
Extension and Implementation of ClassSheet
Models

Jácome Cunha, João Paulo Fernandes, Jorge Mendes, João Saraiva
HASLab, INESC TEC & Universidade do Minho, Portugal

{jacome,jpaulo,jorgemendes,jas}@di.uminho.pt

Abstract—In this paper we explore the use of models in
the context of spreadsheet engineering. We review a successful
spreadsheet modeling language, whose semantics we further
extend. With this extension we bring spreadsheet models closer
to the business models of spreadsheets themselves.

An addon for a widely used spreadsheet system, providing
bidirectional model-driven spreadsheet development, was also
improved to include the proposed model extension.

Index Terms—Spreadsheets, Model-Driven Engineering, Bidi-
rectional Software Evolution, Embedded Domain-Specific Lan-
guages

I. INTRODUCTION

Spreadsheets play an important role in software organiza-
tions. Indeed, in large software organizations, spreadsheets are
not only used to define sheets containing data and formulas,
but also to collect information from different systems, to
adapt data coming from one system to the format required
by another, to perform operations to enrich or simplify data,
etc. In fact, over time many spreadsheets turn out to be
used for storing and processing increasing amounts of data
and supporting increasing numbers of users. Unfortunately,
spreadsheet systems provide poor support for modularity,
abstraction, and transformation, thus, making the maintenance,
update and evolution of spreadsheets a very complex and error-
prone task.

In this paper, we consider the use of models for guiding
users in introducing correct data. Our technique is devel-
oped as part of a global environment for the evolution of
spreadsheets. We use spreadsheet models, namely ClassSheet
models [1], to express the business logic of the underlying
spreadsheet data. These models are used to generate (spread-
sheet) instances that guide end users to introduce correct
data: the generated spreadsheet instances have implanted the
underlying ClassSheet model. This may be considered an
advanced spreadsheet mechanism, which guarantees that an
user update always produces a spreadsheet instance that con-
forms to the defined model. Because ClassSheet models have
a visual representation that is very similar to spreadsheets
themselves, we embed ClassSheets in spreadsheet systems.

This work is funded by the ERDF through the Programme COMPETE
and by the Portuguese Government through FCT - Foundation for Science
and Technology, project refs. PTDC/EIA-CCO/108613/2008 and PTDC/
EIA-CCO/120838/2010. The three first authors were also supported by FCT
grants SFRH/BPD/73358/2010, SFRH/BPD/46987/2008 and BI4-2011PTDC/
EIA-CCO/108613/2008, respectively.

This embedding has an important property: it provides a
model-driven environment for spreadsheets where users can
not only edit the spreadsheet data instance but also evolve
the ClassSheet model. We have presented the embedding and
evolution of ClassSheet models in [2], [3] and a model-driven
spreadsheet environment in [4].

This paper presents our ongoing work on model-driven
spreadsheet environments. Its goal is two-fold:
• First, we extend the original definition of ClassSheet

models in order to have a more powerful formalism to
model the business logic of spreadsheets. We extend
ClassSheets with type constraints and regular expres-
sions, and we review the use of primary and foreign keys
of relational models.

• Second, we present the details of the implementation of
these extensions in the ClassSheet embedding [2]. This
embedding is part of an existing addon for bidirectional
model-driven spreadsheet development that permits to
model spreadsheets and co-evolve both models and data.

This paper is organized as follows: Section II gives a brief
introduction to ClassSheet models and presents the proposed
extensions. In Section III we describe how the proposed
extension were integrated under a global framework for model-
driven spreadsheet development. Finally, Section IV concludes
the paper.

II. CLASSSHEET MODELS AND EXTENSIONS

ClassSheets [1] are a high-level, object-oriented formalism
to specify the business logic of spreadsheets. They allow users
to express business object structures within a spreadsheet using
concepts from the Unified Modeling Language (UML). Thus,
we get an abstraction layer on top of spreadsheets which
allows to understand more easily the business logic and to
think more clearly about spreadsheet transformation. Also,
dividing models into several classes, we add some modularity
to spreadsheet development.

Using ClassSheet models, it is possible to define spreadsheet
tables and to give them names, to define labels for the table’s
columns, to specify the types of the values such columns may
contain and also the way the table expands (e.g., horizontally
or vertically).

Besides a textual (and formal) definition, ClassSheets also
have a visual representation which very much resembles
spreadsheets themselves [5]. In [2], we have embedded such

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634154?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

visual model representation that mimics the well-known em-
bedding of a domain specific language in a general purpose
one. Next, we briefly describe ClassSheet models through this
embedding/notation. After that, we introduce several exten-
sions to the ClassSheet models and we present the details of
its embedding in a widely used spreadsheet system.

In order to illustrate ClassSheets we present in Figure 1 an
embedded/visual ClassSheet model (Figure 1a) and one of its
possible instances (Figure 1b).

(a) Pilot ClassSheet model. (b) Pilot table.

Fig. 1: Registering pilot information.

Considering the spreadsheet development environment
of [4], it is possible to automatically obtain a data instance
(that is empty) once a model is defined, and also to infer
a model for a particular data spreadsheet. Furthermore, it is
possible to manually evolve either a model or an instance of
it such that the correlated artifact is automatically updated.

The ClassSheet model in Figure 1 represents pilots, where a
pilot is defined by an ID, Name and Flight hours. In row 3, it
is defined the type, and the default value, associated with each
column: columns A and B hold strings (with an empty string
as default value), and column C holds integer values (with
0 as default). The fourth row of the model contains vertical
ellipses in all columns. This means that it is possible for these
columns to expand vertically: the tables that conform to this
model can have as many rows (entries) as needed.

Reusing the ClassSheet table we built before, we can now
model a table to register concrete flights by an airline company,
as shown in the bottom-right part of Figure 2.

The colors1 in the model are used to distinguish the different
entities represented, namely, pilots, planes, references to pilots
in the scheduling table, reference to planes in the scheduling
table and the flight scheduling itself.

A. Extending ClassSheet Models

ClassSheet models are a powerful formalism to specify
the business logic of spreadsheet data. However, they are
very syntactic/visual oriented in the sense that they mainly
specify layout rules, simple formulas relating components of
the models and repetition blocks of columns/rows within a
spreadsheet. The semantic guarantees provided by ClassSheet
models are very poor: they provide a default value for cells
that can be seen as a very trivial type system.

In this section we present three semantic extensions to
ClassSheet models, which make them closer to the business
models of spreadsheets.

1We assume colors are visible through the digital version of this paper.

• Type Constraints — Like spreadsheet systems, Class-
Sheets do not have a strong type system. ClassSheets
define the default value of cells, but not their type,
nor any value constraint. We extend ClassSheets with a
very simple type constraint notation. With this extension,
we can specify that the flight hours cells must contain
positive values, for example.

• Regular Expressions — It is common in spreadsheets
that some cells contain string values that follow some
pattern. For example, the pilot id cells have to start
with the pattern “pl” followed by a natural number. To
force cell values to follow a predefined pattern we extend
ClassSheets with regular expressions.

• Relational Model — Usually spreadsheet tables include
information where one column is a key that defines the
values of other columns in the same table. Figure 1b
shows such an example, where the pilot id determines
the name and flight hours. Moreover, the pilot id can
be referenced in another table, for example, defining
the company flights (this is presented in Figure 2). To
prevent data inconsistencies we extend ClassSheets with
the notion of primary key and foreign key from databases.
The theoretical details of this extension are presented
in [6], and in this paper we focus on its embedding as
presented in the next section.

In Figure 3 we present the formal definition of ClassSheets
and the proposed extensions (in red).

≺∈ Lesser ::= < | 6
�∈ Greater ::= > | >
t ∈ V al ::= = ϕ | � ϕ | ≺ ϕ | � ϕ,≺ ϕ | ! t
e ∈ RegExp ::= ε | ϕ | \d | \w | e∗ | e+ | e pp e | ee
f ∈ Fml ::= ϕ | ϕ : e | ϕ t | n.a | ϕ(f, . . . , f)
b ∈ Block ::= ϕ | ϕµ | a = f | b p b | bˆb
l ∈ Lab ::= h | v | .n
h ∈ Hor ::= n | p n
v ∈ V er ::= p n | p n
c ∈ Class ::= l : b | l : b↓ | cˆc
s ∈ Sheet ::= c | c→ | s p s

Fig. 3: The ClassSheet language.

The first extension we introduce is the type constraints.
The type of a cell is infered from its default value. If the
default value is a string then the type of that cell is string.
The same happens for whole and decimal numbers, date,
and time values. In fact, these are the types allowed in
spreadsheets. Based on the infered type, it is possible to
apply restrictions on the values of that type: ϕ t, where
t ::= = ϕ | � ϕ | ≺ ϕ | � ϕ ≺ ϕ | ! t. These restrictions
allow users to specify values greater (or lesser) than a certain
limit, e.g., > 0, values between a lower and an upper limit,
e.g., > 10, < 20, and negation of ranges, e.g., ! > 20. Also,
they are already available in common spreadsheet systems, but
they are not very widespread among basic users and require

2

Fig. 2: A model-driven spreadsheet to manage an airline company.

some effort from the user to define them. Introducing these
restrictions directly on the model, it is easier to define them
and to apply them to a set of cells.

The second extension we introduce is the use of regular
expressions to define the allowed values of a cell: ϕ : e, where
e ::= ε | ϕ | \d | \w | e∗ | e+ | e pp e | ee (the common
regular expressions language [7]). They are useful for more
experienced users and allow a more fine-tuned specification
of the allowed values.

Although the relational extensions (ϕµ and n.a) were al-
ready presented in [6], we highlight them here since we explain
in this paper their implementation in the embedding.

An example containing these extensions is present in Fig-
ure 4. It shows the spreadsheet-like notation for the pilots
ClassSheet model, where the pilot id is a primary key of that
table and its value must match the regular expression pl\d+.
The pilot name must be a string since the default value is
an empty string, and the flight hours must contain positive
numbers only.

III. IMPLEMENTATION OF EXTENDED SPREADSHEET
MODELS

In our previous work, we have proposed the embedding of
ClassSheet models in spreadsheet systems [2], allowing simple

Fig. 4: An extended ClassSheet model specifying the pilots
table.

evolution of models so that and the structure of their data
instances is automatically updated. That work was improved to
support bidirectional co-evolution [8], so that changes in data
instances would also automatically reflect on the correspond-
ing models. Furthermore, these techniques where included as
part of the widely used spreadsheet system OpenOffice [4].
This last feature facilitates the development of the spreadsheet
business logic enabling the user to do transformations on the
data instance that would otherwise be too complex to perform
when evolving just the model. Also, it may provide a better
perspective for certain transformations.

The work that we now propose improves the system of [4]
since it includes the ClassSheet extension described in this
paper. In the remaining of this section we introduce in greater
detailed how each extension is implemented in such system.

3

A. Type Constraints

As the type constraints used are the ones available in
spreadsheet systems, the cell validity rules provided by those
systems were used to support this extension. Moreover, we
lift these rules to the model level, providing an easier way
to define them (using the language presented in the previous
section). With this feature, when a user introduces a wrong
value, the spreadsheet system provides a notification so the
user can take the necessary steps to fix the error (i.e., introduce
a correct value). This notification is illustrated in Figure 2
(top-right) where a value not in conformity with the model
was inserted in cell I5.

Type constraints are straightforwardly embedded in the data
instances using the cell validity mechanism and it is the
spreadsheet system itself that checks the value and raises
the error message. We believe it is preferable to use the
spreadsheet system mechanisms as much as possible since the
user is already familiar with them.

B. Regular Expressions

Since common spreadsheet systems do not provide validity
rules for regular expression, an interpreter is included with
the addon. The value of the cell is interpreted every time
it is changed, and a notification is provided if the value
does not conform to the regular expression, as if it were a
type constraint. This extension is similar with the previous
one, but the with its own acceptance function. Moreover, the
notification system tries to mimic the default cell validity
feature providing the same familiar environment to the user.

C. Relational Model

Primary keys are identified adding an annotation to the cell,
using µ (as defined by the extended ClassSheet reference in
Figure 3). When this annotation is present, the cells in that
column or row are interpreted as a primary key (or unique
value) and the system warns the user when introducing a
repeated value. The verification of the value is done within
the system and not with the help of formulas, so that the user
does not change the formula and introduces wrong data. When
a repeated value is detected, an error message is shown to the
user, so that value can be changed.

Foreign keys are defined in the model using references in
formulas. On the data sheet, those cells contain combo boxes
where users can select a valid value from the ones that are
referenced, or add a new value (Figure 2, top-right, cell F2).
When the latter action is performed, a message is shown to the
user indicating that the key is not present and offers an option
to create a new entry with that key (Figure 2, bottom-left, cell
A6 and associated message). If the user prefers to not add that
entry, it is possible to cancel the action and select an existing
key from the list. This introduction method is an improvement
on the system presented in [6], since it uses more components
from the spreadsheet system, like the combo boxes and the
ability to insert new entries just by clicking on the notification,
providing a more user-friendly environment.

IV. CONCLUSIONS

In this work we extended ClassSheets with several semantic
mechanisms. The already existing naive relational extension
is now a powerful tool that guides users in introducing
correct data, that avoids the corruption of the spreadsheet data.
Moreover, the type constraints we introduce allow the user to
lift the cell oriented validity rules to a more proficient level
since they have been directly integrated in the model.

Nevertheless, the data integration is still done using com-
monly available spreadsheet mechanisms so the user gets as
little differences as possible from the system he/she is used to.
Also, using regular expressions, a widely used specification
language, the user can express in an exact way the values that
are allowed for particular cells. The full integration of these
features in the existing embedding provides users with more
power than ever to adjust models to the required business logic.

Finally, details about the integration of the model extension
within the existing framework were provided, indicating how
the user can interact with the new features.

We believe that the general framework we obtain in the end
is in a mature stage, and thus we would like to evaluate it with
real spreadsheet users. Indeed, we would like to have empirical
evidences that this framework indeed improves spreadsheet
users’ productivity. For this, we are preparing a usability
study, which we are trying to improve with feedback from
the human-interaction community [9].

The work described in this paper was conducted under the
Spreadsheets as a Programming Paradigm research project:

http://ssaapp.di.uminho.pt

REFERENCES

[1] G. Engels and M. Erwig, “ClassSheets: automatic generation of spread-
sheet applications from object-oriented specifications,” in ASE’05: Proc.
of the 20th IEEE/ACM International Conference on Automated Software
Engineering. ACM, 2005, pp. 124–133.

[2] J. Cunha, J. Mendes, J. P. Fernandes, and J. Saraiva, “Embedding and
evolution of spreadsheet models in spreadsheet systems,” in VL/HCC’11:
IEEE Symp. on Visual Languages and Human-Centric Computing. IEEE
Computer Society, 2011, pp. 186–201.

[3] J. Cunha, J. Visser, T. Alves, and J. Saraiva, “Type-safe evolution
of spreadsheets,” in FASE’11/ETAPS’11: Proc. of the 14th Interna-
tional Conference on Fundamental Approaches to Software Engineering.
Springer-Verlag, 2011, pp. 186–201.

[4] J. Cunha, J. P. Fernandes, J. Mendes, and J. Saraiva, “MDSheet: A
framework for model-driven spreadsheet engineering,” in ICSE’12: Proc.
of the 34rd International Conference on Software Engineering. ACM,
2012, pp. 1412–1415.

[5] M. Erwig, R. Abraham, I. Cooperstein, and S. Kollmansberger, “Auto-
matic generation and maintenance of correct spreadsheets,” in ICSE’05:
Proc. of the 27th International Conference on Software Engineering.
ACM, 2005, pp. 136–145.

[6] J. Cunha, J. P. Fernandes, and J. Saraiva, “From Relational ClassSheets
to UML+OCL,” in SAC’12: the Software Engineering Track at the 27th
Annual ACM Symposium On Applied Computing. ACM, 2012, (to
appear).

[7] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata
Theory, Languages, and Computation (3rd Edition). Addison-Wesley
Longman Publishing Co., Inc., 2006.

[8] J. Cunha, J. P. Fernandes, J. Mendes, H. Pacheco, and J. Saraiva, “Bidirec-
tional Transformation of Model-Driven Spreadsheets,” in ICMT’12: 5th
International Conference on Model Transformation, 2012, (to appear).

[9] J. Cunha, J. P. Fernandes, J. Mendes, and J. Saraiva, “Towards an
Evaluation of Bidirectional Model-driven Spreadsheets,” in USER’12:
User evaluation for Software Engineering Researchers, 2012, (to appear).

4

