet models.

6 Conclusion

This paper presents a set of metrics for spreadsheet models, in this case, Class-
Sheets. We adapted metrics from a different modeling paradigm, namely entity
relationship diagrams, because there is an interesting similarity between both
modeling fields.

Although all the metrics existing for ER diagrams were adapted, this was
not enough. Formulas, which are a concerning issue in spreadsheets, and thus
in spreadsheet models, were not considered in ER diagrams metrics, not even
for computed values (considering an extended version of ER diagrams). Thus,
we introduced some new metrics, in the same line of work of the other metrics,
to compute some measures about ClassSheet formulas and their relationship
with the underlying model. Moreover, we calculated a set of ClassSheet specific
metrics such as the width of the model and the number of cells.

This work represents an interesting basis for constructing a quality standard
for ClassSheets. In fact, it could be further developed and used to construct,
for example, a maintainability standard or even a complete quality standard for
ClassSheets.

References

1. Bregar, A.: Complexity metrics for spreadsheet models. Proceedings of the 2004
European Spreadsheet Risks Interest Group (EuSpRIG) CoRR abs/0802.3895, 85–
93 (2004)

2. Correia, J.P., Ferreira, M.A.: Measuring maintainability of spreadsheets in the wild.
In: Proceedings of the 27th IEEE International Conference on Software Mainte-
nance. pp. 516–519. ICSM ’11, IEEE (2011)

3. Cunha, J., Erwig, M., Saraiva, J.: Automatically inferring classsheet models from
spreadsheets. In: Proceedings of the 2010 IEEE Symposium on Visual Languages
and Human-Centric Computing. pp. 93–100. VLHCC ’10, IEEE Computer Society
(2010)

4. Cunha, J., Fernandes, J.P., Mendes, J., Pacheco, H., Saraiva, J.: Bidirectional
transformation of model-driven spreadsheets. In: Hu, Z., de Lara, J. (eds.) Theory
and Practice of Model Transformations. Lecture Notes in Computer Science, vol.
7307, pp. 105–120. Springer (2012)

5. Cunha, J., Fernandes, J.P., Mendes, J., Saraiva, J.: Embedding and evolution of
spreadsheet models in spreadsheet systems. In: Proceedings of the 2011 IEEE
Symposium on Visual Languages and Human-Centric Computing. pp. 186–201.
VLHCC ’11, IEEE Computer Society (2011)

6. Cunha, J., Fernandes, J.P., Mendes, J., Saraiva, J.: MDSheet: A Framework for
Model-driven Spreadsheet Engineering. In: Proceedings of the 34rd International
Conference on Software Engineering. pp. 1412–1415. ICSE ’12, ACM (2012)

7. Cunha, J., Fernandes, J.P., Peixoto, C., Saraiva, J.: A quality model for spread-
sheets. In: Proceedings of the 8th International Conference on the Quality of In-
formation and Communications Technology, Quality in ICT Evolution Track. pp.
231–236. QUATIC ’12 (2012)

8. Cunha, J., Fernandes, J.P., Saraiva, J.: From Relational ClassSheets to
UML+OCL. In: Proceedings of the Software Engineering Track at the 27th Annual
ACM Symposium On Applied Computing. pp. 1151–1158. SAC ’12, ACM (2012)

9. Engels, G., Erwig, M.: ClassSheets: automatic generation of spreadsheet applica-
tions from object-oriented specifications. In: Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering. pp. 124–133. ACM
(2005)

10. Genero, M., Jiménez, L., Piattini, M.: Measuring the quality of entity relationship
diagrams. In: Proceedings of the 19th International Conference on Conceptual
Modeling. pp. 513–526. ER ’00, Springer-Verlag (2000)

11. Heitlager, I., Kuipers, T., Visser, J.: A practical model for measuring maintainabil-
ity. In: Proceedings of the International Conference on Quality of Information and
Communications Technology. pp. 30–39. QUATIC ’07, IEEE Computer Society
(2007)

12. Hodnigg, K., Mittermeir, R.T.: Metrics-based spreadsheet visualization: Support
for focused maintenance. CoRR abs/0809.3009 (2008)

13. Panko, R.: Facing the problem of spreadsheet errors. Decision Line, 37(5) (2006)
14. Panko, R.: Spreadsheet errors: What we know. what we think we can do. Proceed-

ings of the 2000 European Spreadsheet Risks Interest Group (EuSpRIG) (2000)
15. Peyton Jones, S.: Haskell 98: Language and libraries. Journal of Functional Pro-

gramming 13(1), 1–255 (2003)
16. Powell, S.G., Baker, K.R., Lawson, B.: A critical review of the literature on spread-

sheet errors. Decision Support Systems 46(1), 128–138 (2008)
17. Rajalingham, K., Chadwick, D.R., Knight, B.: Classification of spreadsheet er-

rors. In: Proceedings of the 2001 European Spreadsheet Risks Interest Group (Eu-
SpRIG). Amsterdam (2001)

