
Multiresolution Motif Discovery in Time Series

Nuno Castro∗ Paulo Azevedo†

CCTC – Department of Informatics
University of Minho, Portugal

{castro, pja}@di.uminho.pt

Abstract

Time series motif discovery is an important problem with ap-

plications in a variety of areas that range from telecommuni-

cations to medicine. Several algorithms have been proposed

to solve the problem. However, these algorithms heavily use

expensive random disk accesses or assume the data can fit

into main memory. They only consider motifs at a single res-

olution and are not suited to interactivity. In this work, we

tackle the motif discovery problem as an approximate Top-K

frequent subsequence discovery problem. We fully exploit

state of the art iSAX representation multiresolution capa-

bility to obtain motifs at different resolutions. This prop-

erty yields interactivity, allowing the user to navigate along

the Top-K motifs structure. This permits a deeper under-

standing of the time series database. Further, we apply the

Top-K space saving algorithm to our frequent subsequences

approach. A scalable algorithm is obtained that is suitable

for data stream like applications where small memory de-

vices such as sensors are used. Our approach is scalable and

disk-efficient since it only needs one single pass over the time

series database. We provide empirical evidence of the valid-

ity of the algorithm in datasets from different areas that aim

to represent practical applications.

Keywords
Time Series, Motif Discovery, Frequent Patterns, Mul-
tiresolution

1 Introduction

The extraction of frequent patterns from a time series
database is an important data mining task. These
patterns, also known as motifs, provide useful insight
to the domain expert about the problem at hand [13]
and help summarize/represent the time series database.
For that reason, motif discovery has been used in

∗Nuno Castro is supported by Fundação para a Ciência e a
Tecnologia grant SFRH/BD/33303/2008.
†Paulo Azevedo is supported by Fundação para a Ciência

e Tecnologia, Project PFAM, Project ProtUnf, FEDER and
Programa de Financiamento Plurianual de Unidades de I&D.

areas as different as telecommunications, medicine, web,
motion-capture and sensor-networks. For example, in
EEG time series (figure 1) a motif may be a pattern
that usually precedes a seizure; in DNA it may be a
sequence of symbols that has been preserved through
evolution [13]; in motion capture a particular gesture
(e.g. throw ball); in telecommunications, a typical
burst in traffic when major social events are located
near an antenna. Figure 1 shows one example of such
type of pattern in the context of EEG time series from
[17]. This specific motif is detected in two different
time series of the database. Figure 2 shows the three
occurrences of the motif in figure 2 along the same axis
after normalization. Normalization of the time series
is required to remove offset and scaling effects [5]. It
has been shown that comparing time series that are not
normalized is meaningless [3]. After normalization the
series are very similar but not exactly equal. The aim
of this work is to find frequent patterns but still be able
to handle noise and other distortions in the time series.

Figure 1: Example of a motif of length 128 in EEG time series
in its original context.

Figure 2: Example of the 3 instances of the motif in the same
referential.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634138?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Most of the motif mining proposals heavily rely on
random disk accesses to the disk database [4, 13, 21]
which is inefficient. It is known in the database com-
munity that accessing 10% of a disk database ran-
domly takes essentially the same time as traversing
the entire database sequentially [18]. Even for mod-
erate sized datasets this becomes an issue. Other tech-
niques [6, 10, 16, 17], tackle this problem by putting
the entire dataset in main memory. The assumption
that the data can fit in main memory is incorrect most
of the time. While this may work in small synthetic
datasets, it becomes an unfeasible task when using real
world databases that typically present Gigabytes data.
Researchers have countered this problem by using ap-
proximate time series representations [5]. The aim is
to convert the time series database to a representation
that requires less space but still retains most of the in-
formation in the series. Then, the converted dataset
is loaded into main memory using one sequential disk
scan. The problem is solved in main memory and only
few accesses to the original disk data are required in
order to confirm the results [5]. It is straightforward
to observe that loading the entire representation of the
time series database in main memory is unfeasible for
massive datasets. Unless the dimensionality reduction
factor yield by the new representation is large, caus-
ing the loss of the most important time series features,
the assumption that the representation of the time se-
ries fits in main memory does not hold. There are very
specific applications where storing the representation is
also not possible, such as sensor networks or mobile ap-
plications. These applications use devices where the
amount of memory is limited, requiring space efficient
algorithms. Furthermore, in some of the applications
the entire dataset is not available and the algorithms
are often not prepared to handle this important type of
scenario e.g. data streams. A similar setting is that of
massive databases. In these cases the amount of data on
disk is very large and each element can only be visited
once.

There are many methods designed for univariate
time series. However, many time series are multivariate,
for example multi-sensor systems [16]. Also, most
existing approximate algorithms only find motifs at a
single resolution i.e. using a fixed number of symbols in
the time series representation. However, it desirable to
handle different levels of the time series representation
to achieve further insights about the data.

Data mining algorithms typically provide as output
a set of patterns: the most recurrent patterns, the
nearest neighbor subsequences in the database, etc. We
believe that user interactivity is an important part of
data mining. For that reason data mining and motif

discovery algorithms should provide means to facilitate
the development of user interactivity.

In this work, we tackle time series motif discovery as
an approximate Top-K frequent pattern problem. We
provide a scalable algorithm to retrieve the most fre-
quent subsequences of the database. We achieve time
efficiency by using a single sequential disk scan to read
the time series database, a clever time series represen-
tation and a hashtable based counting technique. Mem-
ory efficiency is achieved by combining our method with
the space-saving algorithm [9], now applied to time se-
ries data mining. Our approach is based on the state
of art time series representation – iSAX [20], exploit-
ing its multiresolution property to derive motifs at dif-
ferent resolutions. This property enables the devel-
opment of powerful visualization applications, allowing
the navigation in the Top-K motifs hierarchy structure.
This yields better understanding and intuition about
the database at hand to the user. The single sequential
disk pass makes the method a strong candidate for data
streaming applications.

The remainder of the paper is organized as follows:
section 2 describes the state of the art in time series
motif discovery with a particular subsection on the
iSAX representation; background and notation used
throughout the paper are described in section 3; section
4 introduces our approach; the experimental analysis is
shown in section 5; finally, we derive conclusions and
discuss future work.

2 Related work

Since the definition of motif discovery in time series in
[2], several algorithms have been proposed to tackle this
problem [4, 6, 10, 16, 17, 21]. The first proposal ([2])
defines the problem of motif discovery in time series
regarding a user-defined range parameter R and a motif
length m. That is to say, two subsequences of length m
match and form a motif if their Euclidean Distance is
smaller than R. The concept of motif is generalized to
K-Motifs, where the top K motifs are returned. The 1-
Motif, or the most significant motif in the time series, is
the subsequence that has most non-trivial subsequence
matches. The exact motif discovery solution for a time
series presents quadratic complexity. For that reason,
optimizations based on the symmetry and triangular
inequality properties of the Euclidean Distance are
proposed. This leads to complexity reduction by a
large constant factor. However the approach is still
intractable for large datasets [6]. It is also space
inefficient.

Due to the quadratic complexity of exact algo-
rithms, researchers have changed focus to approximate
solutions. These solutions present in general O(m) or



O(mlogm) complexity with very high constant factors
[21]. The first work to consider this approach is [6].
It is based on research for pattern discovery from the
bioinformatics community [1]. The authors develop an
algorithm to find motifs in linear time – Random Pro-
jection. The algorithm is robust against noise and uses
a probabilistic and iterative approach. It uses as base
structure a collision matrix whose rows and columns are
the SAX representation of each time series subsequence.
The subsequences are obtained using a sliding window
approach. At each iteration, it selects certain positions
of each word as wildcards and traverse the word list. For
each match, the collision matrix entry is incremented.
In the end, the largest entries in the collision matrix are
selected as motifs candidates. Finally each candidate is
checked for validity in the original data. This algorithm
has been widely used in time series motif discovery since
its introduction. It is robust to noise and can find all
the motifs with high probability, after a certain num-
ber of iterations. It presents linear complexity in terms
of the number of subsequences, word length, number of
iterations, and number of collisions [16]. If the distribu-
tion of the projections are not sufficiently wide, i.e. if
a large number of subsequences have the same projec-
tion, the algorithm becomes quadratic in time and space
[16]. The space efficiency of the algorithm is based on
the sparse implementation of the collision matrix. Also,
the algorithm assumes that the collision matrix can fit
into main memory, which in some scenarios is not the
case. It presents several parameters that need to be
tuned: range R, motif length m, number of columns
masked in the collision matrix c, and the SAX alphabet
size a and word length l. Some of these parameters are
unintuitive for the user e.g. how to optimize c and R.
This can be attained only by experimentation, which is
most of the time unfeasible for large datasets. Failing to
achieve optimal parameter values can lead to misleading
results: no motifs found, a massive number of motifs or
meaningless motifs being found. The SAX parameters
have been experimentally shown to have little impact on
the quality of results [5] and can be set by default. The
motif length m is a relatively more intuitive parameter
to tune even for the ordinary user.

Oates introduced an algorithm called PERUSE to
find recurring patterns in multivariate time series [4].
This algorithm can handle data sampled at different
rates and motifs having arbitrary lengths. It uses
the raw time series instead of discrete approximations.
However it presents a large computational complexity
and some stability problems on the estimated models.

In [10], the authors introduce an algorithm to find
motifs in multivariate time series. They use Principal
Component Analysis to transform the multivariate time

series into one signal. The univariate result data is
handled using Chiu’s Random Projection [6].

Another approach to find motifs in time series of
Proteins is described in [13]. The algorithm receives as
inputs a database of time series, a minimum support δ,
the motif length m, a minimum similarity Rmin, and
a window frame length deltaW . It first converts the
time series subsequences into the SAX representation.
Then, it attempts to find clusters of subsequences
(matches). Finally, each retrieved motif length is
extended until the similarity drops below the user-
defined Rmin threshold. This algorithm is able to
handle multivariate time series. It presents a more
intuitive R parameter (e.g. R = 1 means maximal
similarity) and also allows to retrieve motifs of different
sizes and inverse motifs (symmetric shapes). The motif
length extension capability seems desirable in motif
search. Its limitations are the quadratic complexity and
the need to load the entire dataset to main memory,
which is untenable even for databases of moderate size.

Minnen et al. introduce an algorithm to find motifs
in multivariate time series in linear time [16]. In this
work, motifs may span only across some of the time
series, or dimensions – subdimensional motif discovery.
The algorithm is also based in the proposal presented
in [6]. The difference is due to the multivariate case,
where a combined projection is necessary. Whereas
in previous work by the same authors the collision
matrix is incremented only if all dimensions matched
a particular subsequence, now it occurs once there
is a match in one of the dimensions. The Dynamic
Time Warping (DTW) is also tested as the distance
measure. However the complexity rises to quadratic.
The authors use the 10% Sakoe-Chiba band constraint
in the warping path. It has been shown that when using
the LB Keogh lower bounding technique DTW becomes
essentially linear [12]. However, Keogh has shown
recently in [19] that for large time series databases,
using the DTW is not significantly better than the
Euclidean Distance, being the latter much faster. The
strengths of this algorithm are its ability to handle the
multivariate case and creating the conditions to avoid
Random Projection from growing quadratically. That
is, it makes the distribution of the collisions sufficiently
wide by dynamically adjusting the SAX’s alphabet size
and c parameters.

In [17], the authors present an algorithm to handle
stretching in the time axis of time series. This phenom-
ena can happen if the sampling rate of two time series is
different. The approach extends Random Projection to
allow the detection of motifs under uniform scaling. The
definition of motif is also modified and it is no longer
centered on an unintuitive range parameter. There, mo-



tifs are defined in nearest-neighbor terms: the motif of a
time series is constituted by the two subsequences that
are the nearest to each other, i.e. present the lowest dis-
tance from each other. The only parameter that needs
to be defined by the user is the motif length (besides
SAX’s parameters). This algorithm inherits Random
Projection’s problems and increases its overhead due to
the need to search for the best scaling factors.

Under the new nearest-neighbor motif definition,
Abdullah Mueen et al. [21] proposed the first tractable
exact motif discovery algorithm – MK. This algorithm
is up to three orders of magnitude faster than brute-
force. It is based on the notion of early abandoning the
Euclidean Distance calculation when the current cumu-
lative sum is greater than the best-so-far. The motif
search is guided by heuristic information calculated by
the linear ordering of the distance of an object with re-
spect to a few random reference points. MK is a sound
contribution in the exact motif discovery search. How-
ever, the use of the Euclidean Distance directly in the
raw data can give rise to robustness problems when deal-
ing with noisy data. Euclidean Distance can be highly
affected by noise [6]. Also, when data does not fit in
main memory it will perform a large number of random
disk accesses, which may prevent the algorithm from
scaling.

Despite the recent research in exact algorithms, we
believe approximate algorithms will continue to be the
best option in many application domains due to its
time/space efficiency. For instance, sensor networks and
telecommunication networks monitoring need most of
the time real time results. In these domains, the trade-
off between execution time and accuracy of the solution
clearly bends towards the former.

The process of counting subsequences occurrences
in time series is not trivial. The criteria for which one
could consider one subsequence as the repetition of an-
other are diverse. It is clear that counting only equal
subsequences as repetitions is of no great use. One
should use ”similar” subsequences instead. Once this
assumption is considered, the next question to address
is what similarity definition one should use. To let the
data mining practitioner set this as a parameter such as
the range (R) is not an interesting approach, since this
parameter is largely domain dependent and unintuitive
to adjust. One could choose to select the pair of sub-
sequences in the database that are the nearest to each
other (nearest-neighbor motif definition). However, this
solution does not take into account the frequency of the
subsequences. We may have a pair of subsequences that
are the nearest neighbors but are rare in the database
(e.g. one occurrence). An interesting approach is to
formulate the motif discovery problem as a top-K fre-

quent pattern problem [9]. In this framework, we need
a container where we can put similar time series with
an adjustable margin of similarity. Approximate time
series representations appeared to be the best solution.
Among these, the Symbolic Aggregate Approximation
(SAX) has been shown to outperform other approaches
[19]. SAX has been widely used in the time series data
mining community. The most important features of
this approximation is that it reduces the dimensional-
ity and lower bounds the true distance of the original
time series. Despite losing some of the information in
the reduction process, it conserves the overall shape of
the time series. The average calculation of the Piece-
wise Aggregate Approximation (PAA) is good against
noise, except if sudden variations are the important as-
pect of an application domain. As shown in [15] in the
context of clustering, SAX sometimes outperforms Eu-
clidean Distance on noisy data. This results from the
smoothing caused by dimensionality reduction. SAX
has been further enhanced to iSAX [20]. The built-in
multiresolution property made the original SAX even
more attractive, since adjusting the margin of similar-
ity to use i.e. increase or decrease the iSAX resolution,
becomes a build-in available feature.

iSAX Representation
As a symbolic approximation, SAX converts the original
real time series T of length n into a sequence of
w symbols – word – belonging to an alphabet of
size a. The alphabet size of a given SAX word is
called resolution. This operation is represented by the
following notation: SAX(T,w, a). SAX operates as
follows:

• First, the dimensionality of the time series is re-
duced by dividing it into w segments (word length)
with the same length ( n

w ) using the Piecewise Ag-
gregate Approximation (PAA) algorithm. This al-
gorithm assigns to each segment its average value.

• Then, the amplitude of the time series is divided
into a intervals, so that a symbol can be assigned
to each interval. The best way to generate equi-
probable intervals is to use a − 1 breakpoints that
produce the same area under the Normal curve,
as shown in figure 3. These breakpoints can be
obtained by using a statistical table.

• Finally, symbols are obtained from the intervals.
The segments below the smallest breakpoint are
assigned the 0 symbol. The segments between
the first and second breakpoints the symbol 1,
and so forth. In order to assist calculations,
binary numbers are used instead of actual symbols.



For clarity, these are typically displayed in their
decimal format. Figure 3 a) and b) depicts this
idea for resolutions of 4 and 16, respectively.

Figure 3: Example of the SAX conversion process for a time

series with length 128, w = 8 and resolutions: a) 4, b) 16. Image
generated by MATLAB and code provided by SAX authors [5]

The iSAX representation extends classic SAX by al-
lowing different resolutions for the same word. To avoid
ambiguity, the resolution of each symbol needs to be
made clear in the iSAX word. It is this enhancement
that enables the creation of a time series index. How-
ever, for the scope of this work, we are not interested in
the indexing capabilities of iSAX. Rather, we are inter-
ested in interleaving between different resolutions within
the same iSAX word.

Converting from a higher to a lower resolution is
simple: one just needs to ignore one trailing bit as we
reduce the resolution by half. However the opposite
is not true, since one can have several possibilities for
the higher resolution. We need to convert the original
time series to the new resolution if we want the correct
result. Later, details on how this step is performed in
an efficient way will be described. An important issue
to consider is that as the resolution increases, the more
similar two time series need to be in order to originate
the same word. Each interval narrows considerably each
time we duplicate the resolution of the iSAX word. This
intuition can be observed in figure 3.

3 Background and Notation

In this section we introduce some notations and useful
definitions. First we define our object of study.

Definition 3.1. A time series T of length n is an or-
dered succession of a variable’s observations (ti, . . . , tn)
over time, with ti ∈ R.

We are typically interested in mining a collection of time
series with arbitrary lengths.

Definition 3.2. A time series database D is a set of
|D| unordered time series ([21]).

Time series data mining algorithms often use subsec-
tions, or subsequences, of the original time series in their
calculations.

Definition 3.3. Given a time series T of length n, a
time series subsequence S = si, ..., si+m−1 is a sampling
of m ≤ n contiguous positions of T , such that 1 ≤ i ≤
n−m+ 1 (definition from [6]).

A special type of time series can present several variables
varying over time. One example of a multivariate time
series are EEG recordings in several electrodes placed
in the scalp over the period of one minute.

Definition 3.4. A Multivariate time series is a set of
several time series (variables) in the same time range.

A time series can be generated through a device or
process that is continuously deriving data. In this
specific case it is called streaming time series, or a data
stream. We now formalize this concept.

Definition 3.5. A Streaming time series X is a time
series with n = ∞, whose data points arrive continu-
ously at an arbitrary rate.

This type of time series is present in many appli-
cation domains e.g. data captured by sensor networks.
In this case we may be in the presence of multivariate
streaming time series. Typically, researchers transform
streaming time series into static time series by defining
an end point to the time series (length n to a specific
value). Then, a traditional offline data mining algo-
rithm i.e. an algorithm where the time series does not
change during its execution, is applied to the truncated
time series. Online (or real-time) algorithms go beyond
this approach and can be applied to streaming data. As
soon as a new data point is available the internal state
of the algorithm is updated according to this new point.
Our algorithm, as we shall see, exhibits this property.

Definition 3.6. A subsequence S with length m is an
instance of an iSAX word W if iSAX(S,w, a) = W , for
a given word length w and alphabet size a.

Both w and a parameters do not need to be set by
the user. Rather, they are part of the algorithm process
as we shall see in section 4.2.

Definition 3.7. The cluster of the iSAX word W is
the set of all instances of W in D.

We now clarify the goal of our data mining task.
We aim to find the top-K motifs.

Definition 3.8. The Top−Kth Motif of a time series
database D is the cluster ranked at the kth position
regarding number of instances.



Notice that our motif definition does not consider
a distance measure. This is due to the multiresolution
property of our algorithm which we inherit from iSAX.
As we increase the resolution, finding a cluster for a
given iSAX word becomes increasingly difficult. Our
intuition is that at the largest resolution, we will be
working very close to the level of raw data. For that
reason, finding a cluster at a large resolution implies
that the Euclidean Distance among the instances is very
small. This assumption will prevent us from performing
expensive distance calculations.

4 Our algorithm

In this section we describe the proposed algorithm. We
start by briefly describing the space-saving algorithm
for frequent items mining.

4.1 Space Saving algorithm
The Space-Saving [9] (SS ) algorithm was proposed to

efficiently compute frequent elements in data streams.
To the best of our knowledge, this algorithm has never
been applied to time series motif discovery as it can not
be applied to raw time series. The iSAX representation
outputs a discrete sequence of symbols, which is suitable
to apply the SS algorithm.

Space-Saving is a relatively simple algorithm. Sup-
pose we want to compute the top m elements of a
data stream. The algorithm maintains only m coun-
ters. These counters are updated such that the number
of occurrences of the significant elements are accurately
estimated. If the observed element e is in the moni-
tored group then its frequency is incremented. Other-
wise, the element em with the least estimated hits min
in the monitored group is replaced by the observed el-
ement and the counter of that element is incremented.
The algorithm’s main goal is to never miss a frequent
element. However, e could actually have between 1 and
min+ 1 hits.

Algorithm 1 Space-Saving(m counters, stream S)
for each element, e, in S do

if e is monitored then
let counti bet the counter of e
Increment-Counter(counti)

else
let em be the element with least hits, min
Replace em with e
Increment-Counter(countm)
Assign εm the value min

end if
end for

Space-Saving is one of the most efficient techniques

for estimating top frequencies in terms of space. Nev-
ertheless, it is experimentally shown that monitoring
only a moderate number of counters guarantees very
small errors. Also, for each monitored element ei, the
maximum-overestimation εi for that element is saved,
which is the value that the counter presented when the
element was first inserted in the list. This gives an
upper-bound in the over-estimation errors.

4.2 Multiresolution Motif Discovery
In this section we describe the Multiresolution Motif

Discovery in Time Series algorithm – MrMotif. The
algorithm is based on the iSAX representation. The
main idea of the algorithm is to start from a low iSAX
resolution and then expand to higher resolutions. As
this expansion is performed, the number of instances of
a given cluster reduces as each cluster is split into several
of the next resolution. At the highest resolution, a
cluster is formed only if the subsequences in that cluster
are very similar, as each iSAX symbol covers only a
narrow interval in the amplitude of the time series. This
idea can be observed in figure 3.

For simplicity we assume the time series database D
is available on disk. Regardless, each raw time series is
not consulted more than once. Hence, the algorithm can
be directly applied to streaming data. The minimum
possible resolution gmin in iSAX is 2. The maximum
resolution gmax is assigned to 64. Resolutions bigger
than 64 are most of the time at the level of the raw
series, where it is not possible to find clusters, or only
trivial clusters (equal time series). Note that we are
not interested in analyzing all resolutions in between
gmin and gmax. Rather, we only aim to study the gmin

powers of 2 until we reach gmax. That is to say, we
use the 2, 4, 8, 16, 32 and 64 resolutions. We maintain a
set of hashtables count in main memory, one hashtable
countg per resolution. Thus, pairs of (cluster, count)
are stored.

Our algorithm aims to find the solution for the
following problem:
Problem definition: Given a time series database D, a
motif length m and a K parameter, for each resolution
in (gmin, gmin × 2, . . . , gmax) find the top-K motifs.

We describe the pseudo-code in Algorithm 2. The
actual implementation can be accessed at [23]. For sim-
plicity, we describe the algorithm without considering
details about memory usage or cluster hierarchy. We
will detail later when exactly the Space-Saving setting
is activated and how the information that will allow
visual tools to navigate through the motif structure is
saved. For the time being, assume Space Saving is not
active (line 9), and ignore line 3. The algorithm is rel-
atively straightforward. A sliding window of size m is



Algorithm 2 MrMotif(D, m, K)
1: for each subsequence S of length m in D do
2: W ← iSAX(S, gmin . . . gmax, w)
3: motifTree.Update(W )
4: for each wg in W do
5: if wg is in countg then
6: cg ← countg.get(wg)
7: countg.Update(wg, cg + 1)
8: else
9: if Space-Saving is Active then

10: (em,min)← countg.getMin()
11: countg.Update(wg,min+ 1)
12: εm = min
13: countg.updateMinimum()
14: else
15: countg.Update(wg, 1)
16: end if
17: end if
18: end for
19: end for
20: return count

used to scan the subsequences of all time series Ti (with
possibly different sizes) in database D. Also a bounded
buffer of size m is used to keep this disk traversal se-
quential. We are aware that contiguous subsequences
are likely to be almost identical and for that reason
a step greater than one is used in the sliding window
approach. This prevents spurious motifs from being
found, also known in the literature as ”trivial matches”
[6]. Each read m-length subsequence is converted to an
iSAX word for each resolution of interest (line 2). Note
that this conversion is executed in one single step, as
for the same time series most of the conversion process
is similar at all resolutions (only the symbol lookup is
independent). Then, if the cluster exists in the corre-
sponding hashtable countg structure, its count is incre-
mented and the location of the subsequence saved (lines
4− 7). Otherwise it is set to one (line 15). Finally, the
top-K Motifs for each resolution are outputted (line 20).

Space-Saving
In section 4.1 we have described the Space-Saving algo-
rithm without referring when it is activated and which
elements to monitor. The intuition is to directly apply
it to the Top-K motif problem. However, this would not
yield satisfactory results because this K set is typically
very small (for instances, Top-10). Thus, it could po-
tentiate the number of over-estimation errors. Instead,
we let the user decide the maximum amount of mem-
ory the algorithm’s implementation has available. The
amount of memory the algorithm is using is monitored.

If the algorithm reaches the user defined threshold the
Space-Saving mode is activated. In that case, the al-
gorithm will execute lines 9–13. For example, in a mo-
bile device this threshold can be set to 1 MB. It is also
possible that the user chooses not to set this thresh-
old. In that case the algorithm is executed until no
more memory is available. As this situation can make
a system stop operation, we actually ”hard-code” this
threshold to 99% of the available memory. One could
argue that by using a clever representation technique
as we do, this will hardly occur. However, that is not
the case. We will show this situation using a relatively
small time series where the number of different clusters
in the counters hashtable increases at a fast rate. On
the other hand, having initialized the system in ”full
memory” mode provides us a large enough number of
counters to ensure very small errors. The use of εm pro-
vides guarantees about the quality of a given execution
of the algorithm.

Interactive Visual Tool
In section 1 we have discussed that data mining algo-
rithms should provide rich outputs. This would facili-
tate the development of applications that receive as in-
put that same output, such as Visualization applications
[8]. Hereby we show an example of such application, as
we believe these provide the data mining practitioner
with further understanding and intuition about the data
at hand.

Our example application is a motif navigator, which
allows to perform several exploration and ”drill-down”
operations along the motif hierarchy. During the algo-
rithm’s execution, an iSAX word is generated for each
subsequence within each resolution. Larger resolution
words are contained in smaller. In this sense we say that
the discovered motifs form an hierarchy. For example,
the length 2 word (48, 38) contains the words (916, 716)
and (816, 716). For that reason, we say that the lower
resolution is the parent motif and the higher is the child.
The words generated for the same subsequence form a
word family. It is straightforward to keep and maintain
this information in a tree structure. Line 3 of the algo-
rithm performs this maintenance operation. The motif
tree structure can then be given to a graphical user in-
terface in the form of a graphical tree (similar to a file
system tree). The user can explore and visualize the
motifs at different resolutions, in order to realize which
of the frequent motifs are significant for his particular
domain/problem. Figure 4 displays a screenshot of this
motif navigator where the motif hierarchy structure can
be observed.



Figure 4: Snapshot of a motif navigator

5 Experimental Analysis

In this section we perform experiments to validate the
impact of the proposed algorithm. First the space
and time scalability is analyzed in a large synthetic
database. Then, the effect of noise in the algorithm
is studied. Finally, the impact of MrMotif is shown
in three different real applications. The experiments
were performed on a machine with a Quad-Core AMD
OpteronTM Processor 2352 with 16 GB of RAM. The
MrMotif algorithm is implemented in Java and the
compiler used was the JDK 6.

5.1 Scalability Experiments
The experimental analysis begins by considering the

scalability of the proposed algorithm. We compare our
approach to Random Projection (RP) [6] in terms of ex-
ecution time. This algorithm is selected for comparison
due to its popularity. It is the most cited time series
motif discovery proposal up to date (more than 140 ci-
tations) and is the basis of many current approaches
that tackle this problem [10, 16, 17]. Furthermore, the
execution time of this algorithm can be used as a lower
bound on the execution time of all approaches that are
based on it. We also perform comparisons with the ”full
memory” (FM) version of our algorithm in order to un-
derstand the impact of Space-Saving (SS). The dataset
used in this section is constituted by random walk time
series available in the MK algorithm [21] website. We
select these data for two reasons: they have been used
before and results on similar datasets are encouraged in
order to walk towards data mining benchmarks; also,
the size (in the Gigabytes order of magnitude) makes
them attractive to test any algorithm. The dataset is
composed by ten different sets of random walk series,
with 10000 to 100000 time series of length 1024. These
sets occupy a large amount of disk space ranging from
160 MB to 1.5 GB, for a total of about 8 GB in the

database. We reproduce these datasets by following the
instructions in [21] website, using the same random seed
as the MK’s authors. In the MK proposal, the algorithm
is executed 10 times for each of the ten increasingly large
datasets and the average of the execution time for each
dataset is recorded. We follow the same approach with
RP and both implementations of MrMotif – SS and FM.

The motif discovery algorithms are executed with
K = 10 and m = 1024. We follow the recommendation
of the SAX authors [5] and set w = 8 (iSAX word size)
for all experiments. The maximum amount of memory
used by SS is set to 128 MB. This value is chosen because
it is close to the average RAM available in current
mobile phones. We implement the RP algorithm and
set the parameters w = 8 and a = 8. The c parameter
is randomly chosen between 2 and 7, to assure that the
distribution of the projections is wide enough to prevent
the algorithm from becoming quadratic. For fairness,
we remove the disk verification of candidate motifs (a
module part of RP), since MrMotif does not perform
this expensive step. Both implementations of MrMotif
and RP are available on MrMotif website [23]. Figure 5
displays the results of the execution.

Figure 5: Variation of the execution times of the three algo-
rithms as the number of processed time series increase.

It can be observed that MrMotif is about one
order of magnitude faster than RP for each of the ten
increasingly sized sets that constitute our dataset. Also,
MrMotif execution time increases linearly as the dataset
size increases, as expected. However, RP seems to
grow quadratically. The reason for this is that RP is
quadratic with respect to the SAX word list size. Note
that we present results for just one iteration of RP.
However, as an iterative algorithm, several iterations



are necessary in order to converge. The reason we show
results for one iteration is to make clear that MrMotif
full execution outperforms one iteration of RP. A full
execution of MrMotif returns the top-10 patterns for
the 2, 4, 8, 16, 32, and 64 resolutions deterministically.
It can also be observed that the FM version of MrMotif
executes faster the SS version. This is due to a small
overhead that Space-Saving adds to the algorithm.

The next experiment reports the memory usage of
the MrMotif SS and FM versions during the execution
in the dataset containing 100000 time series of length
1024. The MrMotif SS and FM versions are compared
in this experiment in order to show the impact of Space-
Saving. Figure 6 depicts the memory used by the Java
Virtual Machine of the FM and SS algorithms versions.

Figure 6: Variation of the memory used by the JVM as the
number of processed time series increase. Red : FM, Blue: SS.

The right figure zooms in the left bottom quadrant of the chart.

It can be observed (as expected) that when the SS
algorithm is activated (time series 6000), the memory
used by the algorithm remains below the imposed limit.
The wave-form of the memory usage variation can be
explained by the effect of the Java garbage collection
(GC). The FM version of the algorithm uses a large
amount of memory. This is due to the fact that 100000
random time series produce a large number of iSAX
words, which quickly fill the hashtables. This also
happens with RP or any other algorithm that saves
the iSAX representation of all time series in main
memory. However, the FM version is only used for
experimentation purposes. In real scenarios, we use the
SS approach.

In this section we have demonstrated that MrMotif
SS version is time and space efficient for relatively large
datasets (8 GB). The results show that the algorithm
is linear regarding the number of time series in the
database. This is due to the use of a single sequential
disk traversal and constant time structures (hashtables).
It is also observed that the proposed algorithm executes
about one order of magnitude faster than RP. This is
an encouraging result because RP is the basis of many

existing motif discovery algorithms.

5.2 Experiments with noise
In this section an analysis of the impact of noise in

MrMotif results is performed. We start by applying
MrMotif to the set of 10000 time series of length 1024
from the previous experiment. We record the top-10
patterns of resolution 4 and use these results as the
ground truth for our study. Then, we produce ten
noisy variations of our dataset using the technique (and
code) in [7]: Gaussian noise and small time warping
are added to the original series. Further details of
the technique can be accessed in the original paper
([7]) or in our website [23]. For each variation we
increase the range of noise introduced, from 10% up
to 100% of the original series standard deviation. We
apply our algorithm to each of the ten noisy versions of
our dataset, recording the information retrieval metrics
precision and recall of each execution with respect to
the original (noise free) version. These measures are
calculated by using the number of true positives (TP),
false positives (FP), and false negatives (FN) for each
execution: the TP are the number of clusters present
in the top-10 of the noisy and original version; the
FP are the number of clusters that are incorrectly in
the noisy version; and the FN are the clusters that
are not in the noisy dataset but are in the original
execution’s. We have Precision = TP/(TP + FP ) and
Recall = TP/(TP + FN). The results are shown in
figure 7.

Figure 7: Variation of the Precision and Recall of each increas-
ingly noisier variation of the original 10000 size dataset.

We can observe that precision and recall present
values above 90% until the noise range is greater than



half standard deviation. From this point onwards, the
noise level causes the series to significantly differ from
the original ones. We can conclude that MrMotif is
robust to relatively high levels of noise and small time
warping. For these levels, few of the top-10 patterns
were missed and a small number of false patterns in the
top were discovered. This capability is derived from the
smoothing effect of the iSAX dimensionality reduction
process. In our experiment setting a fixed value for
the top patterns (10) is used. For that reason, when
our algorithm misses a top pattern (FN) it obviously
introduces a spurious one in the top-10 (FP) and vice-
versa. Therefore, precision and recall present the same
value for this experiment scenario.

5.3 Real Applications
In this section the MrMotif algorithm is applied to

three different application areas. Our goal is to validate
that MrMotif is a strong candidate for a wide range
of applications where time and space efficiency are
necessary. Our algorithm is applied to real datasets
from the areas of protein unfolding, sensor networks
monitoring and telecommunication networks.

Protein Unfolding
Protein folding involves the formation of the 3D struc-
ture of a protein from a sequence of aminoacids. Folding
or unfolding disorders of a protein cause diseases such as
the neurodegenerative Alzheimer’s. The Transthyretin
(TTR) is one example of such proteins whose unfold-
ing disorders cause severe diseases. Unfolding mecha-
nisms of this protein have been studied by computa-
tionally analyzing variations on certain molecular prop-
erties over time. The Solvent Accessible Surface Area
(SASA) is one example of such properties that are im-
portant to study in order to understand the cause of
the disorder and consequent manifestation. This analy-
sis is performed by means of simulation from Molecular
Dynamics (MD) unfolding of TTR [11]. The dataset
is constituted by 127 time series of 10000 points each,
corresponding to the variation of the SASA in each of
the 127 aminoacids of the protein during a period of
10 nanoseconds (ns): one point per picosecond (ps) of
simulation. The actual time necessary to run this 10ns
simulation surpasses one month. We apply our pro-
posed algorithm to find the Top-10 patterns of size 64
(64ps), as this may unveil important repetitions in un-
folding behavior among the different aminoacids. The
top-1 motif retrieved by our algorithm is discussed. The
larger resolution cluster with at least 2 repetitions was
discovered at the 16 resolution. The top clusters at res-
olution 8, 4, and 2 presented 5, 35, and 1029 instances,
respectively. In figure 8 one example of a motif found

at the resolution 4 is displayed.

Figure 8: The four instances of a motif discovered at
resolution 4.

The discovered motif is repeated 4 times in the
database. This motif highlights the robustness to
noise characteristic of our algorithm. The time series
instances are not exactly equal and present a relatively
large Euclidean Distance. Nevertheless, they were
successfully counted as repetitions. This capability of
MrMotif provides the biologists with further insight on
the domain.

Sensor Networks Monitoring
To apply data mining techniques to emerging architec-
tures such as sensor networks is of particular impor-
tance. These devices will be widely used in the future
in fields as diverse as health, forest fire detection, and
general surveillance. Sensors communicate with the sen-
sor base through wireless channels. These operate at a
frequency close to the Wifi networks and for that reason
are subject to interference and failures. It is then vital
to monitor parameters of the sensor networks commu-
nication protocols, such as the delay or number of re-
transmitted packets caused by packet loss. The reason
is that a packet loss will cause a retransmission, which is
the most energy-expensive operation for these battery-
run devices. Our dataset is composed by averaged delay
data of a specific sensor in a wireless network of biomed-
ical sensors. There are 9 time series, each covers a mon-
itor period ranging from 7 hours up to 18 consecutive
hours. Each data point contains the average delay of
packet transmission by the iLPRT MAC protocol [22].
MrMotif is applied to the dataset to find the Top-5 mo-
tifs, using a motif length of 16 covering the last 16 min-
utes, as suggested by the domain expert. The memory
limit is set to 1 MB for this particular scenario. This
highlights the amount of memory these devices typically
have available. Figure 9 shows one example of a motif
detected at resolution 8.

Figure 9: Example of a motif with 5 instances. The variation

was due to interference by a laptop’s antenna wireless.



This motif presents 5 time series repetitions. The
motif has been acknowledged by the domain expert
as worthy of further investigation. The displayed
motif occurred in situations where the user intentionally
approached a laptop to the sensors range in order to
cause interference. This provides promising results in
further applications of MrMotif and other time series
data mining algorithms. The goal is to help improve
communication protocols for wireless sensor networks.

Telecommunication Networks
Telecommunications networks interconnect people of
different cities, countries and continents. For that rea-
son they play a central role in nowadays society. These
networks are characterized by very complex and large
structures that are monitored by network operators, us-
ing reports of performance counters such as traffic data.
For network troubleshooting problems it is interesting
to detect frequent patterns. This helps in preventing fu-
ture failures, obtaining further knowledge about the do-
main, and achieve better next generation networks. In
this experiment MrMotif is applied to a traffic dataset
from a Portuguese telecommunications network opera-
tor. The data regards several network elements (nodes),
whose traffic was recorded in the period of a week at a
granularity of 15 minutes. The algorithm parameters K
and m were set to 10 and 360, respectively. The goal of
the network operator is to attempt to find regularities
in the network traffic, possibly at different nodes, over
the period of a few days. In figure 10 one example of a
motif with two instances returned by our algorithm at
resolution 8 can be observed.

Figure 10: Motif with two instances found at two different
nodes.

The network operator has found this result and
approach interesting. These motif represents the same
characteristics in telecommunications traffic at a given
week and the causes remain to be investigated by the
telecom operator.

6 Conclusion and Future Work

We have proposed the Multiresolution Motif Discovery
in Time Series algorithm – MrMotif. This proposal
tackles limitations of existing algorithms such as disk
access and memory inefficiency. It brings to time series
motif discovery the Space-Saving algorithm in order to
efficiently handle strict memory requirements present

in emerging architectures as sensor networks. The mul-
tiresolution property inherited by the solid iSAX repre-
sentation allows to find motifs at different resolutions.
This provides useful insight to the practitioner about
the database at hand. MrMotif is scalable and can have
a strong impact on different application areas due to the
good performance and robustness to noise. Future work
includes investigating time series motifs evaluation mea-
sures [14] and studying automatic methods to derive the
parameters K and m.

Acknowledgments
We would like to thank the anonymous referees who
helped to significantly improve this paper with their
invaluable feedback.

References

[1] Buhler, J. and Tompa, M., Finding Motifs Using Ran-
dom Projections, in Proceedings of the Fifth Annual
international Conference on Computational Biology
(2001), pp. 69–76.

[2] Lin, J., Keogh, E., Lonardi, S., Patel, P., Finding Mo-
tifs in Time Series, Proceedings of the 2nd Workshop
on Temporal Data Mining (2002), pp. 53–68.

[3] Keogh, E, Kasetty, S, On the need for time series data
mining benchmarks: a survey and empirical demon-
stration, in Proceedings of the Eighth ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining (2002), pp. 102-111.

[4] Oates, T., PERUSE: An Unsupervised Algorithm for
Finding Recurring Patterns in Time Series, Second
IEEE International Conference on Data Mining (2002),
pp. 330.

[5] Lin, J., Keogh, E., Lonardi, S., and Chiu, B., A Sym-
bolic Representation of Time Series, with Implications
for Streaming Algorithms, in Proceedings of the 8th
ACM SIGMOD Workshop on Research Issues in Data
Mining and Knowledge Discovery (2003), pp. 2–11.

[6] Chiu, B., Keogh, E., and Lonardi, S., Probabilistic
discovery of time series motifs, in Proceedings of
the Ninth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (2003),
pp. 493–498.

[7] Vlachos, M., Lin, J. , Keogh, E., Gunopulos, D., A
Wavelet-Based Anytime Algorithm for K-Means Clus-
tering of Time-Series, in Proceedings Workshop on
Clustering High-Dimensionality Data and its Applica-
tions, SIAM International Conference on Data Mining
(2003), pp. 23–30.

[8] Lin, J., Keogh, E., Lonardi, S., Lankford, J., and Nys-
trom, D., VizTree: a tool for visually mining and moni-
toring massive time series databases, in Proceedings of
the Thirtieth international Conference on Very Large
Data Bases – Volume 30 (2004), 1269-1272.



[9] Metwally, A., Agrawal, D., and Abbadi, A., Efficient
Computation of Frequent and Top-k Elements in Data
Streams, in Proceedings of the 10th International Con-
ference on Database Theory (2005), pp. 398–412.

[10] Tanaka, Y., Iwamoto, K., and Uehara, K. 2005. Dis-
covery of Time-Series Motif from Multi-Dimensional
Data Based on MDL Principle, in Machine Learning
58, (2005), pp. 269–300.

[11] Azevedo, P., Silva, C, Rodrigues, R, Ferreira, N.,
Brito, R., Detection of Hydrophobic Clusters in Molec-
ular Dynamics Protein Unfolding Simulations using
Association Rules, in Proceedings of the 6th Inter-
national Symposium on Biological and Medical Data
Analysis (2005), pp. 329–337.

[12] Ratanamahatana, C., Keogh, E., Three Myths about
Dynamic Time Warping Data Mining, in the Proceed-
ings of SIAM International Conference on Data Mining
(2005), pp. 506–510.

[13] P. Ferreira, P. Azevedo, C. Silva, and R. Brito, Mining
approximate motifs in time series, in Proceedings of
the 9th International Conference on Discovery Science
(2006), pp. 89–101.

[14] Ferreira, P., Azevedo, P., Evaluating Protein Motif Sig-
nificance Measures: A case study on Prosite Patterns,
in Proceedings of IEEE Symposium on Computational
Intelligence and Data Mining (2007), pp. 171–178.

[15] Lin, J., Keogh, E., Li, W., Lonardi, S. Experiencing
SAX: A Novel Symbolic Representation of Time Series.
in Data Mining and Knowledge Discovery Journal
(2007). pp. 107–144.

[16] D. Minnen, C. Isbell, I. Essa, and T. Starner, Detecting
Subdimensional Motifs: An Efficient Algorithm for
Generalized Multivariate Pattern Discovery, Seventh
IEEE International Conference on Data Mining (2007),
pp 601–606.

[17] Yankov, D, Keogh, E., Medina, J., Chiu, B., and Zor-
dan, V., Detecting Motifs Under Uniform Scaling, in
Proceedings of the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(2007), pp. 844–853.

[18] Yankov, D., Keogh, E., Rebbapragada, U., Disk
aware discord discovery: finding unusual time series
in terabyte sized datasets, in Proceedings of the 7th
IEEE International Conference on Data Mining (2007),
pp. 381–390.

[19] Ding, H., Trajcevski, G., Scheuermann, P., Wang, X.,
and Keogh, E. ,Querying and mining of time series
data: experimental comparison of representations and
distance measures, in Proceedings of the VLDB En-
dowment (2008), pp. 1542–1552.

[20] Shieh, J. and Keogh, E. 2008 iSAX: indexing and
mining terabyte sized time series, in Proceedings of
the 14th ACM SIGKDD international Conference
on Knowledge Discovery and Data Mining (2008),
pp. 623–631.

[21] Mueen, A., Keogh, E., Zhu, Q., Cash, S., and West-
over, B., Exact Discovery of Time Series Motifs, in the
Proceedings of SIAM International Conference on Data

Mining (2009), pp. 473–484.
[22] Gama, O., Carvalho, P., Afonso, J., Mendes, P., An im-

proved MAC protocol with a reconfiguration scheme for
wireless e-health systems requiring quality of service, in
First International Conference on Wireless Communi-
cation, Vehicular Technology, Information Theory and
Aerospace & Electronic Systems Technology (2009),
pp. 582–586.

[23] Castro, N., Multiresolution Motif Dis-
covery in Time Series website ,
http://www.di.uminho.pt/˜castro/mrmotif.


