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Abstract. In this paper we study the deviation of bus trip duration
and its causes. Deviations are obtained by comparing scheduled times
against actual trip duration and are either delays or early arrivals. We
use distribution rules, a kind of association rules that may have contin-
uous distributions on the consequent. Distribution rules allow the sys-
tematic identification of particular conditions, which we call contexts,
under which the distribution of trip time deviations differs significantly
from the overall deviation distribution. After identifying specific causes
of delay the bus company operational managers can make adjustments
to the timetables increasing punctuality without disrupting the service.
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1 Introduction

In the last two/three decades, passenger transport companies have made impor-
tant investments in information systems, such as Automatic Vehicle Location
(AVL), automatic passenger counting, automated ticketing and payment, multi-
modal traveler information systems, operational planning and control software
and data warehouse technology, among others. As a consequence of this effort in
Advanced Public Transportation Systems, passenger transport companies have
been able to collect massive amounts of data. However, as in other areas of activ-
ity, the data collected are not being used as much as they could be in supporting
public transport companies to accomplish their mission, despite the potential of
both data and existing knowledge.

The planning of public transport companies is a complex task. It has as major
goal: the achievement of the adequate offer of trips using the resources at a
minimal cost. The two main resources are drivers and buses. The uncertainty of
trip duration [14] must be taken into account in the definition of schedules, in
order to obtain an adequate offer of trips at minimal costs. The problem is that
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it is not known how much uncertainty should be assumed because it is difficult
to evaluate the trade-off between the operational costs (due to the amount of
resources used) and client satisfaction. Additionally, the metrics used to measure
client satisfaction vary according to the type of routes. For example, in highly
frequent urban routes with a five minutes headway (where headway is the time
gap between two consecutive vehicles) client satisfaction assessment is based on
the stability of the headway. On low frequent suburban routes (e.g. 60 minutes
headway) a metric based on the deviation from departure time is preferred.

In this paper we present a study on how to take advantage of stored AVL
data in order to promote adjustments to existing timetables. For that we use the
data mining technique of distribution rules [9]. We intend to detect systematic
deviations between the actual and the scheduled trip duration and identify the
causes of such deviations. Such tool can be integrated in a decision support tool
for timetable adjustments [13].

We start by describing distribution rules, the data mining technique that we
use to study trip duration deviation. We then present the datasets used and
their preparation. Next, we provide details and results of the data mining step.
Results are discussed both from a data mining and an operational point of view.

2 Distribution Rules

Distribution rules (DR) [9] are constructs similar to association rules (AR), but
having a distribution of an attribute of interest A on the consequent. Whereas the
antecedent of a DR is similar to the one of an AR, its consequent is a distribution
of A under the conditions stated in the antecedent. In the DR setting, all the
antecedents Ant which correspond to an interesting distribution DA|Ant (read as
“the distribution of A given Ant”) are found. In this case, interesting means that
the distribution of A under Ant is significantly different from the distribution of
A without any constraints (a priori).

Definition 1. A distribution rule (DR) is a rule of the form Ant → A =
DA|Ant, where Ant is a set of items as in a classical association rule, A is a
property of interest (the target attribute), and DA|Ant is an empirical distribu-
tion of A for the cases where Ant is observed. This attribute A can be numerical
or categorical. DA|Ant is a set of pairs Aj/freq(Aj) where Aj is one particular
value of A occurring in the sample and freq(Aj) is the frequency of Aj for the
cases where Ant is observed.

In Figure 1 we can see one distribution rule derived from “Auto MPG”, a data
set with descriptions of cars where the property of interest (P.O.I.) is their fuel
consumption in miles per galon (MPG) [6]. The antecedent is shown above the
chart. The darker curve shows the density of MPG|Ant, the grey curve shows
the density of MPG overall. We can also see some measures characterizing the
rule: KS-interest, a measure of interest of the rule given by 1 − pKS , where
pKS is the p-value of the Kolmogorov Smirnov test; the support (Sup) of the
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Fig. 1. Distribution rule for the “Auto MPG” data set

antecedent; the mean of MPG|Ant and its standard deviation. The represented
densities are estimated using kernel density estimation [8].

Given a dataset, the task of distribution rule discovery consists in finding
all the DR Ant → A = DA|Ant, where Ant has a support above a determined
minimum σmin and DA|Ant is statistically significantly different (w.r.t. a pre-
defined level of significance) from the default distribution DA|∅. The default
distribution is the one obtained with all the values of A for the whole dataset or
a distribution obtained from a holdout data set. To compare the distributions
we use Kolmogorov-Smirnov (KS) [4], a statistical goodness of fit test. The value
of the KS statistic is calculated by maximizing |Fs(x)−F (x)|, where F (x) is the
empirical cumulative distribution function for the whole domain of A and Fs(x)
is the cumulative distribution function for the cases covered by Ant.

3 Trip Time Deviation

The ultimate aim of this work is to improve the quality of urban bus service.
One important aspect is adjusting schedules to operational conditions and vice
versa. For that, we need to know what are the factors, or combination of factors,
that are associated with deviations in trip duration. That can be done using
descriptive data mining techniques [7]. The extracted patterns can then be used
to help operational managers taking measures. In this paper we use the case of
urban line 205 of STCP, the main Oporto bus operator.

Our property of interest is “trip duration deviation”, named Deviation in this
paper. This is defined as the difference, in seconds, between the time the bus
actually takes from departure point to destination and the published scheduled
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duration. Its a priori distribution corresponds to the whole population. Our
operational problem of finding relevant factors of deviation will be translated,
as a data mining problem, into discovering contexts that are associated with
statistically significant changes in the distribution of the variable Deviation.
Below, we formally define the notion of context.

Definition 2. A context is a combination of conditions that can be observed at
a given moment and influences operation. In logical terms, and in this work, a
context is a conjunction of logical literals Cond1 ∧ . . . ∧ Condn.

The descriptive data mining technique of distribution rule discovery presented
in section 2 is able to find relevant contexts, given one property of interest. This
discovery problem is also related to the problem of subgroup discovery [10][11].
What we do is: given a dataset with the description of trips (operational condi-
tions and deviation), we obtain all interesting distribution rules. Each rule covers
a subgroup of trips and associates one particular context with one particular dis-
tribution of the variable Deviation which is sufficiently different from its a priori
distribution. To discover the rules we use the program Caren [1].

4 Data Preparation

From the data collected by the company, we analyse two different periods. The
first period spans from January to September 2007 (dataset1 with 14169 records)
and the second from November 2007 to March 2008 (dataset2 with 9203 records).
The attributes of the datasets are described in Table 1. Each dataset line de-
scribes one bus trip from departure to destination. Along with static descriptors
we have the actual time taken in that journey. From the published schedule
we obtain the scheduled duration. The difference between actual duration and
scheduled duration gives us the deviation.

We start by analyzing trip duration. The two boxplots in Figure 2 show that
we have a very high number of outliers corresponding to extreme durations,
mostly for the first period. However, our experience indicates that most of these
outliers are caused by operational errors. In particular, bus drivers must press
a button at the end of each trip so that arrival time is recorded. However, this
operation may fail for different reasons. As a consequence, the recorded arrival
time will be the next arrival time (or the one after that) which multiplies trip
duration. Simple observation suggests a cut above 6000, for dataset1, and a
cut above 5000 for dataset2. With this data cleaning operation we reduce the
possibility of artificial deviations.

The attribute StartTime, originally in seconds elapsed on that day, has been
discretized to 24 values ({0, 1, . . . , 23}, where the value of k represents the in-
terval between hour k and k+ 1. This hourly discretization aims to capture the
effects of different times of the day on trip time deviation.
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Table 1. Attributes of the datasets, including derived attributes

Attribute Description

Date Date of trip
DepartureS Departure time (in seconds)
Departure Departure time discretized in 24 values (by hour)
Model Vehicle model
Driver Driver number. Zero means driver shift
DayOfYear 1st January is 1, 1st Feb is 32, etc.
WeekDay From Monday to Sunday
DayType Normal days, holidays, etc.
Duration Duration of trip in seconds
SchDeparture Scheduled time of departure
SchArrival Scheduled time of arrival
SchDuration Scheduled trip duration (seconds)
Deviation Duration-SchDuration (seconds)

5 Discovering Interesting Contexts

We now look at the variable Deviation and use distribution rules to see how its
distribution varies with the context. Our aim is to find combinations of condi-
tions (contexts) that are associated with tendencies for positive and negative
deviations, respectively delays and early arrivals.

From dataset1, using a level of significance of 0.05 on the Kolmogorov-Smirnov
test and a minimum support of 2%, we obtained 30 rules. To avoid the genera-
tion of redundant rules we have also used a statistical significance filter. A rule
Antl → Dl is added to the set of discovered rules only if there is no immediately
simpler rule Ants → Ds, such that Ants has exactly one item less than Antl
and the distributions Dl and Ds are not significantly different. This latter test is
performed using the same level of significance used for rule generation. We will
examine some of the rules in more detail. We will use dataset2 to check the find-
ings in dataset1. From dataset2, under the same conditions, we have obtained
25 rules.

5.1 Delays

In Fig. 3 we can see four of the top rules wrt positive deviation from dataset1.
Positive deviation is associated with situations of frequent delays.

An emergent context is departure time between 2 and 3 P.M (Departure=14).
Other contexts involving departure time around and immediately after lunch
time also appear. This is an interesting information which implies that perhaps
more care should be taken on that period, either by changing behavior (in order
to observe defined schedules) or by adjusting schedules to operational conditions.
The second rule shown indicates that a top cause of delay is the combination of
driver’s shifting (Driver=0 indicates change of driver) with the use of a particular
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Fig. 2. Boxplots for trip duration in dataset1 and dataset2, respectively
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Fig. 3. Four top distribution rules for dataset1. The lighter line represents the a priori
distribution of Deviation. The darker line represents the distribution in the context
described by the condition or conditions above the box.

model of articulated vehicles. This draws the attention for the possibility of
inefficiency in the process of transferring one vehicle from one driver to another.
On the other hand, articulated vehicles may have difficulties in complying to the
schedule. This may be caused by difficult manouvres in face of abusive street
parking or narrow streets. The third context shown is Saturdays with another
model of articulated vehicles. The fact that Saturdays are associated with delays
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must also be studied by operational management. We can see that in these three
contexts the distribution of trip duration deviation is clearly shifted to the right,
with means over 300 seconds (5 minutes). Another interesting context for positive
deviation is related to departure time between 8 and 9 A.M. These top rules cover
from 3% to 7.6% of the trips.

The rules obtained from dataset2 confirm the importance of departure time.
Early afternoon hours have a tendency for positive deviations. These are top
rules here too. Driver change is also a cause for delay. The association between
articulated vehicles and positive deviations is not observed. However, there is an
association between the non-articulated model “MAN-3s” and negative devia-
tions. A simple explanation for not having the model “MAN-art” as an inter-
esting context here is that in this case this model represents more than 90% of
the vehicles, whereas in dataset1 it is about 56%. Thus, the context “MAN-art”
does not have a significantly different distribution of the whole set of trips.

5.2 Early Arrivals

From the same set of rules (dataset1) we obtain contexts that are related to
negative deviations, in particular deviation distributions that are to the left of
the a priori distribution (Fig. 4). Negative deviation is associated with early
arrivals. In this case we observe that buses leaving after 7 P.M and before 8 tend
to arrive earlier than in general. Moreover, there is a large majority of cases
when these buses arrive before scheduled time. This is clear by observing the
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Fig. 4. Four top distribution rules with negative deviation for dataset1
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resulting distribution for that context. Buses leaving beween 5 and 7 P.M. also
have this tendency, but not as much. The use of vehicle model “Man-3s” is also
associated with decreased delays. It is interesting to observe this association with
this particular model, which is not articulated.

Another interesting context is related to departure time between 10 and 11
P.M. In this case there is a very good behavior with a high concentration around
scheduled times (not shown in the Figure), i.e., practically no deviation is ob-
served. This concentration effect is not surprising for this time of the day. The
same behavior would also be expected for Sundays and holidays. Instead, how-
ever, Sundays appear as a day of many early arrivals, which can be very incon-
venient for passengers. Similarly to Sundays, holidays have a large tendency for
early arrivals. In fact, we can observe that early arrivals are also a tendency for
departure between 8 and 9 P.M. but not for departures after 9 P.M.

With the rules obtained from dataset2 we confirm that early arrivals are
associated with the early evening period (starting at 5 P.M. but mostly between
7 and 9 P.M.). As we have said above we can associate a non-articulated model
with a lower tendency to delay. Regarding days of week and type of day, we also
have Sunday as an interesting context.

6 Discussion

The use of distribution rules shows some advantages with respect to simple
regression. With DRs we are able to find interesting contexts, or subgroups of
trips, and look at the distribution of values instead of only having one or two pa-
rameters (typically mean and standard deviation). The discovery strategy based
on the Kolmogorov-Smirnov test does actually look for interesting distributions.
These may be shifted to the right, indicating a delay tendency, shifted to the left,
indicating an early arrival tendency. By visually observing the discovered inter-
esting distributions, we find particular situations of interest, as it was the case
of Sundays and departures after 10 P.M. Moreover, we can distinguish between
these two contexts which would, at a first sight, be similar. This exploratory
visual inspection of relevant contexts provides the operational manager with
hints for service improvement. The information thus obtained can be used to
ameliorate the schedules. Next, we discuss some situations based on the results
presented in Fig. 3 and 4.

In low frequency routes the planning should encourage timely departure times.
For this type of routes, slack times (the time gap between the end of one trip
and the beginning of the next for the same vehicle) should be used in order
to accommodate trip time variation. The amount of variance assumed by the
schedule should be a given percentage of the sample trip time distribution given
by DR. It defines the trade-off between operational costs and client satisfaction.
This choice is done by the planner. We use the right bottom plot of Fig. 4 to
exemplify. The headway of this route on Sundays goes from 20 to 30 minutes
(low frequency). We observe that a meaningful percentage of the trips have
deviations lower than 0. This means that there is a high probability that the
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bus will pass, at least in the last stops of the route, before the scheduled passing
time. Considering the low frequency of this route on Sundays, this may imply
that some clients lose the bus causing dissatisfaction. It would be advisable to
reduce the scheduled trip time in this case or to communicate with drivers.

Situations like the one presented in the right bottom plot of Fig. 3 should be
analyzed according to the slack time used. That is, if the slack time does not
cover the majority of cases where the trip exceeded the scheduled trip duration,
the slack time should be increased. On the other hand, if the planned slack time
covers all the cases, it could be reduced in order to avoid waste of resources.
Alternatively, bus driver scheduling could be optimized by including shifts at
the end of trips that are expected to have higher slacks, in order to maximize
driving time. The amount of delays covered by the slack time is, once more,
something that must be defined by the planner.

There are other situations that should also be taken into account, such as
the identification of problems with a particular vehicle model that should be
considered during vehicle rostering; or measures to reduce delays due to the
occurrence of driver’s shifting during the trip.

6.1 Using DR to Determine Slack Time

The obtained distribution rules can be used to adjust slack times (ST ) in order
to optimize resources. Given a context Con we find the rule Ant → D whose
conditions best apply to it. Then, we can determine the minimal duration tmin

of ST that fails to cover at most a given percentage puncov of the trips. In this
case, covering means that the slack time is sufficient to avoid delay. The value of
tmin is the solution of the equation below, where fdCtxt is the density function
given by the DR which applies to the context Ctxt.

t such as puncov =

∫ t

−∞
fdCtxtdx (1)

If the value of tmin is negative then there is space to reduce trip time for the
particular context considered. The rule that applies to a context is the one with
the largest antecedent made true by the context. Ties are resolved by preferring
rules with higher support.

6.2 Related Work

This paper discusses a tool that can be used to: (1) detect deviations between
actual and scheduled trip duration and its causes; (2) support the definition of
scheduled trip durations, slack times or frequencies.

As far as we know, the only existing study that addresses the first objective
[5] uses classification based on association [12]. The authors discretize deviation
into four classes. All discovered association rules have discretized deviation as
consequent. This approach does not give useful information in order to address
the second objective, as DR do (as described in Sect. 5).
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Other works address only the second objective [3,15]. Using an economic per-
spective, [3] defines as objective function, the cost expressed in terms of scheduled
trip durations, lateness and earliness unit costs. Using this approach it is possi-
ble to define the optimal scheduled trip durations and slack times (time between
trips) for given ratios between the unit cost of scheduled trip durations and both
the lateness and earliness unit costs. Another contribution of this work is the in-
clusion in the model of the effect of relaxation when the slack time is larger. I.e.,
it is known that when the schedule is tight, the actual trip duration is shorter
than when it is large. Carey calls it the behavioral response. What Carey shows
is that the timetable definition should be neither too tight, to avoid delays in
departures, nor too large, to avoid behavioral inefficiency.

Under certain conditions, slack times can be optimized [15]. Using this ap-
proach, the shorter the slack time is, the shorter the scheduled headway is. The
function to optimize defines the passengers’ expected waiting time in terms of
the scheduled headway and the variance of the delay. By using the function de-
fined in [2] for the passengers’ arrival at the bus stops, it is possible to adapt the
solution to problems with large headways. These are analytic simplified general
models. We can use distribution rules to model and estimate waiting time based
on collected data. Moreover, this estimation can be done with respect to well
defined emerging contexts instead of all the trips.

Our approach differs from these two [3,15] by leaving to the planner the de-
cision on how to deal with the trade-off between operational costs and clients’
satisfaction. Moreover, it is not made any assumption about the distribution
of the data. The only assumption is about the sample. It is assumed that the
sample is representative of the population.

7 Conclusion and Future Work

In this paper we have exploited distribution rule discovery to study deviations in
bus trip duration. We have used real data collected from an urban bus company.
Distribution rules allowed us to discover operational contexts that are, with high
significance, statistically associated with relevant deviations in trip duration.
Discovered rules can also be used to support the adjustment of timetables and
schedules (e.g. redefining slack times).

Our next steps are to integrate these findings with bus operation in an ongoing
collaboration with the bus company. Some of the discovered relevant contexts
are already known by operational managers. Some others may yield suggestions
that are not practical, due to the complexity of the processes. Some may even go
against legally established principles. However, this work has shown that sched-
ules must be brought closer to operational conditions. Moreover we can identify
paths for addressing the problem of trip duration deviation. In particular, we
will incorporate this tool in a decision support system for timetable adjustments
[13]. The application of this approach to the tens of lines of the bus company
can have a great impact in the reduction of inefficiency and the increase of client
satisfaction.
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