
Concurrency Annotations in C++Carlos Baquero� Francisco MourayDI / INESCUniversidade do Minho4700 Braga, Portugalfmescbm,fsmg@di.uminho.ptFebruary 4, 1994AbstractThis paper describes CA/C++, Concurrency Annotations inC++, a language extension that regulates method invocations frommultiple threads of execution in a shared-memory multiprocessor sys-tem. This system provides threads as an orthogonal element to thelanguage, allowing them to travel through more than one object. Stati-cally type-ckecked synchronous and asynchronous method invocationsare supported, with return values from asynchronous invocations ac-cessed through �rst class future-like objects. Method invocations areregulated with synchronization code de�ned in a separate class hie-rarchy, allowing separate de�nition and inheritance of synchronizationmechanisms. Each method is protected by an access ag that can beswitched in pre and post-actions, and by a predicate. Both must eva-luate to true in order to enable a thread to animate the method code.Flags and method predicates are independently rede�nable along theinheritance chain, thus avoiding the inheritance anomaly.�Financed by JNICT grant BM92 / 3556 / IA.yPart of this work was supported by JNICT PMCT 163/90.1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634092?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 IntroductionIn the past, several approaches to concurrent object-oriented programming(COOP) raised the inheritance anomaly [10, 8], which restricts reuse by inhe-ritance in the presence of synchronization code. Initial proposals to COOPwere in fact largely exposed to this anomaly [6, 16, 1, 3]. Partial solutions tothis problem were sought through (a) the separation of synchronization codeand its reuse by inheritance [12, 15, 10] and (b) the �rst classing of synchro-nization code elements [5, 11]. Recently the use of multiple synchronizationschemes in the same language was advocated, allowing the programmer tochoose the most appropriate scheme for each case [9, 8]. CA/C++ followsthese ideas and provides two distinct synchronization mechanisms, therebyregulating both internal and external concurrency.In CA/C++ method invocations on any object can be speci�ed on theclient code as synchronous or asynchronous. In synchronous calls the clientthread animates the object method, as in traditional C++ code, returningcontrol to the client after method completion. Asynchronous calls fork anew thread responsible for animating the method code. The client threadproceeds in parallel, though it can synchronize with the spanned thread andreceive the results of the invocation by means of a future-like object. Notethat all asynchronous interaction can be statically type-checked at compiletime.According to Kafura and Lavender's taxonomy of COOP [5] (which ex-tends previous surveys [14, 13]), CA/C++ is classi�ed as an unrelatedlanguage in the animation model. This means that threads are not con�nedto the object boundaries but are able to animate several objects during theirlifetime. As a result, threads represent an orthogonal element to the lan-guage. Since concurrency is external to the objects, simultaneous access toan object's state by multiple threads must now be synchronized. By contrast,recent proposals that cope with the inheritance anomaly, specially those de-rived from the Actor model [5], are classi�ed as related approaches becausethreads exist only within an object.Concurrency annotations are speci�ed by a small amount of code and re-quire less knowledge about the inherited synchronization code (annotations)than the approaches based on named sets of methods such as those present inABCL/R2 [9, 8] and some Actor languages [5, 16]. It contemplates synch-ronization schemes for both internal and external concurrency, raising a new2

class Stack {protected:// private stuffpublic:void push();void pop();};// client code...Stack a, *pa=&a;a.push();pa->pop(); Figure 1: Stack classperspective of the problem. In the next sections we describe CA/C++'sapproach to the inheritance of synchronization code, and show its behaviorin the presence of the anomaly cases.2 Architecture of Concurrency AnnotationsOne of the main concerns in this model was to totally separate the clas-ses that implement the object functionality from the classes that describeits behavior in the presence of concurrent method invocations. Our modelcreates separate class hierarchies in C++ so that classes from the synch-ronization hierarchy can only access the public interface of the unregulatedoperational classes and the later don't even know the existence of the former.Consider for example the typical sequential implementation of a Stackdepicted in �gure 1. With the information provided by the annotations, theCA/C++ translator generates two new classes:� A class that represents in C++ the concurrency annotations of theStack class. 3

� A class that de�nes a regulated Stack, which is used instead of the ori-ginal unregulated Stack in the client code. This new class contains aninstance of the unregulated Stack that provides the operational func-tionality, and inherits the concurrency class de�ned for Stack.The hierarchy1 de�ned by the regulated classes declares the same pu-blic interface of the unregulated classes and establishes the same inheritancerelations. Therefore, a syntactic replacement in the client code su�ces2. Atranslator for CA/C++ was simply developed using James Roskind'sC++grammar, integrating the concurrency annotation rules within the syntax.The semantic of the CA/C++ can be de�ned by means of the followinginformal rules� In one object each method can be on or o�. Its initial states aredescribed in a constructor that can be extended in derived classes.� Each method can be associated with a predicate, represented in C++by a Boolean 0-ary method that can be extended or rede�ned in derivedclasses.� When a method is called, if its state in on, and there is no de�nedpredicate or if there is a predicate and the function returns true thenthe caller thread is allowed to animate the object, otherwise the threadblocks in a wait queue.� When a thread animates a method it executes �rt the pre-actions de-�ned in the CA, then the operational code de�ned in the containedunregulated object and �nally the post-actions.� The code in pre and post-actions can switch on or o� any methodde�ned in its class or in inherited classes. This code can also use privateelements of the CA classes and the public interface of the unregulatedobject.� For each object, mutual exclusion is enforced during the execution ofpre or post-actions.1In this case, a single class.2Naturally some name colision checking must be performed in the translation proccess.4

� After the execution of the pre or post-actions, some blocked threadsmay be allowed to run.� Pre and post-actions can be extended by inheritance.� Each CA class can de�ne a constructor, responsible for initializing pri-vate elements and setting the initial state of each method invocability.These constructors are extensible by inheritance.We can visualize the code responsible for the regulation of object in-vocations as placed in a meta-level to the unregulated object. While thecontained object ignores the presence of synchronization code, this code onlyuses the public interface of the unregulated object, which leads to a strongencapsulation, and a clear frontier between these elements.3 Concurrency Annotations for a simple StackSince the behavior of our stack with respect to internal concurrency mustserialize operations that act on the same state elements, it follows that popand push must exclude the set fpop; pushg. This is denoted by the pre-action @pop-; @push-; and its corresponding post-action (�gure 2). This isthe traditional mutual exclusion synchronization that is necessary regardlessof the stack internal state.Condition synchronization [2] is necessary for expressing state-dependentsemantics, for example to delay a pop invocation on an empty stack. InCA/C++ this is achieved with the predicate. Note that unlike traditionalguards and guarded commands, these predicates can be re�ned in derivedclasses, and are clearly separated from operational code.The annotation in �gure 2 keeps track of the stack state with the variablefullness. Although it is probably redundant because a similar variable is li-kely to exist in the unregulated stack, this redundancy is crucial to enable theannotation of pre-compiled libraries. Encapsulation would be compromisedif the implementation was inspected.The use of predicates to enforce condition synchronization does not pre-vent the occurrence of deadlocks. At present, no analysis of the client codeis made for its detection. Some client code, with asynchronous method calls,that avoids a deadlock is shown in �gure 3.5

annotation Stack {state: { int fullness; }start: { @push+; @pop+; fullness=0; }push() {cond: { return (fullness!=MAX); }pre: { @push- ; @pop- ; }post: { fullness++ ; @push+ ; @pop+ ; }}pop() {cond: { return (fullness!=0); }pre: { @push- ; @pop- ; }post: { fullness-- ; @push+ ; @pop+ ; }}} Figure 2: Concurrency Annotation for the Stack classStack s;assync Stack * @s_ptr;@s_ptr(&s)->pop();s.push(element);result=@ptr<-pop();Figure 3: Client code with asynchronous calls6

4 Inheritance Anomaly and Concurrency An-notations4.1 Partitioning of acceptable statesWe will extend the unregulated stack code and provide the concurrency an-notations for a new derived class. In this step, we introduce the methodpop23 that will remove the two topmost elements of the stack, this operationmust exclude fpop; push; pop2g and the inherited ones must be extended toexclude the new method, since all act on the same state elements.In the annotation described by �gure 4, we relied in the previous useof fullness which lead to a small elegant solution, we may conceive anextreme situation were some pre-compiled library with compiled concurrencyannotations is subject to extension, in such a case we could annotate the newmethod by de�ning a new variable in a constructor extension and properlyextending the actions of the previous methods. Although such an extremesituation may seem very improbable it documents the exibility and strongencapsulation provided by the CA/C++ approach.4.2 Addition of a history dependent methodThe addition of a method stat usable only after 100 operations on the stackwill show how operations that depend on the history of invocation can beannotated. The unregulated stack does not keep a counter for the numberof invocations, neither does the previous two annotations, so there is noinformation on either state capable of expressing this behavior. The newannotation will extend the state (in the annotation hierarchy) to reect thenumber of invocations and describe the predicate associated to stat. Thisextension will also be used to de�ne a method empty that returns true froman empty stack.The annotation, �gure 5, of empty shows the locality and small interfe-rence of some extensions, specially those that do not change the state of thecontained object. The method empty, as expected, may be invoked with norestrictions respecting internal concurrency. Approaches based on method3Note that in the presence of concurrency, two pop invocations can be interleaved byother requests. 7

class RStack : public Stack{ public:void pop2();};annotation RStack : public Stack {start: { // Extension to the constructor@pop2+;}pop2() {cond: { return (fullness>=2); }pre: { @push- ; @pop- ; @pop2- ; }post: { fullness-=2 ; @push+ ; @pop+ ; @pop2+ ; }}push() { // Extension to the push actionspre: { @pop2- ; }post: { @pop2+ ; }}pop() { // Extension to pop actionspre: { @pop2- ; }post: { @pop2+ ; }}} Figure 4: Stack with method pop28

class RRStack : public RStack {public:void stat();void empty();};annotation RRStack : public RStack {state: { int calls; }start: { calls=0; @stat+; @empty+; }empty() {}stat() {cond: { return(calls>=100); }}pop2() { post: { calls++ ; } }push() { post: { calls++ ; } }pop() { post: { calls++ ; } }} Figure 5: Stack re�ned with methods stat, empty
9

sets [5, 9] require much more information about the previous synchroniza-tion code, since new methods must be added to existing sets or force someset's rede�nition. With CA/C++ the minimum information required toannotate an extension to a previously annotated hierarchy is the public in-terface, speci�cally the method names of the existing classes. Naturally, agood extension that minimizes redundancy and execution overhead can onlybe achieved by a correct integration with the inherited annotations.If encapsulation is the prime concern, and object granularity is highenough to minimize the impact of CA/C++ execution, the expressivenessprovided could be used to create annotations that do not rely on the onesthey inherit. Such approach, at the expense of redundancy, would enablelocalized changes to an arbitrary annotation, without rede�nition of morederived ones4.4.3 Approach to the de�nition of lock extensionsAlthough multiple inheritance is not supported in this version of CA/C++,we will see how we could make a �nal extension to the current re�nementof Stack that provides methods lock and unlock responsible for disabling andreenabling all the others methods. This extension, presented in �gure 6, isa typical use of generic mixin classes [4] in multiple inheritance schemes,although not as generic as mixin classes, it shows how this behavior can beprovided whenever needed.In this annotation we extended any previous predicate in the inheritedmethod annotations by a conjunction with the locked ag, the explicit re-ference to the previous predicate by the keyword @cond. Its omission leadsto a rede�nition of the method predicate; this conjunction creates a morerestrictive predicate, similar to the ones proposed by Frolund [7].5 ConclusionsThe current version of the CA/C++ translator uses the threads packageof Solaris 2.3 on a SparcCenter 2000. Some preliminary results indicate that4If a new variable fullness, with some other name, were de�ned in RStack annotationand method post-actions extended to actualize it, then we could remove fullness fromthe Stack annotation without afecting subsequent ones.10

annotation LStack : public RRStack {state: { int locked; }start: { locked=1; @lock+; @unlock-; }lock() {pre: { @lock- ; }post: { locked=0; @unlock+ ; }}unlock() {pre: { @unlock- ; }post: { locked=1; @lock+ ; }}push() { cond: { return (@cond && locked); } }pop() { cond: { return (@cond && locked); } }pop2() { cond: { return (@cond && locked); } }stat() { cond: { return (@cond && locked); } }empty() { cond: { return (@cond && locked); } }} Figure 6: Stack with locks
11

the overheads introduced by the predicates, pre and post-actions and seria-lization code is comparable to those already introduced by the use of virtualmethods. This suggests that relatively small-grain objects are feasible. Thesynchronization scheme is very simple and relies in a small number of featu-res.CA/C++ deals with the inheritance anomaly in the presence of bothinternal and external concurrency, while previous approaches were concentra-ted mainly with external (inter-object) concurrency. This pointed to the useof two di�erent synchronization schemes, method access ags and predicates,respectively.CA/C++ provides the means to regulate previously written, possiblycompiled, class hierarchies. This capability improves the separation betweenoperational and synchronization code, minimizing the inuence of futurechanges to each hierarchy. It encourages the creation of independent an-notations through the inheritance hierarchy.References[1] Pierre America. A parallel object-oriented language with inheritance andsubtyping. In ECOOP/OOPSLA'90, pages 161{168. Philips ResearchLaboratories, ACM, October 1990.[2] G. R. Andrews and F. B. Schnider. Concepts and notations for concur-rent programming. ACM Computing Surveys, 15(1):3{43, March 1983.[3] Jan Van Den Bos and Chris La�ra. Procol, a parallel object languagewith protocols. In OOPSLA '89 Proceedings, pages 95{102, P.O. Box9512, 2300 RA Leiden, The Netherlands, October 1989. University ofLeiden, Department of Computer Science, ACM.[4] Gilad Bracha and William Cook. Mixin-based inheritance. InECOOP/OOPSLA '90 Proceedings, pages 303{311. ACM, October 1990.[5] Dennis G. Kafura and R. Greg Lavender. Concurrent object-orientedlanguages and the inheritance anomaly. In ISIPCALA'93, pages 183,213,1993. 12

[6] Dennis G. Kafura and Keung Hae Lee. Inheritance in actor based con-current object-oriented languages. In ECOOP'89 Proceedings, pages131{145. Cambridge University Press, 1989.[7] Svend Fr�lund. Inheritance of synchronization constraints in concurrentobject-oriented programming languages. In ECOOP '92 Proceedings,pages 185{196, 1304 W. Spring�eld Avenue, Urbana, IL 61801, USA,1992. Department of Computer Science, University of Illinois at Urbana-Champaign, Springer-Verlag.[8] Satoshi Matsuoka. Language Features for Re-use and Extensibility inConcurrent Object-Oriented Programming. PhD thesis, Department ofInformation Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,Tokyo 113, Japan, April 1993. Thesis draft.[9] Satoshi Matsuoka, Kenjiro Taura, and Akinori Yonezawa. Highly ef-�cient and encapsulated re-use of synchronization code in concurrentobject-oriented languages. In OOSPLA '93 Proceedings, ACM SIG-PLAN Notices, volume 28, pages 109{126. n, October 1993.[10] Satoshi Matsuoka and Akinori Yonezawa. Analysis of inheritance ano-maly in object-oriented concurrent programming languages. ResearchDirections in Concurrent Object Oriented Programming, MIT Press,1993.[11] Jose Meseguer. Solving the inheritance anomaly in concurrent object-oriented programming. Technical report, Computer Science Laboratory,SRI International, December 1992.[12] Christian Neusius. Synchronizing actions. In ECOOP '91 Proceedings,pages 118{132. Springer Verlag, 1991.[13] M. Papathomas. Concurrency issues in object-oriented programminglanguages. Technical report, s, 1989.[14] Michael Papathomas and Oscar Nierstrasz. Supporting software reusein concurrent object-oriented languages: Exploring the language designspace. Technical report, 1990. 13

[15] S. Crespi Reghizzi, G. Galli de Paratesi, and S. Genolini. De�nition ofreusable concurrent software components. In ECOOP '91 Proceedings,pages 148{166. Springer Verlag, 1991.[16] Chris Tomlinson and Vineet Singh. Inheritance and synchronizationwith enabled-sets. In OOPSLA '89 Proceedings, pages 103{112, 3500West Balcones Center Drive, Austin, Texa 78759, October 1989. MCC,ACM.

14

