
Mining Association Rules for Label Ranking

Cláudio Sá1, Carlos Soares1,2, Aĺıpio Mário Jorge1,3, Paulo Azevedo5, and
Joaquim Costa4

1 LIAAD-INESC Porto L.A., Rua de Ceuta 118-6, 4050-190, Porto, Portugal
2 Faculdade de Economia, Universidade do Porto

3 DCC - Faculdade de Ciências, Universidade do Porto
4 DM - Faculdade de Ciências, Universidade do Porto

5 CCTC, Departamento de Informática, Universidade do Minho
claudio@liaad,up.pt, csoares@fep.up.pt, amjorge@fc.up.pt, pja@uminho.pt,

jpcosta@fc.up.pt

Abstract. Recently, a number of learning algorithms have been adapted
for label ranking, including instance-based and tree-based methods. In
this paper, we continue this line of work by proposing an adaptation of as-
sociation rules for label ranking based on the APRIORI algorithm. Given
that the original APRIORI algorithm does not aim to obtain predictive
models, two changes were needed for this achievement. The adaptation
essentially consists of using variations of the support and confidence mea-
sures based on ranking similarity functions that are suitable for label
ranking. Additionally we propose a simple greedy method to select the
parameters of the algorithm. We also adapt the method to make a pre-
diction from the possibly conflicting consequents of the rules that apply
to an example. Despite having made our adaptation from a very simple
variant of association rules for classification, partial results clearly show
that the method is making valid predictions. Additionally, they show
that it competes well with state-of-the-art label ranking algorithms.

1 Introduction

Label ranking is an increasingly popular topic in the machine learning litera-
ture [10, 6, 22]. Label ranking studies the problem of learning a mapping from
instances to rankings over a finite number of predefined labels. It can be consid-
ered as a variant of the conventional classification problem, where only a single
label is requested instead of a ranking of all labels [6]. In contrast to a classifi-
cation setting, where the objective is to assign examples to a specific class, in
label ranking we are interested in assigning a complete preference order of the
labels to every example.

There are two main approaches to the problem of label ranking that we may
refer to as decomposition and direct methods. Decomposition methods decom-
pose the problem into several simpler problems (e.g., multiple binary problems).
Direct methods adapt existing algorithms or develop new ones to treat the rank-
ings as target objects without any transformation. An example of the former is
the ranking by pairwise comparisons of [10]. Examples of algorithms that were

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634136?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

adapted to deal with rankings as the target objects include decision trees [20,
6], k -Nearest Neighbor [4, 6] and the linear utility transformation [11, 7]. This
second group of algorithms can be divided into two approaches. The first one
contains methods (e.g., [6]) that are based on statistical distributions of rank-
ings, such as Mallows [14]. The other group of methods are based on measures
of similarity or correlation between rankings (e.g., [20, 2]).

In this paper, we propose an adaptation of the association rule mining al-
gorithm APRIORI for label ranking based on similarity measures. Association
rules mining is a very important and successful task in data mining. Although
the original algorithm was developed for descriptive tasks, several adaptations
have been proposed for predictive problems.

The paper is organized as follows: sections 2 and 3 introduce the label ranking
problem and the task of association rule mining, respectively; section 4 describes
the algorithm proposed here; section 5 presents the experimental setup and dis-
cusses the results; finally, section 6 concludes this paper.

2 Label Ranking

The formalization of the label ranking problem given here follows the one pro-
vided in [6].6 Label ranking can be considered as a variant of the conven-
tional classification task. In classification, given an instance x from the instance
space X, the goal is to predict the label (or class) λ from a pre-defined set
L = {λ1, . . . , λk} to which x belongs. In label ranking the goal is to predict
the ranking of the labels in L that are associated with x. We assume that the
ranking is a total order over L defined on the permutation space Ω. Alterna-
tively, we may say that λa �x λb indicates that λa is preferred to λb given
the instance x. A total order �x can be seen as a permutation π of the set
{1, . . . , k}, such that π(a) is the position of λa in π.7 Let us also denote π as
the result of inverting the order in π. As in classification, we do not assume the
existence of a deterministic X → Ω mapping. Instead, every instance is associ-
ated with a probability distribution over Ω. This means that, for each x ∈ X,
there exists a probability distribution P (·|x) such that, for every π ∈ Ω, P (π|x)
is the probability that π is the ranking associated with x. The goal in label
ranking is to learn the mapping X→ Ω. The training data is a set of instances
T = (Tx, Tπ) = {xi, πi}, i = 1, . . . , n, where xi are the independent variables
describing instance i and πi is the corresponding target ranking.

Given the ranking π̂ predicted by a label ranking model for an instance x,
which is, in fact, associated with the true label ranking π, we need to evaluate
the accuracy of the prediction. For that, we need a loss function on Ω. One such
function is the number of discordant label pairs,

D(π, π̂) = #{(i, j)|π(i) > π(j) ∧ π̂(i) < π̂(j)} (1)

6 An alternative formalization can be found in [21].
7 In this paper, we will use the two notations interchangeably.

which, if normalized into the interval [−1, 1], will give the Kendall’s τ coefficient.
The latter is as a correlation measure where D(π, π) = 1 and D(π, π) = −1. We
obtain a loss function by averaging this function over a set of examples. We will
use it as evaluation measure in this paper, as it has been used in recent studies
[6]. However other distance measures could have been used, like Spearman’s rank
[18] correlation.

3 Association Rules Mining

An association rule (AR) is an implication of the form:

A→ C

where A,C ⊆ X and A
⋂
C = ∅.8 Association rules are typically chacterized by

two measures, support and confidence. The support of rule A→ C in T is sup if
sup% of the cases in it contain A and C. Additionally, it has a confidence conf
in T if conf% of cases in T that contain A also contain C.

The original method for induction of AR is the APRIORI algorithm that
was proposed in 1994 [1]. We describe this algorithm in the following section.
Association rules were originally proposed for descriptive purposes. However,
they have been adapted for predictive tasks such as classification (e.g., [15]).
Given that label ranking is a predictive task, we describe some useful notation
from an adaptation of AR for classification in Section 3.2.

3.1 APRIORI Algorithm

APRIORI identifies all AR that have a support and confidence higher than a
given minimal support threshold (minsup) and a minimal confidence threshold
(minconf), respectively. Thus, the model generated by APRIORI is a set of
AR of the form A → C, where A,C ⊆ X, and sup(A ∪ C) ≥ minsup and
sup(A ∪ C)/sup(A) ≥ minconf .

APRIORI mining process can be divided into three steps: Candidate gen-
eration, Candidate support count and Rule Generation. The first, Candidate
generation, takes advantage of a simple restriction called the downward closure
property which states that an itemset is considered frequent if, and only if, all of
its sub-itemsets are frequent. Hence, it uses one generation of frequent itemsets
(of length k) to build the next generation (of length k+1). This is why the
algorithm was named APRIORI: at each step, it works with from candidates
obtained a priori. The pseudo-code is given in Algorithm 1.

The second, Candidate support count scans the data to determine the support
of the generated itemsets. For simplicity reasons, support is here expressed as

8 To simplify notation, we assume that an itemset, usually referred to in the AR
literature as I, is equivalent to an instance space X in label ranking. Although this
is not exactly true, a simple parallel can be established between the two concepts,
and thus, this does not affect the correctness of the paper.

Algorithm 1 APRIORI Candidate generator - APRIORIGen
Require: Fk
Ck+1 = ∅
for all f1, f2 ∈ Fk do

if f1 = (i1, . . . , ik−1, ik) and f2 = (i1, . . . , ik−1, i
∗) : ∀ik < i∗ then

c = f1 ∪ f2 = (i1, . . . , ik−1, ik, i
∗)

if c− {i} ∈ Fk, ∀i ∈ c then
Ck+1 = Ck+1 ∪ c

end if
end if

end for
return Ck+1

support count, which is simply the number of times an itemset can be found in
the dataset. First, it scans the data to count the 1-itemsets, i ∈ Tx. If one ore
more exceeds minsup then the item becomes a frequent 1-itemset.

In summary, the APRIORI algorithm consists of, at each step k, using the
APRIORIGen step to generate k − candidates, and the support count setp to
prune the set of itemsets with respect to the user defined minsup. The algorithm
is summarized in Algorithm 2.

Algorithm 2 APRIORI
Require: minsup
Ck: Candidate itemset of size k
Fk: Frequent itemset of size k
Tx: Transactions in the database
F1 = {frequent itemsets of lenght 1 in Tx}
for k = 1;Fk 6= ∅; k + + do
Fk+1 = ∅
Ck+1 = APRIORIGen(Fk)
for all t ∈ T do

for all c ∈ Ck+1 do
if c ⊆ t then
sup(c) = sup(c) + 1

end if
end for

end for
Fk+1 = {c : c ∈ Ck+1 ∧ sup(c) ≥ minsup}

end for
return ∪kFk, ∀k

The final part Rule Generation (Algorithm 3), splits every frequent itemset
into all possible combinations of two non-empty sub-itemsets in order to obtain
rules from it. This will result in an antecedent and a consequent of a rule, which

will have its confidence value (conf) compared to the user specified threshold
minconf .

Algorithm 3 Rule generation
Require: minconf and Fk

for all f ∈ Fk; k ≥ 2 do
for all a ⊆ f ; length(a) ≤ k − 1 do
c = f \ {a}
conf(a→ c) = sup(f)

sup(a)

if conf(a→ c) ≥ minconf then
return a→ c

end if
end for

end for

Despite the usefulness and simplicity of APRIORI, it runs a time consuming
candidate generation process and needs space and memory proportional to the
number of possible combinations in the database. Additionally it needs multiple
scans of the database and typically generates a very large number of rules. Be-
cause of this, many new pruning methods were proposed in order to avoid that.
Such as the hashing technique [16], dynamic itemset counting [5], parallel and
distributed mining [17], relational database systems integrated with mining [19]
which reduces the number of database scans.

3.2 Class Association Rules

As stated earlier, AR were originally proposed for descriptive purposes. However,
given that label ranking is a prediction task, we need to adapt their definition
for that purpose. Our adaptation is based on Classification Association Rules
(CAR), proposed as part of the Classification Based on AR (CBA) algorithm
[15].

A class association rule (CAR) is an implication of the form:

A→ λ

where A ⊆ X, and λ ∈ L, which is the class label. The rules can also be rep-
resented as 〈condset, λ〉, where condset = A.9 A rule A → λ holds in T with
confidence conf if conf% of cases in T that contain A are labelled with class λ.
And with support sup in T if sup% of the cases in it contain A and are labelled
with class λ.

CBA takes a tabular data set T = (Tx, Tλ) = {xi, λi}, where xi is a set of
items and λi the corresponding class, and look for all ruleitems of the form
〈condset, λ〉. The algorithm aims to choose a set of high accuracy rules R to

9 We will use the two notations interchangeably.

match Tx. An instance xi ∈ Tx is considered matched by R if at least one rule
(A→ λ) ∈ R, with A ⊆ xi, and λ ∈ L. If the rules can’t classify all examples, a
default class is given to them (e.g., the majority class in the training data).

4 Association Rules for Label Ranking

We define a Label Ranking Association Rule (LRAR) as a straightforward adap-
tation of class association rules (CAR):

A→ π

where A ⊆ X, and π ∈ Ω. The only difference is that the label λ ∈ L is replaced
by the ranking of the labels, π ∈ Ω. Similar to what the predicton made in CBA,
when an exemple matches the rule A→ π, the predicted ranking is π.

4.1 Direct Implementation

A straightforward application of the CBA algorithm to the label ranking method
can be made by considering each unique permutation π ∈ Ω as a class. More
generally, the number of classes will be the number of distinct π ∈ Ω. Under
this assumption we are able to directly use the CBA, or, in fact, any other
classification algorithm, on label ranking data sets.

An example of how the data can be displayed for this problem is given in
Table 1.

Table 1. An example of a label ranking dataset to be processed by a AR-based classi-
fication algorithm. TID represents the identifier of the example (the transaction in AR
terminology)

TID A1 A2 A3 λi
1 L XL S (2,3,1)
2 XXL XS S (2,1,3)
3 L XL XS (1,3,2)

The support count of condset (sup(condset))is the number of cases in Tx
that contain the condset, and for ruleitem (sup(〈condset, π >)) is the number
of cases in T that contain the condset and have the ranking π associated. Thus,
the confidence will be:

conf(〈condset→ π〉) =
sup(〈condset, π〉)
sup(condset)

(2)

A rule A → λ holds in T with confidence conf if conf% of cases in T that
contain A are labelled with class λ. And with support sup in T if sup% of the
cases in it contain A and are labelled with class λ.

Drawbacks This approach has two important problems. First, the number of
classes can be extremely large, up to a maximum of k!, where k is the length
of the set of labels, L. For instance, if the number of labels is 5, the number of
permutations is 5! = 120. This means that the amount of data required to learn
a reasonable mapping X→ Ω is too big.

The second disadvantage is that this approach does not take into account
the differences in nature between label rankings and classes. In classification,
two examples either have the same class or not. In this regard, label ranking is
more similar to regression than to classification. Given an example with a target
value of 5, another example with a target value of 5.1 is more similar to it than
one with a target value of 4 (at least, in terms of the target values).

This property can be used in the induction of prediction models. Again, let us
consider the case of regression. A large number of observations with a given target
value, say 5.3, increases the probability of observing similar values, say 5.4 or 5.2,
but not so much for very different values, say -3.1 or 100.2. A similar reasoning
can be made in label ranking. Let us consider the case of a data set in which
ranking πa = {A,B,C,D,E} occurs in 1% of the examples. Treating rankings
as classes would mean that P (πa) = 0.01. Let us further consider that the
rankings πb = {A,B,C,E,D}, πc = {B,A,C,D,E} and πd = {A,C,B,D,E}
occur in 50% of the examples. Taking into account the stochastic nature of these
rankings [6], P (πa) = 0.01 seems to underestimate the probability of observing
πa. In other words it is expected that the observation of πb, πc and πd increases
the probability of observing πa and vice-versa, because they are similar to each
other.

This affects even rankings which are not observed in the available data. For
example, even though πe = {A,B,D,C,E} is not present in the data set it
would not be entirely unexpected to see it in future data.

4.2 Support and Confidence for Label Ranking

To take this characteristic into account, we can argue that the support of a rank-
ing π increases with the observation of similar rankings and that the variation
is proportional to the similarity. Given a measure of similarity between rankings
s(πa, πb), we can adapt the concept of support of the ruleitem 〈condset, π〉 as
follows:

suplr(〈condset, π〉) =

∑
i:condset⊆xi

s(πi, π)

n
(3)

Essentially, what we are doing is assigning a weight to each target ranking
in the training, πi, data that represents its contribution to the probability that
π may be observed. Some itemsets give full contribution to the support count
(i.e., 1), while others give partial or even a null contribution.

Any function that measures the similarity between two rankings or permu-
tations can be used, such as Kendall’s τ [13] or Spearman’s ρ [18]. The function

used here is of the form:

s(πa, πb) =
{
s′(πa, πb) if s′(πa, πb) ≥ θ

0 otherwise (4)

where s′ is a similarity function. This general form assumes that below a given
threshold, θ, is not useful to discriminate between different similarity values,
as they are so different from πa. This means that, the support sup of the
ruleitem = 〈condseta, πa〉 will have contributions from all the ruleitems of the
form 〈condseta, πb〉, for all πb where s′(πa, πb) > θ). Again, many functions can
be used as s′.

The confidence of a rule condset → π is obtained simply by replacing the
measure of support with the new one.

conflr(〈condset, π〉) =
suplr(〈condset, π〉)
sup(condset)

(5)

Given that the loss function that we aim to minimize is known beforehand, it
makes sense to use it to measure the similarity between rankings. Therefore, we
use Kendall’s τ . In this case, we think that θ = 0 would be a reasonable value,
givent that it separates the negative from the positive contributions. Table 2
shows an example of a label ranking dataset represented following this approach.

Table 2. An example of a label ranking dataset to be processed by the APRIORI-LR
algorithm.

π1 π2 π3

TID A1 A2 A3 (1, 3, 2) (2, 1, 3) (2, 3, 1)

1 L XL S 0.33 0.00 1.00
2 XXL XS S 0.00 1.00 0.00
3 L XL XS 1.00 0.00 0.33

To present a more clear interpretation, the example given in table 1, the
condset (L,XL, S) (TID=1) contributes to the the support count of the itemset
(L,XL, S, π1) with 1. The same example, in the table 2 will also give a small
contribution of 0.33 to the support count of the itemset (L,XL, S, π3), given
their similarity. On the other hand, in both cases, no contribution is given to
the count of the itemset’s (L,XL, S, π2) support, which are clearly different.

4.3 APRIORI-LR Algorithm

Using the definitions of support and confidence proposed, adaptation of APRI-
ORI for label ranking is simple. Given a training set T = (Tx, Tπ) = {xi, πi}, i =
1, . . . , n, frequent itemsets are generated with Algorithm 4 on T . These consist
of both regular itemsets and itemsets with one complete ranking included. Then,

the adapted version of the Rule generator, the Algorithm 5, will be used to make
the rules based on this last group. The first group will be ignored.

For the generation of frequent itemsets it was used the CAREN [3] software.

Algorithm 4 APRIORI-LR - APRIORI for Label Ranking pseudo-code
Require: minsup
Ck: Candidate itemset of size k
Fk: Frequent itemset of size k
T = (Tx, πi): Transactions in the database
F1 = {frequent itemsets of lenght 1 in Tx}
for k = 1;Fk 6= ∅; k + + do
Fk+1 = ∅
Ck+1 = APRIORIGen(Fk)
for all t ∈ T where t = {tx, πx} do

for all c ∈ Ck+1 do
if c ⊆ tx then
sup(c) = sup(c) + 1

else if c ⊆ t then
sup(c) = sup(c) + suplr(c)

end if
end for

end for
Fk+1 = {c : c ∈ Ck+1 ∧ sup(c) ≥ minsup}

end for
return ∪kFk, ∀k

Algorithm 5 Rule generation for APRIORI-LR
Require: minconf and Fk

for all f ∈ Fk; k ≥ 2 do
if anyi ⊆ f : i ∈ Ω then
fx = f \ {π}
conf(fx → π) = sup(fx→π)

sup(fx)

if conf(f → π) ≥ minconf then
return f → π

end if
end if

end for

Let Rlr be the set of all the generated label ranking association rules. The
algorithm aims to create a set of high accuracy rules rlr ∈ Rlr to cover Tx. The
classifier has the following format:

< rlr1 , rlr2 , . . . , rlrn
>

However, if these are insufficient to rank the given examples, a default ranking
will be used. The default ranking can be the average ranking [4].

This approach has two problems. The first is that it can only predict rankings
which were present in the training set. The second problem is that it solves
conflicts between rankings without taking into account the “continuous” nature
of rankings, which was illustrated earlier. The problem of generating a single
permutation from a set of conflicting rankings has been studied in the context
of consensus rankings.

It has been shown in [12] that a ranking obtained by ordering the average
ranks of the labels across all rankings minimizes the euclidean distance to all
those rankings. In other words, it maximizes the similarity according to Spear-
man’s ρ [18]. Given m rankings πi (i = 1, . . . ,m) we aggregate them by comput-
ing for each item j (j = 1, . . . , k)

rj =

m∑
i=1

πi,j

m
(6)

The predicted ranking π̂ is obtained by ranking the itens according to the value
of rj .

We can take advantage of this in the ranker builder in the following way:
the final predicted label ranking is the consensus of all the label rankings in the
consequent of the rules rlr triggered by the test example.

4.4 Matching Maximization

Due to the intrinsic nature of each different dataset, or even of the pre-processing
methods used to prepare the data (e.g., the discretization method), the maximum
minsup/minconf needed to obtain a rule setRlr that matches all or at least most
of the examples, may vary significantly.

Before the experiment tests we use a greedy method to define the minimum
confidence. As stated earlier, a rule set Rlr matches an example if at least one
rule (A → λ) ∈ Rlr, with A ⊆ xi. Then, our goal is to obtain a rule set Rlr
that maximizes the number of examples that are matched. Additionally, we want
that Rlr contains the best rules. In other words, we want the rules with high
confidence values.

The matching maximization method (Algorithm 6) will determine theminconf
that obtains the rule set according to those criteria. Then the 10-fold cross val-
idation will be started taking into account this value. The 5% step is somewhat
arbitrary. From the efficiency point of view, a suitable minconf must be found
as soon as possible. On the other hand, this very same value should be as high
as possible. As a result, 5% seems a reasonable step.

The ideal value for the minsup, is the nearest to 1However, in some datasets,
namely those with a great number of attributes, the frequent itemset generation
can be a heavy time consuming task. In this case, the results wont have the
minsup set to 1%. In this work, one such example is the authorship, wich has 70
attributes.

Algorithm 6 Matching Maximization Algorithm
M = 0
minconf = 100%
minsup = 1
while M < 100% do
minconf = minconf − 5%
Run the algorithms 4 and 5 with minsup and minconf and determine the per-
centage of examples matched, M

end while
return minsup, minconf

This procedure has the important advantage that it does not take into ac-
count the accuracy of the rule sets generated.

5 Experimental Results

Here, we start by describing the datasets used, then we present the experimental
setup and, finally, we present and discuss results.

5.1 Datasets

The data sets in this work were taken from KEBI Data Repository in the Philipps
University of Marburg, which were also used in the experimental work presented
in [6]. Some information is provided in Table 3.

Two types of methods were used to generate these label data sets: (type A)
the target ranking is a permutation of the classes of the original target attribute,
derived from the probabilities generated by a naive Bayes classifier; (type B) the
target ranking is derived for each example from the order of the values of a
set of numerical variables, which are no longer used as independent variables.
Despite it may seem a little arbitrary, the original attributes are correlated so
the remaining independent variables will also contain information about these
artificial created rankings.

Continuous variables were discretized by two distinct methods: (1) recur-
sive minimum entropy partitioning criterion ([9]) with the minimum description
length (MDL) as stopping rule, motivated by [8] and (2) equal width bins.

The first method, in some cases, was not able to find a partition for some
attributes. As we are dealing with AR discovery, these attributes would origin a
sup = 100%. This means that they are present in all frequent item sets. Despite
the fact that it does not affect the accuracy of the algorithm, it would slow
down the process of finding ARs, so they were removed. For the cases were all
attributes were removed due to this reason, the results are not applicable (na).

5.2 Experimental Setup

The evaluation measure is Kendall’s τ and the performance of the method was
estimated using ten-fold cross-validation.

Table 3. Summary of the datasets

Datasets type #examples #labels #attributes

autorship A 841 4 70
bodyfat B 252 7 7

calhousing B 20640 4 4
cpu-small B 8192 5 6
elevators B 16599 9 9

fried B 40769 5 9
glass A 214 6 9

housing B 506 6 6
iris A 150 3 4

pendigits A 10992 10 16
segment A 2310 7 18

stock B 950 5 5
vehicle A 846 4 18
vowel A 528 11 10
wine A 178 3 13

wisconsin B 194 16 16

The performance of APRIORI-LR is compared with a baseline method, the
default ranking explained earlier. Additionally, we compare the performance
of our algorithm with the results obtained with constraint classification (CC),
instance-based label ranking (IBLR) and ranking trees (LRT), that were pre-
sented in [6]. However, we note that we did not run experiments with these
methods and simply compared our results with the published results of the other
methods. Thus, they were probably obtained with different partitions of the data
and can not be compared directly. However, they provide some indication of the
quality of our method, when compared to the state-of-the-art.

5.3 Results

In Tables 4 and 5, the minsup and minconf presented are the values obtained
when the M reached approximately 100% as shown in column M. Some of them
were stopped with a value of M slightly less then that because of the computa-
tional costs in terms of time consumption.

The tables show that the method obtains results that are clearly better than
the ones obtained by the baseline method with both discretization methods. This
means that the APRIORI-LR is identifying valid patterns that can predict label
rankings.

As stated earlier, we compare APRIORI-LR with state-of-the-art methods,
based on results published in [6], just to get a rough idea of the quality of
the proposed method. These results show that APRIORI-LR is a competitive
method. We note that APRIORI-LR is a simple adaptation of APRIORI for label

Table 4. Results obtained with minimum entropy discretization

tau baseline minsup(%) minconf(%) #rules M

authorship .57 .57 50 50 9.0 100%
bodyfat .07 -.04 1 15 3203.3 97%
calhousing .29 .05 1 35 207.9 96%
cpu-small .44 .23 1 35 2643.6 100%
elevators .64 .29 1 60 1779.5 97%
fried .77 -.01 1 35 1910.1 97%
glass .85 .67 1 85 465.1 99%
housing .76 .06 1 60 2502.9 97%
iris .96 .09 1 90 114.4 100%
pendigits na - - - - -
segment .90 .37 1 85 633123.6 100%
stock .89 .09 1 80 1126.6 99%
vehicle .75 .18 1 85 2535.5 100%
vowel .68 .20 1 70 20642.8 99%
wine .84 .33 15 95 5877.0 100%
wisconsin .04 -.03 1 0 1227.0 93%

Table 5. Results obtained with equal width discretization with 3 bins for each attribute

tau baseline minsup(%) minconf(%) #rules M

authorship NA - - - - -
bodyfat .16 -.04 1 25 14971.2 99%
calhousing .14 .05 1 20 829.5 100%
cpu-small .26 .23 1 30 1445.4 100%
elevators .62 .29 1 60 16911.1 100%
fried .72 -.01 3 35 652.7 99%
glass .79 .68 1 75 11374.5 100%
housing .51 .06 1 50 3459.8 97%
iris .88 .09 1 80 67.6 100%
pendigits .69 .45 10 75 16524.3 90%
segment .50 .37 35 75 4265.6 49%
stock .83 .09 2 65 872.1 100%
vehicle .44 .18 26 75 175.7 46%
vowel .72 .19 1 70 137115.5 99%
wine .91 .33 1 95 165263.1 100%
wisconsin .28 -.03 5 20 404773.2 100%

Table 6. Comparison of APRIORI-LR with state-of-the-art methods. APRIORI-LR
results obtained with equal width discretization with 3 bins for each attribute

APRIORI-LR
EW ME CC IBLR LRT

authorship NA 0.57 0.920 0.936 0.882
bodyfat 0.16 0.07 0.281 0.248 0.117
calhousing 0.14 0.29 0.250 0.351 0.324
cpu-small 0.26 0.44 0.475 0.506 0.447
elevators 0.62 0.64 0.768 0.733 0.760
fried 0.72 0.77 0.999 0.935 0.890
glass 0.79 0.85 0.846 0.865 0.883
housing 0.51 0.76 0.660 0.745 0.797
iris 0.88 0.96 0.836 0.966 0.947
pendigits 0.69 NA 0.903 0.944 0.935
segment 0.5 0.90 0.914 0.959 0.949
stock 0.83 0.89 0.737 0.927 0.895
vehicle 0.44 0.75 0.855 0.862 0.827
vowel 0.72 0.68 0.623 0.900 0.794
wine 0.91 0.84 0.933 0.949 0.882
wisconsin 0.28 0.04 0.629 0.506 0.343

ranking. We expect that the results can be significantly improved, for instance,
by implementing more complex pruning methods.

6 Conclusions

In this paper we present a simple adaptation of the APRIORI algorithm for label
ranking. This adaptation essentially consists of 1) enforcing rules to have label
rankings in their consequent, 2) using variations of the support and confidence
measures that are suitable for label ranking and 3) generating the model with
parameters selected by a simple greedy algorithm.

These results clearly show that this is a viable label ranking method. It
clearly outperforms a simple baseline, which means that, despite its simplicity,
it is inducing useful patterns.

Additionally, the results obtained indicate that the choice of the discretiza-
tion method and the number of bins per attribute, play an important role in the
efficiency. The tests indicate that the supervised discretization method, (min-
imum entropy, gives better results than the equal width partitioning. This is,
however, not the main focus of this work.

This work uncovered several possibilities that could be better studied in or-
der to improve the algorithm’s performance. Some of the most important are
improvements to the methods for prediction generation and matching maxi-
mization. Additionally, it is essential to implement some model pruning method.
Improvements can also be achieved by adapting the discretization method, the

choice of the measure of similarity s in conjunction with the parameter θ and
the use of different measures for the improvement of APRIORI-LR.

In terms of real world applications, these can be adapted to rank analysts,
based on their past performance and also radios, based on user’s preferences.

Acknowledgment

This work was partially supported by FCT project Rank! (PTDC/EIA/81178/2006)
and Palco AdI project Palco3.0 financed by QREN and Fundo Europeu de De-
senvolvimento Regional (FEDER). We thank the anonymous referees for useful
comments.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc.
20th Int. Conf. Very Large Data Bases, VLDB. vol. 1215, p. 487499. Citeseer (1994)

2. Aiguzhinov, A., Soares, C., Serra, A.P.: A similarity-based adaptation of naive
bayes for label ranking. In: Discovery Science (2010)

3. Azevedo, P.: CAREN-A java based apriori implementation for classification pur-
poses (2003)

4. Brazdil, P., Soares, C., Costa, J.: Ranking Learning Algorithms: Using IBL and
Meta-Learning on Accuracy and Time Results. Machine Learning 50(3), 251–277
(2003)

5. Brin, S., Motwani, R., Ullman, J.D., Tsur, S.: Dynamic itemset counting and im-
plication rules for market basket data. Proceedings of the 1997 ACM SIGMOD in-
ternational conference on Management of data - SIGMOD ’97 pp. 255–264 (1997),
http://portal.acm.org/citation.cfm?doid=253260.253325

6. Cheng, W., Hühn, J., Hüllermeier, E.: Decision tree and instance-based learning
for label ranking. In: ICML ’09: Proceedings of the 26th Annual International
Conference on Machine Learning. pp. 161–168. ACM, New York, NY, USA (2009)

7. Dekel, O., Manning, C., Singer, Y.: Log-linear models for label ranking. Advances
in Neural Information Processing Systems 16 (2003)

8. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization
of continuous features. In: MACHINE LEARNING-INTERNATIONAL WORK-
SHOP THEN CONFERENCE-. pp. 194–202. MORGAN KAUFMANN PUBLISH-
ERS, INC. (1995), http://robotics.stanford.edu/users/sahami/papers-dir/disc.pdf

9. Fayyad, Irani: Multi-interval discretization of continuous-valued attributes for clas-
sification learning. In: International Conference on Machine Learning. pp. 1022–
1027 (1993), http://www.cs.orst.edu/˜bulatov/papers/fayyad-discretization.pdf

10. Fürnkranz, J., Hüllermeier, E.: Preference learning. KI 19(1), 60– (2005)
11. Har-Peled, S., Roth, D., Zimak, D.: Constraint classification: a new approach to

multiclass classification. In: Proc. of the International Workshop on Algorithmic
Learning Theory (ALT). pp. 135–150. Springer-Verlag (2002)

12. Kemeny, J., Snell, J.: Mathematical Models in the Social Sciences. MIT Press
(1972)

13. Kendall, M., Gibbons, J.: Rank correlation methods (1970)
14. Lebanon, G., Lafferty, J.D.: Conditional Models on the Ranking Poset. In: NIPS.

pp. 415–422 (2002)

15. Liu, B., Hsu, W., Ma, Y.: Integrating classification and association
rule mining. Knowledge Discovery and Data Mining pp. 80–86 (1998),
http://www.aaai.org/Library/KDD/1998/kdd98-012.php

16. Park, J.S., Chen, M.S., Yu, P.S.: An effective hash-based algorithm for min-
ing association rules. ACM SIGMOD Record 24(2), 175–186 (May 1995),
http://portal.acm.org/citation.cfm?doid=568271.223813

17. Park, J., Chen, M., Yu, P.: Efficient parallel data mining for as-
sociation rules. of the fourth international conference on (1995),
http://portal.acm.org/citation.cfm?id=221270.221320

18. Spearman, C.: The proof and measurement of association between two things.
American Journal of Psychology 15, 72–101 (1904)

19. Thomas, S., Sarawagi, S.: Mining generalized association rules and sequential pat-
terns using SQL queries. . Conf. on Knowledge Discovery and Data Mining (1998),
http://www.aaai.org/Papers/KDD/1998/KDD98-062.pdf

20. Todorovski, L., Blockeel, H., Džeroski, S.: Ranking with Predictive Clustering
Trees. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) Proc. of the 13th Euro-
pean Conf. on Machine Learning. pp. 444–455. No. 2430 in LNAI, Springer-Verlag
(2002)

21. Vembu, S., Gärtner, T.: Label ranking algorithms: A sur-
vey. Preference Learning. Springer (2009), http://www-kd.iai.uni-
bonn.de/pubattachments/399/VembuG09Book.pdf

22. Vembu, S., Gärtner, T.: Label Ranking Algorithms: A Survey. In: Johannes
Fürnkranz, E.H. (ed.) Preference Learning. Springer–Verlag (2010)

