
Compositional gossip: a conceptual architecture for
designing gossip-based applications

Étienne Rivière Roberto Baldoni Harry Li José Pereira
IRISA / Rennes 1 Univ. Roma Univ. "La Sapienza" Univ. of Texas at Austin Univ. of Minho

France Italy USA Portugal
eriviere@irisa.fr baldoni@dis.uniroma1.it harry@cs.utexas.edu jop@di.uminho.pt

ABSTRACT
Most proposed gossip-based systems use an ad-hoc design.
We observe a low degree of reutilization among this propos-
als. We present how this limits both the systematic devel-
opment of gossip-based applications and the number of ap-
plications that can benefit from gossip-based construction.
We posit that these reinvent-the-wheel approaches poses a
significant barrier to the spread and usability of gossip pro-
tocols.

This paper advocates a conceptual design framework based
upon aggregating basic and predefined building blocks (B2).
We show how to compose building blocks within our frame-
work to construct more complex blocks to be used in gossip-
based applications. The concept is further depicted with
two gossip-based applications described using our building
blocks.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures;
D.2.13 [Software Engineering]: Reusable Software

General Terms
Design, Algorithms, Standardization

Keywords
Gossip-based computing, Distributed Applications, Design
framework

1. INTRODUCTION
The impact of global-scale applications such as file sharing
(with BitTorrent, Overnet, . . .) or the service platform un-
derlying broadly used shopping sites such as Amazon, have
led to a surge in research in large scale distributed and de-
centralized applications. Such applications demand a com-
bination of fault-tolerance, decentralized control, and adapt-
ability in dynamic settings that challenges established dis-
tributed programming frameworks. Most strikingly, some-

thing as basic as knowing the list of participant nodes is
unachievable in this setting, thereby rendering many exist-
ing techniques obsolete.

In this context, gossip-based protocols have garnered in-
creasing attention. Gossip protocols, sometimes referred as
epidemic or probabilistic protocols, are deceptively simple.
They are simple in that each process takes actions based
upon partial local information that is repeatedly exchanged
with a small set of peers. And they are deceptive in that
those local steps lead to desirable global behavior such as
eventually consistent states despite process and link failures.

Starting from the early proposal from Demers et al. for
databases maintenance [10], many distributed systems re-
searchers and devolopers recognized the advantages that
gossip protocols offer to large-scale systems. As a result,
further instances of successful gossip-based solutions exist
in multiple key application areas, among which we can cite
multicast [31], membership management [1, 36], overlay con-
struction [35, 13], eventual consistency [4] or publish and
subscribe systems [3, 34]. Despite some work identifying
several abstractions that promote separation of concerns
for gossip protocols and application design, and therefore
make a step towards the reuse of code among multiple pro-
tocols [32, 20, 2, 17], there is no systematic approach to
decompose applications into abstract entities capturing ba-
sic gossip-based operations.

This paper moves in that direction by presenting a concep-
tual framework whose aim is to highlight the gossip-based
building blocks (B2) of a distributed software architecture 1.
Such a conceptual framework would allow us to map novel
applications to existing solutions. This will turn out in a
major advantage for practitioners designing gossip based ap-
plications by reusing gossip based B2s. In addition, it would
help researchers to focus on well defined, self-contained prob-
lems, and better compare their competing proposals.

Section 2 presents a brief overview of gossip and its pros
& cons. Section 3 proposes the generic abstract pattern of
a gossip component. Section 4 focuses on identifying gos-
sip B2s. Finally, in Section 5, we apply the framework to
decompose two different publish/subscribe applications [3,

1It is important to note that such applications are intrin-
secally peer-to-peer, and we will not distinguish between
computing entities based on roles, although the proposed
implementation can obviously take into account node het-
erogenety in their design rationales.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634127?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

34], conveying the ability of our model to describe complex
composed systems.

2. GOSSIP-BASED PROTOCOLS
In a typical gossip protocol, each node maintains a (partial)
view of the nodes participating in the protocol. Periodically,
each node exchanges messages with a randomly selected peer
from its view. In some gossip protocols, the initiating node
pushes information to its peer. In others, the initiating node
pulls information from the peer.

This simple communication pattern provides a robust way
to disseminate information in large-scale distributed sys-
tems. Demers et al. [10] pioneered gossip in distributed sys-
tems by using an epidemic approach to maintain consistency
across databases on Xerox’s Clearinghouse servers. Birman
et al. [5] later used gossip to build a probabilistically reliable
multicast primitive. More recently, some have even lever-
aged gossip to create the structure of logical networks and
overlays. This task is made easier by basic gossip-based pro-
tocols that maintain up-to-date membership information.

When Gossiping is Good (or Bad). In this paragraph, we
briefly state what is our vision of gossip and what are the
—current— best uses it has, from the application designer
point of view. We invit the reader not to take it as a fixed
consensus, but rather as a position based on the current
state of the art, a position that is prone to evolve with new
advances in research.

Using gossip to solve distributed systems problems usually
trades off safety guarantees for liveness and/or performance.
We therefore should be careful both that probabilistic guar-
antees are adequate for an application’s requirements and
that the target environment satisfies the probabilistic as-
sumptions.

Gossip is appropriate in non time-crictical systems, where
the following properties are required or desired for the appli-
cation: adaptivity and self-organization, scalability, robust-
ness and simplicity of design & implementation. Most dis-
tributed applications on the Internet present these require-
ments. Notably, content distribution networks and their
affiliated mechanisms are candidates to a gossip-based im-
plementation ; as are communication systems, at the mid-
dleware layer (event notification mechanisms, resource dis-
covery). Other potential application we envision as primary
target for a gossip-based implementation include monitoring
and fault detection algorithms, and communication plat-
forms and tools (such as RSS feeds update dissemination,
discovery and maintenance of syndications systems, public
keys dissemination, and more). On should note that gossip
proves also useful in applications with limited scalability.
Specifically, gossip has been used in detecting failures for
implementing view synchronous group communication[30],
garbage collection[14], and even for consensus[28]. The key
advantage in these proposals is reducing the number of mes-
sages each process sends and receives from quadratic (all-to-
all) to linear (gossip).

Gossip is inappropriate when a failure to meet a guarantee
can lead to catastraphic failure. As a rule of thumb, prob-
abilistic safety guarantees are adequate when the output of

the gossip protocol has a limited timespan and consequences.
In contrast, the well-known use of group membership for se-
lecting a primary for passive replication is not compatible
with probabilistic safety guarantees, as even a transient fail-
ure to identify a unique primary could lead to irreversible
inconsistency. Even when gossip seems to be a good fit for
a problem, there is an additional danger. Analytical models
and simulations of gossip protocols make a number of as-
sumptions that are a poor fit with real world scenarios, es-
pecially in wide area networks. In particular, assuming that
links and processes fail independently is at odds with real In-
ternet topologies. Furthermore, assuming that all processes
fail benignly in a system composed of thousands of machines
leaves an obvious security hole in many gossip protocols.
Challenging traditional assumptions in gossip protocols and
designing secure solutions is an active research area.

3. GENERIC BUILDING BLOCKS (B2S)
In a gossip-based protocol, each node possesses a small lo-
cal view of the network state: other nodes, shared data or
values, A gossip-based protocol relies on local views
at each node being eventually consistent, according to some
desired property. A protocol’s objectives are to: (i) have
local views converge towards this properties asap and (ii)
to cope with dynamicity be having these views as coherent
i.r.t. the whole system as possible, at any time. These two
properties are important also if this protocol is the basis for
another protocol functionnalities.

We can define the use and construction of such views as the
network component sampling service. This service provides
access to a set of samples from the global network; samples
can be the set of latest data items sent in the network (thus
providing a notification service); if it is a uniformly random
sample of nodes, the service is a peer sampling service. The
peer sampling service is a sound basis to provide more com-
plex protocols [2, 34]. We present this service as one of the
blocks in section 4.1.

Gossip-based protocols present common general function-
nalities: (i) selecting peers with which to exchange infor-
mation, (ii) determining which set of information to share
between nodes and (iii) updating the new local view.

We observe two key sets here. First, we will denote SEL
(select) the set of nodes (IP adresses) from which a peer to
gossip with may be chosen. Second, we will denote EXC
(exchange) as the set of information (network component
samples, that is, nodes, data, etc. ; depending on the pro-
tocol) that is used as the local view and that is exchanged
between peers.

We will in the following consider these two sets as the main
inputs the application designer has to link to any gossip-
based protocol provided as an application B2. A gossip-
based protocol has the goal to provide a local view to the
node that rely on some global desired property. This view
is the output OUT of the block, and if it contains nodes it
can be used as a entry for the SEL and EXC sets of another
block. This provides the possibility to pile up gossip-based
protocols to provide more complex protocols and properties
to the application. Figure 1 depicts the generic principle
of a B2 in our framework, with its input and output. Note

Local viewLocal view,
SEL

EXC
Local view Gossip−based protocol

Options and parameters
from the application or other block

OUT

Generic Building Block

including nodes

Figure 1: A generic B2.

that only the SEL block itself is mandatory for any block,
the presence and need for other depends on the protocol be-
ing implemented. We present in the following section some
fundamental blocks and examples of blocks composition.

4. BASIC B2S
We present basic B2 of existing protocols that are promising
foundations of more complex gossip-based applications. We
later show how to integrate these conceptual blocks to create
more complex services.

4.1 Fundamental services

Peer sampling service. The peer sampling service [17] is
responsible for keeping the network consistent. It provides
each node running the service with a random sample of par-
ticipating nodes. It is also in charge of discovering nodes
that have joined and nodes that have left, eventually inte-
grating such information into local views. A goal of such a
service is to provide a set OUT of nodes samples that shares
properties with random graphs [32, 6]. Each node should
have the same probability of being in another node’s view
as any other node. With high probability, random graphs
remain connected. It has been shown that without a peer
sampling service, most upper level protocols never converge
to the desired state, as some nodes may never be discovered
and present in some other node view. Set OUT eventually
contains only alive nodes drawn at random, and no failed
nodes. A newly joined node needs to appear in some other
nodes’ OUT sets rapidly.

Figure 2 presents the peer sampling B2. This service re-
quires only the node adress as an input, and uses a loopback
approach from OUT to SEL to select random nodes to gos-
sip with. The implementations of the peer sampling service
are out of scope of this paper, and we refer the interested
reader to [17, 32]. One of the approaches is to shuffle the
sets of peers for the two new OUT sets of nodes communi-
cating during a gossipp phase, and has shown to be efficient
yet very simple.

Broadcast. Broadcasting was the first problem for which
gossip-based solution were analyzed by researchers. The
seminal paper by Demers et al. [10] presents a gossip-based
protocol to disseminate database consistency information,
and show the inherent potential of such an approach. The
broadcasting service selects nodes to gossip with in a node
sample view and exchange its set of data item with it. The
exchange is either uni-directionnal or bi-directionnal (push

Peer samples

Current node
OUT

Peer Sampling Service

Size of the view, cycle period

EXC

SEL

Figure 2: The peer sampling service B2.

*: Eventually contains all data sent to the network represented by the peer sample view

Broadcast

update mode (push, pull, both)

SEL

EXC

Set of data items*

OUT

Peer samples

New data

Figure 3: A broadcasting service B2.

or pull approach, versus push-pull approach). Eventually,
all nodes get new data items in O(log N) steps of retrans-
mission, provided the underlying node sample is uniformly
drawn from the set of nodes to which the data should be
disseminated 2. The reliability of broadcast protocols based
upon gossip-based dissemination follows a bimodal distribu-
tion [5, 7, 31, 15, 12, 11]. Broadcast protocols have been
proposed in different settings, such as replication mainte-
nance [10], ad-hoc networks [16] and eventual consistency
[4].

Figure 3 represents the broadcast service. SEL is a set of
peer samples from the set of nodes to which data has to be
disseminated, and EXC the data to disseminate (including
new data from the node). The actual implementation of
the broadcast protocol is left to the programmer, and a li-
brary of blocks with diverse behaviors and possibilities will
be available to tackle all potential needs for gossip-based
dissemination.

4.2 Group composition
The following protocols share the common following goal.
Their output (OUT set) is similar to the output of the Peer
Sampling service, in that they present a set of nodes as a
view for the application or other B2s. However, these nodes
are selected only among the nodes that satisfy some prop-
erties, or predicates. We distinguish between membership
management, where groups of nodes are formed based on
their advertised memberships, network slicing where a set of
nodes is constructed based on the size of the set relatively
to the whole network size (or sub-network, as group com-
position blocks can be piled up), node provisioning where
a set of nodes of a desired size emerges and finally inter-
est proximity-based composition where nodes with similar
(expressed) semantics are grouped together.

2That is the reason why using the peer sampling service
makes sense here.

peer samples

OUT

Group Composition Block

Selection function, node semantics

SEL

EXCpeer samples

Figure 4: Generic group composition B2.

Figure 4 presents the general framework for group compo-
sition protocol B2s. This generic figure can be instantiated
either by the application designer, or using one of the specific
instantiation we present in the following. It is necessary to
express either the node semantics (that can be as simple as
a number or as complex as IR information about text docu-
ments the node holds), and a selection function. The selec-
tion function tells, given two sets of nodes (the current set
of nodes and the one received from a gossip partner) which
subset is to be kept as the new local view of the network,
exported to the application or other B2s. In the following,
we present some instanciations of group composition B2s.

Membership management. The first group composition
protocol is membership management. The node semantic
is simply a set of membership expressed by the node (com-
munities, interest in update about a data item, . . .). The
selection function then keeps nodes that belong to the same
memberships according to the node expressed membership.
The utility of the peer sampling service as an input is ob-
vious: without the peer sampling service, a member group
would be on its own, without any link to the rest of the net-
work (which is desirable) but it would be the responsibility
of newly joined nodes to find one of the member, which is
not desirable. The peer discovery feature of the peer sam-
pling service is here a sound basis, as it is for all the following
group composition protocols.

Network slicing. Network slicing [18] is the operation by
which group of nodes of relative size are formed. For exam-
ple, an application may want to split its activities in three
main activities, and devote a third of the network to each of
this activities. First, one needs to use a broadcast protocol
to disseminate to the group of nodes to split the information
that this set has to be split in k parts.

The protocol does not need any node semantics information,
as the separation is independent of the node status or data.
The case where information about the node results in this
node belonging to one or the other of the sets is dealt by
node provisioning protocols.

Each node’s protocol draws a random number between 0
and 1, and the goal is basically to have every node select
peers from the fraction of this space [0 : 1] split in k parts
they do belong to. Eventually, on each node, the sample of
nodes OUT belong to the fraction where the node belongs
to. Changing k is possible by simply broadcasting a control

message to all nodes onto the split network.

Node provisioning. Node provisioning is quite similar to
network slicing, in that the number of nodes one can ask is
a function of the size of the network to be split. However,
this also permits to express criterias on the node semantics
itself. For instance, if the node semantics represent mean
uptime, one can ask the network to be split in two parts:
the 10% of nodes with highest uptime (that are more likely
to be stablen in the future) and on the other part the 90%
other. Obviously, since there exists churn and changes in
node semantics, this partition is not as stable as with net-
work slicing. The ability of gossip-based protocols to grace-
fully deal with dynamicity of the network composition is a
key point to support node provisioning in an efficient and
elegant way.

Interest proximity. Interest proximity is the more generic
group composition method. It does not necessarily clus-
ter the network in separate groups, but rather constructs a
graph of peers. The peers constructed for a node are ex-
ported to other blocks or to the application in the OUT
set. These peers are those who present a proximity with
the node, potentially expressed as a function over an evolv-
ing node semantic. The semantics of the node can be of
any kind, and since it is used only by the selection function,
genericity mechanisms permits to use the interest proximity
block without any modifications. Potential instanciations of
this blocks are:

• If the semantic of a node corresponds to a network
coordinate [9, 24], and the selection function selects
nodes at smallest distance, one can build a dissemi-
nation network that is more efficient with respect to
network stress than broadcasting on top of a generic,
peer sampling based network would be.

• If the semantic of a node corresponds to its set of
shared data items, the selection function will select
nodes with shared interest, therefore building an un-
structured overlay driven by the application semantics.
In peer-to-peer file sharing systems, it has been proven
that flooding requests on top of such a semantic net-
work gives more results in fewer hops [33, 23].

• One can also use networking information from the ap-
plication itself or across applications. For instance,
node semantics can be the actual user’s instant mes-
saging contacts list, and one can decide on a selection
function that maximizes the size of the intersection
of two peers’ lists (exchanged semantics), and uses it
to improve search or distributed trust & reputation
mechanisms. It has been shown that using the social
network as presented by the application leads to bet-
ter efficiency and recall for search mechanisms [36] or a
better substrate for efficient broadcast [27]. The main
reason is that such social networks present small-world
characteristics [37].

More interest proximity based B2s can be defined, one of
such is characterized in Section 5, as part of the second B2

OUT

Global information
Distributed Computation Block

Local information, Aggregation function

SEL
peer samples

EXC

Figure 5: Generic distributed computation B2.

of the Sub2Sub system instanciation.

4.3 Distributed computation
Another interesting family of gossip-based protocols are de-
voted to the computation of global properties, made avail-
able locally to all nodes, based on the exchange of nodes’
local or observed properties. These properties can concern
node load, availability, or application-specific information.
Sensor networks are a perfect target application for this kind
of protocols, as they often aim at computing global or di-
gest information based on local sensor results. We present in
a first paragraph aggregation related protocols, and in the
second various examples of other distributed computation
B2s.

Figure 5 presents the generic block used to derive distributed
computation blocks. It uses some local information as an ad-
ditional input, and an aggregation function which is used to
decide a global information based on local informations ex-
changed within peers. As usual, SEL requires a set of peers
from a peer sample interface, and OUT and EXC depend
on the computation being performed.

Aggregation. Aggregation permits to calculate digest val-
ues (such as mean, average, maximum or minimum) of global
properties represented as scalar types. For example, the
reader can think of a group composition B2 that aggregate
sensor nodes, based on theirs geographical proximity. By
using an aggregation B2 over this group composition B2,
the network is able to straightforwardly calculate digest val-
ues for a given area, or for a given radius around a spe-
cific point (which can be the base mechanisms for trigger-
ing a specific action, if one of the digest values reaches a
threshold). Gossip-based protocols to provide scalable and
resilient aggregation exists [19, 21]. They will benefit from
being released as B2s for application designer.

Other examples. Other distributed computation protocols
can be derived, either based on a modification of aggregation
protocols, or based on schemes from different disciplines [8].
Our example problem is the counting of peers. In most un-
structured networks, the number of peers is unknown and
dynamic, but this number could however be useful for many
reasons, such as tuning the protocol behavior (adaptive rout-
ing, guard delays adjustments, . . .). However, computing
the size of a large scale system is far from being trivial, and
even if dedicated algorithmic solutions were proposed [25,
22], peer counting can be implemented using aggregation
protocols. The idea is simple: each peer local data is a

unit, and using the aggregation to compute the sum of all
local data straightforwardly gives each peer a estimate of
the whole network size [19].

4.4 From randomness to structured overlays
The last example of basic B2 family we present is devoted to
the addition of structure to a initially unstructured network,
such as the networks represented by peer sampling interface
(either from the peer sampling service at the network level,
or from any group composition block). Basically, a struc-
tured overlay imposes neighborhood of a node based on this
node description, name or key (e.g. a hash of its name). It
takes as input a set of nodes belonging to the sub-network
for which the structured overlay needs to be built, and pro-
duces as an output a routing service with more guarantees
or functionnalities than what constrained flooding on an un-
structured overlay provides. This service is most of the time,
for basic protocols, a Key-Based Routing service. This pro-
vides, for any key (designing either an object, or a node)
the ability to reach that key holder or reprensentative in a
limited number of redirections and in a deterministic (and
often greedy) fashion.

Using a gossip-based approach to build structured overlay is
relevant as it permits to alleviate the need for dealing with
dynamicity, node joins and leaves expressively [20]. Instead,
the inherent self-organizing capabilities of gossip-based over-
lay construction protocols permits to express the required
neighborhood at each peer in a deterministic manner and let
the underlying peer sampling mechanism and group compo-
sition protocols deal with the dynamicity, peer deletion &
addition or transient routing failures.

Figure 6 presents a generic instance of such a structuration
B2. It takes as an input a set of peers from the composed
group among which it will bootstrap a structured overlay.
Most protocols of this kind require the node (or an object)
being identified by an identifier (either a key, a name, or
a more complex representation). One can create a new in-
stance of a structuration protocol by providing the generic
instance with functions [35] to: (i) select the peer in SEL for
local state exchange ; (ii) select the set of information EXC
that is exchanged between gossip partners and finally (iii)
select the new local state based on current local state and
obtained information. The output OUT is depending on
the overlay created: it will most probably be an API with
functions for routing (unicast), queries mechanisms, com-
munication systems, etc. It can also output the set of peers
at each node as a peer sample service to other blocks.

We present two examples of such overlay bootstrapping blocks.
The first one constructs a Distributed Hash Table (DHT)
by linking nodes in a ring. The second constructs a struc-
ture that eventually resembles a set of skip-lists, by linking
application objects and permiting range queries over their
description attribute.

Bootstrapping a DHT. The first example is the bootstrap-
ping of the Chord DHT [29], presented by Montresor et al.
in [26]. Using a proximity-oriented gossip-based overlay con-
struction protocol and the appropriate proximity measure,
they are able to bootstrap the Chord DHT in a logarithmic
number of cycles, even if the network is a random network

OUT

Peer Samples

SEL
peer samples

EXC

Routing API

Node id

Network Structuration Block

Figure 6: Generic network structuration B2.

(ie. built by a peer sampling service) at the beginning. The
idea is to assign nodes of interests (neighbors in the Chord
structure) with the maximum utility and nodes with less
interest a small utility. The local view evolve towards the
set of peers that cover 1

2k nodes (finger nodes), these nodes
having the highest proximity. The protocol is inherently
resilient to churn, the deletion and arrival of peers being
manages at the underlying peer sampling service block.

Bootstrapping a set of Skip-Lists. The second example is
the GosSkip overlay [13]. GosSkip links element that can be
application objects or physical nodes, in a structure that,
while initially chaotic, eventually resembles a set of redun-
dant Skip Lists. GosSkip is constructed by keeping nodes
that are 1, 2, . . . , 2k hops away, at each node. The struc-
ture is similar to the structure of Chord, exept that it can
link application objects and do not rely on a fixed size nam-
ing space or hashing mechanisms. When linking application
objects, GosSkip has the ability of providing range queries
mechanisms, which is something Chord can’t do.

5. EXAMPLES OF APPLICATIONS
In this Section we present some examples of how our pro-
posed framework and B2s will be used in practice. We
present a simple group composition and redesign (in part)
two software architectures, using the B2s introduced in the
previous sections.

5.1 Multicast systems
A Multicast system goal is to disseminate data among a de-
fined set of peers. Most protocols follow an ad-hoc mecha-
nism to build the group while disseminating the information.
This is both expensive and complex to adapt in different set-
tings.

Within our framework, one can implement multicast as a
composed B2, including a group composition B2 that per-
mits to group peers to which the message has to be send
together, and a broadcast B2, that will disseminate a data
element over the peers in the aforementioned group. It is
important to note that the choice of each B2 is indepen-
dant and provides a great flexibility. For instance, simple
multicast based on group membership can be implemented
using one of the many B2 for broadcasting, and a dissem-
ination system that aims at sending data to a fraction of
nodes based on their proximity of affinities will use a in-
terest proximity group composition B2, and a constrained
flooding broadcasting B2.

5.2 Publish/subscribe systems

Peer sampling
Group

Composition
block

Lo
ca

ln
od

e
id

size of the view, cycle period

Broadcasting

lo
ca

l
su

bs
cr

ip
tio

ns

Broadcasting

publish(e,i)

Broadcasting

notify(e,i)

Notify(e,k)

Group
Composition

block

Group
Composition

block

Membership mngt, global overlay

Interest proximity, Topic i overlay

Interest proximity, Topic k overlay

push

push

push
publish(e,k)

subscribe(t) unsubscribe(t) notify(e,t)publish(e,t)

Topic-Based Publish/Subscribe Software Logic

Figure 8: Architecture of TERA a topic based pub-
lish subscribe system [3].

Publish/subscribe is a distributed communication paradigm,
where participants to the system can act both as produc-
ers (publishers) and consumers (subscribers) of information.
Publishers inject information in the system in the form of
events, while subscribers declare their interest in receiving
some of the published events, by issuing subscriptions. Once
an event is published, for each subscription whose conditions
are satisfied by the event, the corresponding subscriber must
be notified.

In the following we re-design through the conceptual archi-
tecture the scalable topic based publish/subscribe architec-
ture, TERA, proposed in [3] and the content-based pub-
lish/subscribe system, Sub-2-Sub [34].

First example : TERA [3]. TERA is a topic-based pub-
lish/subscribe system that achieves scalable event diffusion
by implementing traffic confinement, that is, events have a
high probability to reach only interested subscribers. To this
aim, subscribers with common interests (e.g. subscribers to
the same topic) are clustered together, using a membership
group composition B2. In this way, once the event belong-
ing to a certain topic reaches one member of the cluster
of that topic, its diffusion can be limited to that cluster.
The authors used gossiping for keeping connected both a
global overlay including all the nodes (using a peer sampling
B2) and a specific overlay for each single topic clustering all
nodes that subscribed for that topic (using a membership
group composition B2. A simplified conceptual architecture
of TERA using B2s defined in the previous section is shown
in Figure 8.

The peer-sampling B2 provides basic connectivity to avoid
network partitions, to discover new nodes and to remove
nodes that left the network. Output OUT of this service is
a parallel input to a set of group composition blocks SEL
sets, one for membership management of the global overlay
and one per topic the node has subscribed to. If the node
subscribes to (resp. unsubscribes from) a topic, a composed
block formed by a group composition block and a broad-
cast one is dynamically added to (resp. removed from) the

Subscription details and node id

Current node

EXC

SEL

SEL

EXC

Interest proximity selection function

Group Composition Block

Proximity of interests

Subscription details

peer samples

EXC

SEL

peer samples

Ring construction selection function

Structuration Block

Ring Construction Protocol

Size of the view, cycle period

peer samples

Peer Sampling Service

Figure 7: Sub-2-Sub composition of blocks for content-based pub/sub overlay construction [34].

system.

Information about subscriptions currently handled by a node
are diffused regularly by the node itself on the global overlay
through the broadcast B2. This dissemination has multiple
objectives: firstly to let nodes be aware of possible new top-
ics instantiated in the system, secondly, to merge multiple
distinct groups handling the same topic (due to concurrent
creation of the same topic on different nodes) and to help
the routing of an event to reach the cluster related to the
topic the event belongs to. This routing is done through
a random walk on the general overlay. The output of that
broadcast B2 is an input for the TERA software logic that
is responsible for realizing from an operational viewpoint
previous objectives.

Second example : Sub-2-sub [34]. Sub-2-Subs is a content-
based publish/subscribe system. It is a structured overlay
built using only gossip-based protocols, that permits effi-
cient and collaborative support to content-based publish and
subscribe. Subscribers express their interest with a subscrip-
tion formed of predicates over a set of attributes. The space
of possible events is a multidimensionnal naming space (a
hyper rectangle of volume = 1). Predicates are expressed
over this naming space. A set of predicates form a hyper-
rectangle in the space of possible events. The objective of
the overlay construction mechanisms, implemented with our
B2s and presented in Figure 7, is to link subscriptions that
are “near” together (that is, subscriptions for which common
events may occur), so that subscribers with similar interests
get clustered together. This is the job of the second block
represented in the middle. This is a group composition block
instance, that links near subscription together, according to
a proximity function provided by the application designer.
It uses the output of the peer sampling service (nodes drawn
at random from the entire network), which permits the dis-
covery of new peers, resilience to dynamism and network
partitions. The union of the output of the peer sampling
service and the group composition service is further given
to the structuration block, whose goal is to form efficient
dissemination structures for every possible event that can
occur. To this end, a random id is assigned to each sub-
scription and the protocol creates ring-like structure, that is
used along with the proximity links for efficient dissemina-
tion. Details of the protocol for dissemination are ommited
and only the overlay construction blocks are shown for space
reasons.

An interesting remark is that blocks are pretty independant

from each other. One can decide to replace the structura-
tion block by a GosSkip-like approach, for instance, or to
alternatively use a flooding mechanism on top of the group
composition block to spread events in a probabilistic way.
The proposed framework is the ideal setting to test such
different solutions in an unified and simple way.

6. CONCLUSION AND PERSPECTIVES
Raising the level of abstraction when designing a large soft-
ware architecture has been the key factors for the success
of modeling technologies such as UML. Reasoning on mod-
els allows to mask details, bring out the big picture, and
focus on different aspects of the architecture. This reflects
the position we took in this paper by advocating the need of
modeling gossip-based applications through a conceptual ar-
chitecture. This should help to deal with the complexity of
embedding gossip mechanisms inside an application avoiding
thus an ad-hoc design that limits code reuse. More, the use
of a conceptual architecture helps a reader to localize and
to better understand the use of gossiping inside a complex
software architecture and, additionally, to compare two dif-
ferent architecture with respect to their usage of gossiping.
Finally, our proposal is a common platform for researchers
to compare and test new protocols, by inserting them in
larger software architectures in a simple way.

7. REFERENCES
[1] A. Allavena, A. Demers, and J. E. Hopcroft. Correctness of

a gossip based membership protocol. In PODC ’05:
Proceedings of the twenty-fourth annual ACM symposium
on Principles of distributed computing, pages 292–301, New
York, NY, USA, 2005. ACM Press.

[2] O. Babaoglu, M. Jelasity, A.-M. Kermarrec, A. Montresor,
and M. van Steen. Managing clouds: a case for a fresh look
at large unreliable dynamic networks. SIGOPS Oper. Syst.
Rev., 40(3):9–13, 2006.

[3] R. Baldoni, R. Beraldi, L. Querzoni, V. Quema, and S. T.
Piergiovanni. A scalable p2p architecture for topic-based
event dissemination. In MIDLAB Tech. Rep. 01-07,
Dipartimento di Informatica e Sistemistica, Sapienza
University of Rome, Rome, Italy, Jan. 2007.

[4] R. Baldoni, R. Guerraoui, R. Levi, V. Quema, and S. T.
Piergiovanni. Unconscious eventual consistency with
gossips. In Proceedings of the Eight International
Symposium on Stabilization, Safety and Security of
Distributed Systems (SSS 06), Dallas, Texas, Jan. 2007.
LNCS.

[5] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu,
and Y. Minsky. Bimodal multicast. ACM Trans. Comput.
Syst., 17(2):41–88, 1999.

[6] F. Bonnet, F. Tronel, and S. Voulgaris. Brief
announcement: Performance analysis of cyclon an

inexpensive membership management for unstructured p2p
overlays. In DISC 2006, Stockholm, Sweden, 2006.

[7] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah.
Randomized gossip algorithms. IEEE/ACM Trans. Netw.,
14(SI):2508–2530, 2006.

[8] P. Costa, V. Gramoli, M. Jelasity, G. P. Jesi, E. L. Merrer,
A. Montresor, and L. Querzoni. Exploring the
interdisciplinary connections of gossip-based systems.
Operating Systems Review, 2007.

[9] R. Cox, F. Dabek, F. Kaashoek, J. Li, and R. Morris.
Practical, distributed network coordinates. In Proceedings
of the Second Workshop on Hot Topics in Networks
(HotNets-II), Cambridge, Massachusetts, November 2003.
ACM SIGCOMM.

[10] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry.
Epidemic algorithms for replicated database maintenance.
In PODC ’87: Proceedings of the sixth annual ACM
Symposium on Principles of distributed computing, pages
1–12, New York, NY, USA, 1987. ACM Press.

[11] P. T. Eugster, R. Guerraoui, S. B. Handurukande,
P. Kouznetsov, and A.-M. Kermarrec. Lightweight
probabilistic broadcast. ACM Trans. Comput. Syst.,
21(4):341–374, 2003.

[12] P. T. Eugster, R. Guerraoui, A.-M. Kermarrec, and
L. Massoulié. Epidemic information dissemination in
distributed systems. In Computer, volume 37, pages 60–67.
IEEE, May 2004.

[13] R. Guerraoui, S. B. Handurukande, K. Huguenin, A.-M.
Kermarrec, F. L. Fessant, and E. Riviere. Gosskip, an
efficient, fault-tolerant and self organizing overlay using
gossip-based construction and skip-lists principles. In P2P
’06: Proceedings of the Sixth IEEE International
Conference on Peer-to-Peer Computing, pages 12–22,
Washington, DC, USA, 2006. IEEE Computer Society.

[14] K. Guo. Scalable Message Stability Detection Protocols.
PhD thesis, Cornell University, Computer Science
Department, May 1998.

[15] I. Gupta, A.-M. Kermarrec, and A. Ganesh. Efficient
epidemic-style protocols for reliable and scalable multicast.
In Proceedings of the 21st Symposium on Reliable
Distributed Systems (SRDS’02), page 180, 2002.

[16] Z. J. Haas, J. Y. Halpern, and L. Li. Gossip-based ad hoc
routing. IEEE/ACM Trans. Netw., 14(3):479–491, 2006.

[17] M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and M. van
Steen. The peer sampling service: experimental evaluation
of unstructured gossip-based implementations. In
Middleware ’04: Proceedings of the 5th
ACM/IFIP/USENIX international conference on
Middleware, pages 79–98, New York, NY, USA, 2004.
Springer-Verlag New York, Inc.

[18] M. Jelasity and A.-M. Kermarrec. Ordered slicing of very
large-scale overlay networks. In Proceedings of the Sixth
IEEE International Conference on Peer-to-Peer
Computing (P2P 2006), Cambridge, UK, 2006.

[19] M. Jelasity, A. Montresor, and O. Babaoglu. Gossip-based
aggregation in large dynamic networks. ACM Trans.
Comput. Syst., 23(3):219–252, 2005.

[20] M. Jelasity, A. Montresor, and O. Babaoglu. The
bootstrapping service. In Proceedings of International
ICDCS Workshop on Dynamic Distributed Systems
(ICDCS-IWDDS’06), Lisboa, Portugal, July 2006. IEEE
Computer Society.

[21] S. Kashyap, S. Deb, K. V. M. Naidu, R. Rastogi, and
A. Srinivasan. Efficient gossip-based aggregate
computation. In PODS ’06: Proceedings of the twenty-fifth
ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pages 308–317, New York,
NY, USA, 2006. ACM Press.

[22] D. Kostoulas, D. Psaltoulis, I. Gupta, K. Birman, and
A. Demers. Decentralized schemes for size estimation in
large and dynamic groups. In NCA ’05: Proceedings of the
Fourth IEEE International Symposium on Network
Computing and Applications, pages 41–48, Washington,

DC, USA, 2005. IEEE Computer Society.
[23] F. Le Fessant, S. Handurukande, A.-M. Kermarrec, and

L. Massoulié. Clustering in peer-to-peer file sharing
workloads. In 3rd International Workshop on Peer-to-peer
systems (IPTPS 04), San Diego, CA, Feb. 2004.

[24] J. Ledlie, P. Pietzuch, and M. Seltzer. Stable and accurate
network coordinates. In ICDCS ’06: Proceedings of the
26th IEEE International Conference on Distributed
Computing Systems, page 74, Washington, DC, USA, 2006.
IEEE Computer Society.

[25] L. Massoulié, E. L. Merrer, A.-M. Kermarrec, and
A. Ganesh. Peer counting and sampling in overlay
networks: random walk methods. In PODC ’06:
Proceedings of the twenty-fifth annual ACM symposium on
Principles of distributed computing, pages 123–132, New
York, NY, USA, 2006. ACM Press.

[26] A. Montresor, M. Jelasity, and O. Babaoglu. Chord on
demand. In P2P ’05: Proceedings of the Fifth IEEE
International Conference on Peer-to-Peer Computing
(P2P’05), pages 87–94, Washington, DC, USA, 2005. IEEE
Computer Society.

[27] J. A. Patel, I. Gupta, and N. Contractor. Jetstream:
Achieving predictable gossip dissemination by leveraging
social network principles. In NCA ’06: Proceedings of the
Fifth IEEE International Symposium on Network
Computing and Applications, pages 32–39, Washington,
DC, USA, 2006. IEEE Computer Society.

[28] J. Pereira and R. Oliveira. The mutable consensus protocol.
In IEEE Symp. Reliable Distributed Systems, pages
218–227. IEEE, IEEE Computer Society, Oct. 2004.

[29] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. In Proceedings of the ACM
SIGCOMM ’01 Conference, pages 149–160, San Diego,
California, Aug. 2001.

[30] R. van Renesse, Y. Minsky, and M. Hayden. A gossip-style
failure detection service. Technical Report TR98-1687, 28,
1998.

[31] W. Vogels, R. van Renesse, and K. Birman. The power of
epidemics: robust communication for large-scale distributed
systems. SIGCOMM Comput. Commun. Rev.,
33(1):131–135, 2003.

[32] S. Voulgaris. Epidemic-Based Self-Organization in
Peer-to-Peer Systems. PhD thesis, Vrije Universiteit,
Amsterdam, November 2006.

[33] S. Voulgaris, A.-M. Kermarrec, L. Massoulié, and M. van
Steen. Exploiting semantic proximity in peer-to-peer
content searching. In 10th International Workshop on
Future Trends in Distributed Computing Systems (FTDCS
2004), China, May 2004.

[34] S. Voulgaris, E. Rivière, A.-M. Kermarrec, and M. van
Steen. Sub-2-sub: Self-organizing content-based publish
and subscribe for dynamic and large scale collaborative
networks. In IPTPS’06: the fifth International Workshop
on Peer-to-Peer Systems, Santa Barbara, USA, FEB 2006.

[35] S. Voulgaris and M. van Steen. An epidemic protocol for
managing routing tables in very large peer-to-peer
networks. In A. K. Marcus Brunner, editor, Self-Managing
Distributed Systems: 14th IFIP/IEEE International
Workshop on Distributed Systems: Operations and
Management, DSOM 2003, volume 2867, pages 41–54.
Springer-Verlag GmbH, 2003.

[36] S. Voulgaris and M. van Steen. Epidemic-style management
of semantic overlays for content-based searching. In
P. D. M. José C. Cunha, editor, : Euro-Par 2005 Parallel
Processing: 11th International Euro-Par Conference,
volume 3648, page 1143, sep 2005.

[37] T. Wong, R. Katz, and S. McCanne. An evaluation of
preference clustering in large-scale multicast applications.
In IEEE Infocom ’00: The Conference on Computer
Communications, Volume 2: 19th Annual Joint
Conference of the IEEE Computer and Communications
Societies (IC ’00), 2000.

