
Evaluating Dotted Version Vectors in Riak?

Ricardo Gonçalves1, Paulo Sérgio Almeida1, Carlos Baquero1, Victor Fonte1,
and Nuno Preguiça2

1 Universidade do Minho,
{tome,psa,cbm,vff}@di.uminho.pt,

2 Universidade Nova de Lisboa,
nmp@di.fct.unl.pt

Abstract. The NoSQL movement is rapidly increasing in importance,
acceptance and usage in major (web) applications, that need the partition-
tolerance and availability of the CAP theorem for scalability purposes,
thus sacrificing the consistency side. With this approach, paradigms such
as Eventual Consistency became more widespread. An eventual consis-
tent system must handle data divergence and conflicts, that have to be
carefully accounted for. Some systems have tried to use classic Version
Vectors (VV) to track causality, but these reveal either scalability prob-
lems or loss of accuracy (when pruning is used to prevent vector growth).
Dotted Version Vectors (DVV) is a novel mechanism for dealing with
data versioning in eventual consistent systems, that allows both accu-
rate causality tracking and scalability both in the number of clients and
servers, while limiting vector size to replication degree.
In this paper we describe briefly the challenges faced when incorporat-
ing DVV in Riak (a distributed key-value store), evaluate its behavior
and performance, and discuss the advantages and disadvantages of this
specific implementation.

Keywords: Databases, NoSQL, Riak, Eventual Consistency, Logical
Clocks, Scalability

1 Introduction

There is a new generation of databases on the rise, which are rapidly gaining
popularity due to increasing scalability concerns. Typically these are distributed
systems where restrictions are placed in C, A and P of the CAP theorem [1]. They
were grouped in a new broad class of databases called NoSQL (Not Only SQL).
Examples of databases are Google’s BigTable, Amazon’s Dynamo, Apache’s Cas-
sandra (based on Facebook’s version) and Basho’s Riak. Instead of providing the
ACID properties, they focus on implementing what it is called a BASE (Basi-
cally Available, Soft State, Eventually consistent) system [6]. A BASE system
has weaker consistency model, focuses on availability, uses optimistic replication

? Funded by project CASTOR – Causality Tracking for Optimistic Replication in
Dynamic Distributed Systems

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634147?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


and because of all of this, it is faster and easier to manage large amounts of data,
while scaling horizontally. Systems like Riak or Cassandra adopt an Eventual
Consistency model that sacrifices data consistency to achieve high availability
and partition tolerance. This means that eventually, all system nodes will be
consistent, but that might not be the true at any given time. In such systems,
optimistic/aggressive replication is used to allow users to both successfully re-
trieve and write data from replicas, even if not all replicas are available. By
relaxing the consistency level, inconsistencies are bound to occur, which have to
be detected with minimum overhead. This is where Logical Clocks, introduced
by Lamport [3], are useful. Logical clocks are mechanisms for tracking causality
in distributed systems. Causality is the relationship between two events, where
one could be the consequence of the other (cause-effect) [4,2]. Due to restraints
in global clocks and shared memory in distributed systems, these mechanisms
are used for capturing causality, thus partial ordering events. It is partial be-
cause sometimes two events cannot be ordered, in which case they are considered
concurrent. While some systems have tried to use classic Version Vectors (VV)
to track causality, they do not scale well or lose accuracy by pruning the vector
to prevent its growth. Dotted Version Vectors (DVV) [5] is a novel logical clock
mechanism, that allows both accurate causality tracking and scalability both in
the number of clients and servers, while limiting vector size to replication degree.
In Section 2 we present the major changes that had to be done to implementing
DVV in Riak. Section 3 is where the evaluation and benchmark this implemen-
tation is presented. Finally, conclusions and future work are in Section 4.

2 Implementing DVV in Riak

The first thing to do was to implement DVV in Erlang. After that, the file was
simply integrated in Riak’s Core files. Next, “Riak KV” module was modified
to use DDV instead of VV. This required some key changes to reflect the core
differences between DVV and VV. One of them was eliminating X-Riak-ClientId,
since we do not use the client ID anymore to update our clock. Next are the main
changes:

riak client: here we simply removed the line where the VV was previously
incremented in a PUT operation.

riak kv put fsm: this file implements a finite-state machine, that encapsu-
lates the PUT operation pipeline. In the initial state, we first see if the
current node is a replica, and if not, we forward the request to some replica.
Then, when a replica node is the coordinator, we execute the PUT opera-
tion locally first. When it is done, this replica provides the resulting object,
with the updated clock and value(s), which is sent to the remaining replicas,
where they synchronize their local object with this one.

riak kv vnode: this is where the local put is done. A provided “flag” tells if
this node is the coordinator, and thus the one that should do the update/sync
to the clock. If this flag is false, the node will only sync the local DVV with



the received one. Otherwise, this node is the coordinator, therefore it will run
the update function with both new and local DVV, and the node ID. Then
run the sync function with that resulting DVV and local DVV. Finally, the
coordinator sends the results to replicas, but this time not as coordinators,
thus they only run the sync function between their local object and the
object provided.

riak object: this file encapsulates a Riak object, containing things like meta-
data, data itself, the key, the clock, and so on. Before, an object only had
one clock (one VV), even if there was more than one value (i.e. conflicting
values). When conflicts were detected, both VV were merged so that there
was only one new VV, which dominated both. This has an obvious disadvan-
tage: the conflicting objects could only be resolved by a newer object. Even
if by the gossip between replicas, we found that we could discard some of the
conflicting values that were outdated, we could not. With DVV, we change
this file so that each value has its own clock. By discarding this redundant
values, we are actually saving space and simplifying the complexity of oper-
ations, since we manipulate smaller data. It worth noting that this approach
to have set of clocks instead of a merged clock, could also be applied to VV.
Since DVV was designed to work with set of clocks, it was mandatory to
change this aspect, which introduces a little more complexity to the code,
but has the advantages stated above.

3 Evaluation

Lets resume the advantages and disadvantages - in theory - of using DVV instead
of VV:

– Simplify API: since DVV uses the node 160-bit index as ID, there is no need
for clients to provide IDs, thus simplifying the API and avoiding potential
ID collisions;

– Save space: DVV are bounded to the number of replicas, instead of the
number of clients that have ever done a PUT. Since there is a small and
stable number of replicas, the size of DVV would be much smaller than
traditional VV;

– Eliminates false conflicts: Clock pruning does not cause data loss, but
it does cause false conflicts, where data that could be discard is viewed
as conflicting. Using DVV, the clock is bound to the number of replicas,
therefore pruning is not necessary, thus eliminating false conflicts.

– Possible worse performance: when a non-replica node receives a PUT
request, it must forward it to a replica node. This overhead can be consid-
erable if the transferred data is big. Even worse if the replica is not in the
same network as the non-replica. Another thing that may affect negatively
the performance is the fact that clock update and synchronization has to first
be done in the coordinating replica, and then sent to the remaining repli-
cas, whereas in VV the object goes directly to all replicas simultaneously.



Also, in the DVV case, the resulting object of the coordinating replica could
have siblings, which would worsen its transfer performance to the remaining
replicas. With VV, only the new client object is sent to replicas.

3.1 Setup

We used Basho Bench, a benchmarking tool created to conduct accurate and
repeatable performance and stress tests. Seven machines in total were used, all
in the same local network. A Riak cluster running with 6 similar machines, while
another machine was simulating clients requests. The request rates and number
of clients were chosen to try to prevent resource exhausting, since this would
create unpredictable results. Resources were monitored to prevent saturation,
namely CPU, disk I/O and network bandwidth. We also used the default repli-
cation factor n val = 3, also an R = W = 2 (R and W the size of the read and
write quorum). The key-space range was [0 − 50000], accessed using a Pareto
distribution (20% of the keys accessed 80% of the time). Each test took 30 min-
utes and the same initial random seed was used for all test, to ensure the same
conditions.
The following types of requests were issued from clients:

– get: a simple read operation that returns the object of a given key;
– put: a blind write, where a value is written in a given key, with no causal

context supplied, i.e. without a clock. This operation will increase concur-
rency (create siblings) if the given key already exists, since an empty clock
does not dominate any clock, thus always conflicting with the local node
clock;

– upd: an update, that is expressed by a get returning an object and a context
(clock), followed by a 50 ms delay to simulate the latency between client and
server, and finally a put that re-supplies the context and writes a new object,
which supersedes the one first acquired in the get. This operation reduces
the possible concurrency (object with multiple values) that the get would
brought.

In terms of requests proportions get/put/upd, we present two scenarios:
30%/10%/60% (S316) and 60%/30%/10% (S631). For each, we ran two different
combinations of stored value’s size (VS), number of clients (NC) and number of
request per client per second (NR): 1) VS = 1 KB, NC = 500 clients, NR = 3
req/s and 2) VS = 5 KB, NC = 250 clients, NR = 1 req/s.
Table 1 has the latency of both get and put operations, the mean size of clock
metadata and the mean number of values per object (Siblings), i.e., 1 is the
minimum, which represents no siblings at all, thus no concurrency. For each
metric, we provide de ratio between DVV and VV. From DVV perspective,
higher is worse, while lower is better (bolded in the table).

3.2 Results

In all combinations we find that clock metadata size is always smaller in DVV,
even with the (default size) pruning that occurs in VV. We also know that



Scenario GET PUT
GET/PUT/UPD Clock Mean Median 95th Mean Median 95th Meta Siblings

VS/NC/NR (ms) (ms) (ms) (ms) (ms) (ms) (bytes) (average)

60/30/10 VV 15.3 13.7 30.5 11.3 9.8 23.4 875 4.35
1/500/3 DVV 12.4 10.1 28.9 13.8 11.6 28.8 228 3.61

DVV/VC 0.81 0.74 0.95 1.22 1.18 1.23 0.26 0.83

60/30/10 VV 9.57 7.60 24.3 6.08 4.24 16.1 449 3.06
5/250/1 DVV 9.97 7.76 26.1 11.4 9.22 27.1 183 2.98

DVV/VC 1.04 1.02 1.07 1.88 2.17 1.68 0.41 0.98

30/10/60 VV 10.4 9.07 21.6 7.48 6.74 13.8 859 1.20
1/500/3 DVV 3.45 3.14 5.83 4.56 4.29 6.59 123 1.16

DVV/VC 0.33 0.35 0.27 0.61 0.64 0.48 0.14 0.97

30/10/60 VV 4.72 4.35 9.15 3.98 3.50 7.64 458 1.20
5/250/1 DVV 3.92 3.56 7.42 5.50 5.08 9.97 110 1.15

DVV/VC 0.83 0.82 0.81 1.38 1.45 1.30 0.24 0.95

Table 1. Scenario 3: value size 5KB, 250 clients, each with 1 req/s.

pruning is occurring, because the majority of tests reveal that there were more
siblings in the VV case, when compared with same DVV run. This means that,
the major difference between the siblings average results from false conflicts cre-
ated by pruning. Therefore, we can conclude that, indeed DVV is smaller than
VV, while preventing false conflicts from happening. Even if the default size
pruning was lowered, metadata would be smaller, but false conflicts rate would
rise.
In terms of performance, things are a bit more complex. First, in the S631 sce-
narios, DVV performance was almost always worse than VV. These scenarios
have 30% writes of new objects, which could generate siblings if that key already
had an object. If we look at the siblings average in this case, we see an absurd
number of concurrency happening. Since only a upd can resolve and simplify
concurrency, it is obvious why this is the use case where most concurrency oc-
curs. This in a rather extreme and unrealistic use case, but shows that DVV
suffers in fact from the problem of the extra hop to a replica, and also suffers
from the fact that it has to send all the possible siblings of the coordinator
replica, to the other replicas. Since the number of siblings is extremely high, this
problem is only augmented in DVV case.
Scenarios S316 are a bit more positive in terms of performance, and only strength-
ens the previous conclusions. Being update-heavy and having little new writes,
we can see that performance in some cases for DVV, is actually better than VV,
even in some put cases. Having less siblings and smaller clock metadata on av-
erage, operations transfer smaller data. Thus GET operations tend to perform
faster, since they have the same protocol in both VV and DVV, but in DVV
case, data is smaller. The write speed can also benefit from DVV when the data
is small, like the scenarios where values have 1KB in size. Since the major thing
that harms DVV performance is transferring objects between replicas in writes,



having a small value relatively to the clock size, can be enough to actually gain
performance even in write operations. As we can see, when the data size is big-
ger like the 5KB scenarios, savings on metadata and number of siblings are not
enough for writes performance to be better than VV case.

4 Conclusions

The Riak implementation of VV resorts to pruning, when the number of entries
exceeds some threshold, and consequently does not reliably represent concur-
rency, introducing false conflicts. Having no pruning, our DVVs implementa-
tion accurately tracks concurrency while still allowing an expressive reduction of
metadata size. In general, the bigger the number of clients interacting with the
system, and the more read-heavy the system, the better DVV would compare to
VV. On the contrary, the bigger the object size, the worse DVV would compare
to VV.
As future work, the two main things that worsens DVV performance should be
address. The extra hop for non-replica nodes could be avoid, if we use a partition-
aware client library or load balancer that knows which replica to communicate,
thus reducing the response time. The other problem is when the resulting ob-
ject of the coordinator has siblings, thus having to transfer all the siblings to
the others replicas. This can be somewhat minimized if we adopt an optimistic
approach, by transferring only the client value and the new coordinator’s DVV
(updated and synchronized). If the replicas do not have the values that should
have been transferred (this would be checked using DVV), it would later syn-
chronize through gossiping or read repair. This approach could also create a bit
of an overhead on the server side, but that remains to be tested.

References

1. E. A. Brewer. Towards robust distributed systems (abstract). In PODC ’00: Pro-
ceedings of the nineteenth annual ACM symposium on Principles of distributed com-
puting, page 7, New York, NY, USA, 2000. ACM.

2. C. J. Fidge. Partial orders for parallel debugging. In Workshop on Parallel and
Distributed Debugging, pages 183–194, 1988.

3. L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565, July 1978.

4. F. Mattern. Virtual time and global states of distributed systems. In Parallel and
Distributed Algorithms, pages 215–226. North-Holland, 1989.

5. N. M. Preguiça, C. Baquero, P. S. Almeida, V. Fonte, and R. Gonçalves. Dotted
version vectors: Logical clocks for optimistic replication. CoRR, abs/1011.5808,
2010.

6. D. Pritchett. BASE: An acid alternative. ACM Queue, 6(3):48–55, 2008.


	Evaluating Dotted Version Vectors in Riak
	Introduction
	Implementing DVV in Riak
	Evaluation
	Setup
	Results

	Conclusions

	References

