

1

Genetic Algorithm with a Local Search Strategy for Discovering
Communities in Complex Networks

Dayou Liu1, 4, Di Jin2*, Carlos Baquero3, Dongxiao He1, 4, Bo Yang1, 4, Qiangyuan Yu1, 4
1 College of Computer Science and Technology, Jilin University, Changchun, 130012, China
2 College of Computer Science and Technology, Tianjin University, Tianjin, 300072, China

3 HASLab, INESC TEC & University of Minho, Braga, Portugal
4 Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University,

Changchun 130012, China
E-mail: jindi@tju.edu.cn

Abstract

In order to further improve the performance of current genetic algorithms aiming at discovering communities, a
local search based genetic algorithm (GALS) is here proposed. The core of GALS is a local search based mutation
technique. In order to overcome the drawbacks of traditional mutation methods, the paper develops the concept of
marginal gene and then the local monotonicity of modularity function Q is deduced from each node’s local view.
Based on these two elements, a new mutation method combined with a local search strategy is presented. GALS
has been evaluated on both synthetic benchmarks and several real networks, and compared with some presently
competing algorithms. Experimental results show that GALS is highly effective and efficient for discovering
community structure.

Keywords: Complex network; Community mining; Network clustering; Genetic algorithm; Local search;
Modularity Q

* Corresponding author.

1. Introduction

Many complex systems in the real world exist in the
form of networks, such as social networks, biological
networks, Web networks, etc, which are collectively
referred to as complex networks. The area of complex
networks has attracted many researchers from different
fields such as physics, mathematics, computer science,
etc. While a considerable body of work addressed basic
statistical properties of complex networks, such as the
existence of a “small world effect” [1] and the presence
of “power laws” in the link distribution [2], another
property has also been given particular attention, that is,
“community structure”: where the nodes in networks are
often found to cluster into tightly-knit groups with a
high density of within-group edges and a lower density
of between-group edges [3]. The community mining
problem (CMP), which this paper refers to, is to

discover and interpret community structures from
various complex network data.

The ability to detect community structure is useful
in many aspects [4]. For example, nodes belonging to
the same community may have much more common
features than those in different communities, which
could be used to simplify the functional analysis of
complex networks. Furthermore, community structure
may provide insights in understanding some
uncharacteristic property of a complex network system.
For instance, in the world wide web, community
analysis has uncovered thematic clusters; in biochemical
or neural networks, communities may be functional
groups and separating the network into such groups
could simplify functional analysis considerably.

In the past few years, the most popular method to
detect communities in graphs consists in the
optimization of a quality function, modularity Q

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634089?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

D. Liu et al.

introduced by Newman and Girvan [5]. Modularity Q
gives a clear and precise definition of the characteristics
of the acknowledged community and has had very
successful application in practice [6], although it is still
not free from drawbacks (suffers from resolution limits
[7], exhibits extreme degeneracy [8], has random graphs
with high modularity due to fluctuations [9], etc).

The search for the partition with maximal
modularity is in general a great challenge since it was
proved to be a NP-hard (non-deterministic polynomial-
time hard) problem [10]. Many heuristics relying on
different approaches have been introduced to
approximate the optimal partition, and some of them are
able to find fairly good approximate solutions in a
reasonable time. But there is still room for improvement
in their performance, in terms of both effectiveness and
efficiency.

Because of the effectiveness in approaching NP-
hard problems, genetic algorithms have become a
competitive community mining method. In order to
further improve the performance of those former genetic
algorithms for CMP, a local search based genetic
algorithm GALS is proposed in this paper. Our GALS
employs modularity Q as objective function, and takes a
graph-based representation LAR [11] as genetic
representation. In GALS, we first adopt a Markov
random walk based method to generate the initial
population; and then we detect community structure by
iteratively executing the following three genetic
operators: uniform crossover [12], local search based
mutation and µ+λ selection [13]. Moreover, the genetic
operators, which are employed by GALS, make each
LAR chromosome in the population correspond to a
spanning subgraph of the original network. Thus the
solution space of GALS can be reduced, which
improves both the search efficiency and convergence
rate of this algorithm.

It is noteworthy that, the core of GALS is the local
search based mutation method. For overcoming the
drawbacks of traditional mutation methods, we first
present and name the concept of marginal gene, and
then deduce the local monotonicity of modularity Q
from each node’s local view. Based on these above two
points, an effective and efficient mutation method
combined with a local search strategy is finally
proposed.

2. Related Works

Over the last decade, many approaches have been
proposed to the analysis of the community structures in
complex networks. They adopt different types of
principles and techniques, rooted in physics,
mathematics, computer science, and so on. They mainly
include: divisive methods, e.g. Girvan-Newman (GN)
algorithm [3]; modularity optimization methods, e.g.
Fast Newman (FN) algorithm [14], Simulated
Annealing (SA) algorithm [15], Fast Unfolding
Algorithm (FUA) [16]; label passing methods, e.g.
Label Propagation Algorithm (LPA) [17], hub-based
algorithms [18, 19]; dynamic methods, e.g. Finding
and Extracting Communities (FEC) [20], Infomap
algorithm [21], Ronhovde and Nussinov (RN) algorithm
[22]; and others. The interested readers can consult the
excellent and comprehensive survey by Fortunato [6].

Especially, because of the effectiveness to
approximately solve NP-hard problems, genetic
algorithm (GA) is currently becoming a class among the
competitive methods for modularity optimization. At
present two main types of genetic representation
strategy are employed by GA in solving community
mining problems.

The first one is a string-of-group encoding (SGE).
As each node is only denoted by an arbitrary label in a
SGE chromosome, the traditional crossover operators
(such as uniform, one-point and two-point crossover) is
not well-fit for the task. This placed pressure on the
design of new types of crossover operators. Several
works in this line are as follows. Tasgin et al. [23]
presented, for the first time, the use of a genetic
algorithm to detect communities. In their method, a one-
way crossover operator is proposed, which has been
proven to be effective for this string-of-group encoding.
He et al. [24] proposed a genetic algorithm with
ensemble learning for discovering communities. They
replaced the traditional crossover operator with a new
multi-individual crossover operator based on the idea of
clustering ensemble, which also performs very well. Li
et al. [25] proposed a genetic algorithm for community
detection, which adopts the one-way crossover operator
and introduces a new type of local search operator.
However, the above methods are all only effective for
some small sized benchmarks. Thus, the research

 Genetic Algorithm with a Local Search Strategy

community began to focus on a second type of encoding
strategy.

The second one is called the locus-based adjacency
representation (LAR), which is indeed a graph-based
representation. As each community corresponds to a
component in any a LAR chromosome, this type of
representation strategy is well-fit for most of the
traditional crossover operators. There are some related
works as follows. Pizzuti et al. [26] proposed a genetic
algorithm using LAR representation for the first time,
which adopts the traditional operators (such as uniform
crossover and random mutation) for the detection of
communities. Later, they further improved their former
method by employing two types of community
functions, and presented a multi-objective genetic
algorithm [27]. But the performance of both these two
approaches also looks only effective under the small
benchmarks as before. Shi et al. [28] proposed another
genetic algorithm with LAR representation, in which a
new crossover operator, similar with the one-way
crossover operator, is introduced. As far as we know,
this is the first genetic algorithm that is able to cluster
several large networks. However, its clustering quality
is still not ideal when compared with some current
competing algorithms for community detection.

In our recent study, we found out that, the traditional
random mutation operator often results in merging
and/or splitting communities for the LAR representation,
although it has some advances for the crossover
operation. This will make it unable to effectively
achieve its local search function, and then lead to the
inefficacy of genetic algorithms. Thus, in our opinion,
designing an efficient and effective mutation operator
for the LAR representation may be a good solution,
which may make a genetic algorithm have stronger
ability to deal with actual large-scale networks.

3. Algorithm

3.1. Problem definition

Let N = (V, E) denote an unweighted and undirected
network, where V is the set of nodes (or vertices) and E
is the set of edges (or links). Let a k-way partition of the
network be defined as π = {c1, c2, …, ck}, where c1,
c2, …, ck denote the k clusters, and satisfy

1 ii k
c V

≤ ≤
∪ =

and
1 ii k

c
≤ ≤
∩ = ∅ . If partition π has the property that

within-cluster edges are dense and between-cluster
edges are sparse, it’s called a community structure of
this network. This is a way of defining non-overlapping
communities. However, it should be noted that, the
communities may overlap in many real-world networks,
i.e. some nodes may belong to more than one
community simultaneously [29]. Here we mainly
focused on hard clustering, and did not consider
overlapping communities in this present work.

In 2004, Newman and Girvan proposed an important
quality metric for assessment of partitioning a network
into communities, which is called modularity Q [5]. The
idea of modularity Q steams from the intuition that a
network with community structure is different from a
random network. Therefore, this function Q can be
defined as the difference between the fraction of edges
that fall within communities and the expected value of
the same edge quantity if edges fell at random without
regard for the community structure. As modularity Q
has been widely accepted by the scientific community
[6], in this paper we also choose to employ it as the
objective function that is to be maximized.

Given the network N and supposing its nodes are
divided into some communities such that node i belongs
to community cr(i) in which r(i) denotes the label of
node i, then function Q is defined as

()1 (), ()
2 2

i j
ij

ij

k k
Q A r i r j

m m
⎛ ⎞⎛ ⎞

= − ×δ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ . (1)

Here A = (Aij)n×n denotes the adjacency matrix of
network N, in which Aij = 1 if nodes i and j connect with
each other, Aij = 0 otherwise. The δ function (,)u vδ is
equal to 1 if u = v and 0 otherwise. The degree ki of any
node i is defined as i ijjk A= ∑ , and the total number

of edges m in this network is defined as 1
2 ijijm A= ∑ .

3.2. Genetic representation

Algorithm GALS in this paper adopts the locus-based
adjacency representation (LAR) proposed by [11]. At
present, this representation (or encoding) schema was
also employed by [30, 31] for multi-objective clustering
problem and by [26-28] for community mining problem.
In this graph-based representation, any individual
(chromosome) g in the population consists of n genes, in

D. Liu et al.

which each gene corresponds to a node in network N
and n denotes the total number of nodes in this network.
Each gene i can take an arbitrary allele value j in the
range of {1, …, n}, which can be interpreted as a link
between nodes i and j existing in the corresponding
graph G of individual g. This also means that, node i
will be in a same community with node j in the partition
denoted by this individual. The decoding process for a
LAR individual is to identify all the components from
graph G, and the nodes belonging to the same
component are assigned to a same community. This
decoding process can be done in a linear time as shown
by [32]. A simple example of the LAR representation is
illustrated as Fig. 1.

(a)

(b)

(c)

Fig. 1. (Color online) An illustration for the locus-based
adjacency representation. (a) A sample network consisting of

eleven nodes; (b) One out of many possible chromosomes; (c)
The corresponding graph of this chromosome.

The locus-based adjacency representation has two
major advantages for solving community mining
problems. Firstly, the community number denoted by
each individual is automatically determined in the
decoding process, thus there is no need for us to know
the number of communities in advance. Hence, we can
effortlessly evaluate a network clustering solutions with
different community numbers during the execution
process of GALS, and finally attain the best solution
with the most suitable community number. Secondly,
LAR representation is well suited for standard crossover
operators, such as uniform, one-point and two-point
crossover. For community mining problems, if we use
the traditional genetic representations such as string-of-
group encoding, the above crossover operators will be
highly disruptive, as well as detrimental, for the
community detection process. In contrast, the graph-
based representation can effortlessly implement its
global search function by merging and splitting
communities, while maintaining good heritability.

3.3. Population initialization

Here we first introduce the idea of safe individuals
proposed by [26], and then give a Markov random walk
based individual generation method which can produce
safe, accurate and diverse initial individuals.

If an individual is randomly generated, some
components in its corresponding graph G may be
disconnected in the original network N, which also
means G may be not a subgraph of N. For example, an
individual could contain an allele value j in the ith
position, which means there is a link between nodes i
and j in its corresponding graph G, but there may be no
connection between these two nodes in network N.
However, in a network with community structure, there
is the obvious intuition that any a node should have one
of its neighbors in the same community or it, itself, is a
community. Thus, the solution space of chromosomes
can be reduced if the above heuristics is considered,
which means one can make any individual in the
population be a spanning subgraph of the original
network N. Then the individual that satisfies the above
condition is called a safe individual, the population that
is composed of safe individuals is called a safe

 Genetic Algorithm with a Local Search Strategy

population, and the solution space of safe individuals is
called a safe solution space.

The whole solution space of LAR representation is
nn, while the safe solution space is 1

n
ii k

=∏ , where n is
the total number of nodes and ki is the degree of node i
in network N. As most complex networks are sparse
graphs, for any node i, ki can be regarded as a constant
(ki << n). Thus it is obvious that the safe solution space
is much smaller than the whole solution space.
Therefore, if the search region of our algorithm GALS
can be restricted to the range of the safe solution space,
its search efficiency and convergence rate can both be
improved.

In order to achieve the above goal, we propose a
Markov random walk based individual generation
method (MRW), which is based on the natural
community property possessed by complex networks.

In a network, let qij be the probability that an agent
freely walks from an arbitrary node i to one of its
neighbor nodes j within one step, which is also called
the transition probability of one-step random walk. In
terms of the adjacency matrix of N, A = (Aij)n×n, qij is
defined by (2). Here the agent’s random walk can be
regarded as a discrete Markov process.

ij
ij

irr

A
q

A
=
∑

. (2)

From the view of a Markov random walk, when a
network has community structure, a random walk agent
should find it difficult to move outside its own
community boundary, whereas it should be easy for it to
reach other nodes within its community, as link density
within a community should be high, by definition. In
other words, the probability for remaining in the same
community, that is, a random walk agent starts from any
node and stays in its own community, should be greater
than that of going out to a different community. The
readers, who are interested in heuristic based random
walks to find communities, can consult the related and
excellent work by Pons and Latapy [33].

Based on the above idea, in algorithm MRW, we
make any gene i in a chromosome select its allele value
j in the range of {1, …, n} by using the one-step
transition probability qij. It’s obvious that the
individuals generated by MRW are not only safe but
also accurate and diverse, which can improve the
performance of our genetic algorithm GALS.

3.4. Selection and crossover operators

The role of a selection operator is to sieve out
(deterministically or probabilistically) the solution that
have been generated through the use of the other genetic
operators. In order to keep the fittest individuals from
each generation and improve the convergence speed of
genetic algorithm (GA) at the same time, a µ+λ
selection strategy [12], preferred by GA for solving
combinatorial optimization problems, is employed in
this paper. The process of µ+λ selection can be
described as follows. Let the size of parent population
be µ, and λ offspring be generated from randomly
chosen parents, then we single out µ best individuals
among parents and offspring as the population of next
generation.

As a global search operator in GA, uniform
crossover (UC) [13] is adopted in this paper. Given two
randomly chosen parents A and B, and a randomly
generated binary vector v, uniform crossover then
selects the genes where v is 1 from parent A, and selects
the genes where v is 0 from parent B, and then combines
the genes to form a new child C. Mathematically
speaking, one has C = A.*v + B.*(1-v), where (.*)
denotes array multiplication. It’s obvious that if parents
A and B both are safe individuals, their child C is
forcibly a safe one too. This is because any gene i
containing a value j in the child must comes from one of
its two parents, meanwhile, this edge <i, j> will
necessarily exist in network N due to the safety of the
parents. Thus, we find out that the uniform crossover
will not violate the safety of the population in GA.
Furthermore; here we choose the uniform crossover in
favor of one-point or two-point crossover. This is
because it is unbiased with respect to the ordering of
genes and can generate any combination of alleles from
the two parents within a single crossover operation. An
example for the operation of uniform crossover on LAR
chromosomes is shown as Fig. 2.

D. Liu et al.

(a)

(b)

(c)

(d)

Fig. 2. (Color online) An illustration of the uniform crossover
on the network in Fig. 1(a). (a) The corresponding graph of
parent A; (b) The corresponding graph of parent B; (c)
Uniform crossover of parents A and B yielding child C by
using random binary vector v; (d) The corresponding graph of
child C.

3.5. Mutation operator

The mutation operator is the most important part in this
paper. Here, for the community mining problem, we
first introduce a concept called marginal gene intended
to overcome the drawbacks of current mutation methods.
Then, we propose an efficient and effective local search
based mutation algorithm, which operates with the aid
of this marginal gene.

3.5.1 . Marginal gene

Recently, the random mutation strategy was mainly
adopted as a local search operator by most genetic
algorithms which employed LAR representation [26-28,
30, 31]. However, this type of mutation operator is not
well suited for the community mining problem.

In the opinion of Guimera and Amaral, when
solving community mining problems, it’s an effective
method to generate a new candidate solution by
iteratively executing the following three types of
operations on the current candidate solution, which
includes “move single nodes from one community to
another”, “merge multi-communities” and “split single
communities” [15]. In a genetic algorithm, the crossover
operator is regarded as a macroscopic operation on
individuals, while the mutation operator is regarded as a
microscopic operation on individuals. Thus, in a genetic
algorithm for solving community mining problems, if
the crossover operator can achieve its global search
function by merging and splitting communities, and the
mutation operator can achieve its local search function
by moving single nodes between communities, this
genetic algorithm leads to a strong ability in searching.
Each individual in this paper corresponds to a graph,
and each component in the graph corresponds to a
community. Thus it’s obvious that the uniform
crossover in Sec. 3.4 can effortlessly achieve its
function of merging and splitting communities. Then,
the mutation operator in this section should be requested
to have the ability to effectively achieve its intended
function of moving single nodes between communities.

However, our study shows that the traditional
mutation operator [26-28, 30, 31] often results in
merging and/or splitting communities, which will make
it unable to effectively achieve its local search function,
and then lead to the inefficacy of a genetic algorithm.
For example, in an individual (or chromosome) g, let

 Genetic Algorithm with a Local Search Strategy

nodes i and j belong to different communities (or
components), and gene i select the j as its allele value by
a single mutation operation, then this mutation operation
will very likely lead to the combination of these two
communities, which also means the two components
denoted by nodes i and j may be merged into a bigger
one by building a new link <i, j> between them. A
simple example is shown as Fig. 3(c). It’s obvious that
this is an undesirable situation. Thus, as the following
presentation will show, we will offer an effective
solution to this problem.

Definition 1. (Marginal Gene) Given an arbitrary

LAR chromosome g, if the allele values of all genes in g
are not equal to j, gene j is called a marginal gene in g,
which is also called a marginal node.

Note that any LAR chromosome g corresponds to a

directed graph G, although we depict it as an undirected
graph in the above sections for simplification. All nodes
in G will not point at marginal nodes known from
Definition 1. Thus, a single mutation operation on a
marginal node can implement this node’s movement
from one community to another. Meanwhile, it will not
result in merging or splitting communities. It’s obvious
that, with the aid of marginal nodes, the mutation
operator can successfully achieve its local search
function. A simple example which describes a single
mutation operation on an arbitrary marginal node is
shown as Fig. 3(d).

(a)

(b)

(c)

(d)

Fig. 3. (Color online) An illustration of the mutation operation
for the network in Fig. 1(a). Note that, in order to depict the
mutation process more clearly, here we adopt the directed
graph to express a chromosome. (a) An arbitrary chromosome
A; (b) Its corresponding directed graph G; (c) A single
mutation operation on non-marginal node 7 for chromosome A,
which results in splitting and/or merging communities; (d) A
single mutation operation on marginal node 2 for chromosome
A, which implements this node’s movement from the red
community to the blue one, and does not result in merging or
splitting communities.

Now, we have to pay attention to the proportion of
marginal genes that appear in a LAR chromosome. We
first focus on the randomly generated chromosome g,
and then generalize it to a more universal situation. Let
there be n genes in g, then the probability that any gene
i takes some value j is p = 1/n; on the contrary, the
probability that gene i doesn’t take value j is 1−p; and

D. Liu et al.

then the probability that all genes in g don’t take value j
is β = (1−1/n)n. Thus the probability that the marginal
genes appear in chromosome g should be β. β(n) is a
monotonically increasing function, and
lim () 1/ 0.3679n n eβ→+∞ = ≈ . Also, the total number
of nodes in almost all real networks is greater than 10,
and one has p(10) = 0.3487. Thus, the proportion of
marginal genes appearing in a chromosome g should be
β(n) ∈ (0.3487~0.3679), n > 10. Moreover, our
experiments show that the above conclusion is also fit
for more general chromosomes in a universal situation.
In this sense, if we execute a mutation operation on all
marginal genes for a chromosome, it’s equivalent to that
of executing a mutation operation on this chromosome
by mutation rate β.

3.5.2. Local search based mutation algorithm

In this section, we first deduce the local monotonicity of
modularity function Q, and then propose a fast, as well
as effective, local search based mutation algorithm
(LSMA), constructed with the aid of marginal nodes, as
by Definition 1.

In order to cleverly implement single node
movements between communities in algorithm LSMA,
we now offer some theoretical analyses on our objective
function Q, from each node’s local view. We convert (1)
to (3), where cr(i) denotes the community of node i. It’s
obvious that, equation (3) makes function Q as the sum
of local function f of all nodes. From each node’s local
point of view, function f can be regarded as the
difference between the number of edges that fall within
communities and the expected number of edges that fall
within communities. Therefore, the function f of each
node can measure whether a network division indicates
a strong community structure from each node’s local
point of view. Some Propositions and Theorems on
function f are given as follows.

()

1 ,
2 2

r i

i j
i i ij

i j c

k k
Q f f A

m m∈

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
∑ ∑ (3)

Proposition 1. For ∀ i ∈ V, the local function fi of

any node i in a complex network is only related to its
own community cr(i).

Proposition 1 is obvious according to (3).

Theorem 1. For ∀ i ∈ V, if the label of node i

changes under the condition that the labels of all other
nodes don’t change, function Q of the entire network is
monotonically increasing with function fi.

Please see the Appendix part for the Proof of
Theorem 1.

Again, there is the simple intuition that, any node in

a complex network which has a community structure
should have the same label as one of its neighbors, or be
in itself is a community. Thus, in our mutation
algorithm, any marginal node i can take a node j in the
range of NSi (instead of V) as its allele value, where NSi
denotes the neighbour set of node i and V is the node set
of the network.

Further, known from Theorem 1, function Q of a
network is monotonically increasing with any node’s
local function f. In order to further improve the
performance of our mutation method, we select here
node j from NSi, which can maximize function fi, as the
allele value of marginal node i. Here we only consider
marginal nodes. Thus, when a single mutation operation
is executed on any a marginal node i, the labels of all
other nodes will not change, which will necessarily
meet the condition which is required by Theorem 1.

Moreover, note that any safe individual is still a safe
one after executing our mutation method.

Based on the above discussions, we now present a
fast and effective local search based mutation algorithm
LSMA, described as Fig. 4.

 Genetic Algorithm with a Local Search Strategy

Fig. 4. LSMA algorithm.

As we can see, in algorithm LSMA, the variation of
any a node’s allele value denotes the node’s movement
from its original community (or component) to another
one in the corresponding graph of chromosome g.
Meanwhile, it will not result in merging or splitting
communities, as these nodes are all marginal nodes. On
the contrary, a mutation operation on non-marginal
nodes will necessarily lead to merging or splitting
communities for g, thus these non-marginal nodes are
not suitable for our algorithm LSMA. As we can see,
only marginal nodes can meet the requests of LSMA,
and this method is especially designed for the marginal
nodes.

In order to further explain the effectiveness as well
as efficiency of LSMA, some Propositions are given as
follows.

Proposition 2. For any chromosome g that adopts

LAR representation, the value of fitness function Q will
not decrease after executing LSMA algorithm.

Proof. Known from the algorithm flow of LSMA,
any marginal gene i in chromosome g will necessarily
take one of its neighbours j which can maximize its
function fi as its allele value after a LSMA operation.
This means node i will move to the community of node
j and it will not result in merging or splitting
communities, which also means node i will take the
label of node j as its new label under the condition that
the labels of all other nodes don’t change. Known from
Theorem 1, if the variation of the label of one node
makes its function f increase under the condition that the
labels of all other nodes don’t change, this variation will
cause an increase of the Q-value of the entire network.
Thus, the mutation operation on any marginal gene in
chromosome g will not make the Q-value of the
network decrease.

In network N, let the total number of nodes be n, the

average degree of all the nodes be k, and the average
community size in the network clustering solution
denoted by chromosome g in algorithm LSMA be c.
The time complexity analysis of LSMA is given as
follows.

Proposition 3. The time complexity of algorithm
LSMA is O(cn).

Proof. It’s obvious that the time complexity of the
8th step is the highest in LSMA. Step 8 computes
function fi of each marginal node i for all the labels of
its neighbours. Because the labels of any node’s
neighbours are likely to overlap, the average number, to
evaluate function f for each node i in step 8, can’t be
greater than k. Known from Proposition 1, the average
time that function f is computed once can’t be greater
than c. The total number of marginal nodes is about βn
in a LAR chromosome. Thus, the time complexity of
LSMA can’t be greater than O(βnkc). Furthermore, as
complex networks are always sparse graphs, which
means k is a constant, and parameter β is also a constant,
then the time complexity of LSMA can be given by
O(cn).

3.6. Algorithm GALS

Based on the discussion in above sections, the
description of algorithm GALS is given as Fig. 5.

Fig. 5. GALS algorithm.

Algorithm GALS starts by adopting a Markov
random walk based individual generation method
(MRW) to produce the initial population. Then, it
detects the network community structure by iteratively
executing the following three genetic operators: uniform
crossover; local search based mutation; and µ+λ

D. Liu et al.

selection. It’s obvious that: the individuals in initial
population produced by MRW are not only safe but also
accurate and diverse; our crossover operator can
effortlessly achieve its global search function by
merging and/or splitting communities for LAR
chromosome; our mutation operator can effectively
achieve its local search function by cleverly and directly
moving single marginal nodes between communities;
our selection operator makes the best individuals enter
the next generation, embodying Darwin’s “survival of
the fittest” paradigm, although it doesn’t deal with
single LAR chromosomes.

Moreover, the population produced by MRW is a
safe one. Meanwhile, the two genetic operators
(uniform crossover and local search based mutation),
that can change the structure of LAR chromosome, will
also not violate the safety of the safe population. Thus it
will make algorithm GALS able to detect community
structure in the range of a safe solution space, which is
much smaller than the whole solution space. From this
perspective, the search efficiency and convergence
speed of algorithm GALS can both be improved.

In network N, let the total number of nodes be n, and
the average community size in all of the LAR
chromosomes during the execution process of algorithm
GALS be c. It’s obvious that c is much smaller than n.
The time complexity of GALS is given as follows.

Proposition 4. The time complexity of algorithm

GALS is O(cn).
Proof. It’s obvious that the time complexity of the

4th step is the highest in GALS, and the time of other
steps are all equal to or less than O(n). The run time of
algorithm LSMA in step 4 will be Lλ, and the run time
of a single LSMA run is O(cn), known from Proposition
3. Thus, the run time for step 4 in GALS will be
O(Lλcn). Because each of the parameters in GALS can
be regarded as a constant, the run time for step 4 in
GALS can be also given by O(cn). Therefore, the time
complexity of GALS is O(cn).

4. Experiments and Evaluation

In order to evaluate the performance of algorithm GALS,
we tested it on two types of benchmark artificial
networks, as well as in some widely used real-world
networks.

In the experiment, our GALS is compared with six
representative community mining algorithms, in which
FN [14], FUA [16], TGA (Tasgin’s Genetic Algorithm)
[23] and GACD (Genetic Algorithm for Community
Detection) [28] are modularity optimization methods,
while FEC [20] and LPA [17] are heuristic methods.
Note that FUA has been regarded as one of the most
effective community mining methods by the famous
survey of Fortunato [6], and TGA and GACD both are
known and current genetic algorithms for community
detection.

In algorithm GALS, there are three parameters:
iteration number L, parent population size µ and
offspring population size λ, which are all standard
parameters in genetic algorithm. They can be set as: L =
500, µ = 80 and λ = 60 based on [12, 26, 27] as well as
in our own experience.

All experiments are done on a single Dell Server
(Intel(R) Xeon(R) CPU 5130 @ 2.00GHz 2.00GHz
processor with 4Gbytes of main memory), and the
source code of the algorithms used here can all be
obtainable from the authors.

4.1. Computer-generated networks

We adopt two types of randomly generated synthetic
networks (by both Newman model [3] and LFR model
[34]) with a known community structure to evaluate the
performance of the algorithms. Moreover, here we
employ a widely used accuracy measure so called
Normalized Mutual Information (NMI) [4]. The NMI
measure, which makes use of information theory models,
is regarded as a relatively fair metric compared with the
other ones [4].

4.1.1. Newman benchmark

The first type of synthetic networks employed here is
that proposed by Newman et al [3]. For this benchmark,
each graph consists of n = 128 vertices divided into 4
groups of 32 nodes. Each vertex has on average zin
edges connecting it to members of the same group and
zout edges to members of other groups, with zin and zout
chosen such that the total expected degree zin+zout = 16,
in this case. As zout is increased from the small initial
values, the resulting graphs pose greater and greater
challenges to the community mining algorithms. In Fig.
6(a), we show the NMI accuracy attained by each

 Genetic Algorithm with a Local Search Strategy

algorithm as a function of zout. As we can see, our
algorithm GALS outperforms all the other six methods
in terms of NMI accuracy on this benchmark.

Computing speed is another very important criterion
to evaluate the performance of an algorithm. Time
complexity analysis for GALS has been given by
proposition 4 in Sec. 3.6. Nevertheless, here we show
the actual running time of GALS from an experimental
angle, so as to further evaluate its efficiency.

Here we also adopt the synthetic networks based on
Newman model [3]. For this application, each graph
consists of n = 100a vertices divided into a groups of
100 nodes. Each vertex has on average zin = 10 edges
connecting it to members of the same group and zout = 6
edges to members of other groups. The only difference
between the networks used here and the former ones is
that, now zout is fixed while the community number a is
changeable. Fig. 6(b) shows the trend that the running
time of GALS exhibits with the network scale. As we
can see, the running time of GALS is proportional to the
scale of the network under the condition that the
average community size of the actual community
structure is about a constant. Therefore, the experiment
can not only validate the correctness of Proposition 4
(the time complexity of GALS is O(cn)), but also shows
that the average community size c of all the LAR
chromosomes during the running process of GALS is
proportional to the average community size in the actual
community structure of the network. Also, it is
noteworthy that, the sizes of well-defined communities
in large-scale real networks are generally much smaller
than the scales of networks [35].

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

number of inter-community edges per vertex zout

no
rm

al
iz

ed
 m

ut
ua

l i
nf

or
m

at
io

n

FN
FEC
LPA
FUA
TGA
GACD
GALS

(a)

1 1.5 2 2.5 3 3.5 4

x 10
4

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

network scale (n+m)

ac
tu

al
 ru

nn
in

g
tim

e
(s

)

GALS

(b)

Fig. 6. (Color online) Test the performance of GALS on
Newman benchmark. (a) Compare GALS with GN, FN, FEC,
FUA, TGA and GACD in terms of NMI accuracy; (b) The
actual running time of GALS is as a function of the network
scale.

4.1.2. LFR benchmark

In order to further evaluate the accuracy of these
algorithms, a new type of benchmark proposed by
Lancichinetti et al. [34] is also adopted here. Unlike the
Newman benchmark where all the vertices have an
identical degree and all the community sizes are the
same, both the degree and the community size
distributions in the LFR benchmark are power law,
which is a statistical property that most real-world
networks seem to share.

Following the experiment designed by [34], the
parameters setting for the LFR benchmark networks are
as follows. The network size n is set to either 1000 or
5000, the minimum community size cmin is set to either
10 or 20, and the mixing parameter μ (each vertex
shares a fraction μ of its edges with vertices in other
communities) varies from 0 to 0.8 with interval 0.05.
We keep the remaining parameters fixed: the average
degree d is 20, the maximum degree dmax is 2.5×d, the
maximum community size cmax is 5×cmin, and the
exponents of the power-law distribution of vertex
degrees τ1 and community sizes τ2 are -2 and -1
respectively. In Fig. 7, we show that the NMI accuracy
attained by each algorithm is as a function of the mixing
parameter μ. As we can see, GALS is competitive with
FUA, and outperforms the other five methods in terms
of NMI accuracy on this new benchmark.

D. Liu et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1

mixing parameter u

no
rm

al
iz

ed
 m

ut
ua

l i
nf

or
m

at
io

n
n=1000 cmin=10 cmax=50

FN
FEC
LPA
FUA
TGA
GACD
GALS

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1

mixing parameter u

no
rm

al
iz

ed
 m

ut
ua

l i
nf

or
m

at
io

n

n=1000 cmin=20 cmax=100

FN
FEC
LPA
FUA
TGA
GACD
GALS

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1

mixing parameter u

no
rm

al
iz

ed
 m

ut
ua

l i
nf

or
m

at
io

n

n=5000 cmin=10 cmax=50

FN
FEC
LPA
FUA
TGA
GACD
GALS

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1

mixing parameter u

no
rm

al
iz

ed
 m

ut
ua

l i
nf

or
m

at
io

n

n=5000 cmin=20 cmax=100

FN
FEC
LPA
FUA
TGA
GACD
GALS

(d)

Fig. 7. (Color online) Compare GALS with FN, FEC, LPA,
FUA, TGA and GACD in terms of NMI accuracy on the LFR
benchmark networks. (a) Comparison on small networks with
small communities (n = 1000, cmin = 10, cmax = 50). (b)

Comparison on small networks with big communities (n =
1000, cmin = 20, cmax = 100). (c) Comparison on big networks
with small communities (n = 5000, cmin = 10, cmax = 50). (d)
Comparison on big networks with big communities (n = 5000,
cmin = 20, cmax = 100).

4.2. Real-world networks

As real networks may have some different topological
properties from the synthetic ones, here we adopt seven
widely used real-world networks to further evaluate the
performance of these algorithms. The networks not only
include small graphs containing dozens of nodes, but
also include large graphs containing tens of thousands
of nodes. A description of them is given as Table 1.

Table 1. Real-world networks used in the evaluation.

Networks V(N) E(N) Description
karate 34 78 Zachary’s karate club [36]
dolphin 62 160 Dolphin social network [37]
polbooks 105 441 Books about US politics [38]
football 115 613 American College football [3]
jazz 198 5,484 Jazz musicians network [39]
email 1,133 5,451 Emails of human interactions [40]
internet 22,963 48,436 A snapshot of the Internet [41]

Because the inherent community structure for real

networks is usually unknown, here we adopt the most
commonly used modularity Q [5] to evaluate the
performance of these algorithms. Table 2 shows the
average result (over 50 runs) that compares our method
GALS with FN, FEC, LPA, FUA, TGA and GACD in
terms of function Q on the real-world networks
described in Table 1. As we can see, the clustering
quality of our method GALS is also competitive with
that of FUA, and better than that of the other five
algorithms.

Table 2. Compare GALS with FN, FEC, LPA, FUA, TGA and GACD

in terms of Q on real networks.
Q-value FN FEC LPA FUA TGA GACD GALS
karate 0.3807 0.3744 0.3646 0.4188 0.4039 0.4198 0.4198
dolphin 0.5104 0.4976 0.4802 0.5268 0.5241 0.5294 0.5294
polbooks 0.5020 0.4904 0.5006 0.4986 0.5245 0.5272 0.5272
football 0.5497 0.5697 0.5865 0.6046 0.5937 0.6044 0.6046
jazz 0.4389 0.4440 0.3422 0.4431 0.4406 0.4435 0.4449
email 0.5037 0.5173 0.3706 0.5406 0.1871 0.4422 0.5599
internet 0.6378 0.6104 0.4978 0.6613 0.1141 0.5365 0.6560

In the seven real networks from Table 1, there are

only three that have known community structures. They
are the well-known karate network, dolphin network

 Genetic Algorithm with a Local Search Strategy

and football network. Here we try to further analyze
GALS’s clustering solutions in terms of the actual
community structures of these three networks. Note that
the running result of GALS for each of these three
networks is usually the same at each time.

Zachary’s karate club network [36] is a social
network of friendships between 34 members of a karate
club at a US university in the 1970s. Its actual
community structure is shown as Fig. 8(a), in which red
squares represent members associated with the principle
karate teacher’s faction while blue triangles represent
members associated with the club administrator’s
faction. We randomly execute GALS once for the karate
network. Its clustering solution includes four
communities, which is shown as Fig. 8(a). As we can
see, GALS can not only correctly discover the actual
community structure of karate network, but also divide
each actual community into two well-separated sub-
communities. Furthermore, the average modularity Q
obtained by GALS over 50 runs is 0.4198, which is
higher than the modularity Q = 0.3715 for the actual
division of this network.

The dolphin network [37] describes the social
relationship of 62 bottlenose dolphins living in Doubtful
Sound of New Zealand, which was first established by
Lusseau based on his experimental observations of the
dolphins for seven years. During his research studies, he
found these dolphins were separated into two groups for
some reasons. The actual community structure of this
network is shown as Fig. 8(b), in which the red squares
represent members associated with the larger
community while blue triangles represent members
associated with the smaller community. We randomly
execute GALS once for the dolphin network. Its
clustering solution includes five communities which are
shown as Fig. 8(b). As we can see, GALS can not only
discover actual community structure of the dolphin
network correctly, but also divide the larger actual
community into four well-separated sub-communities.
Furthermore, the average modularity Q obtained by
GALS over 50 runs is 0.5294, which is higher than the
modularity Q = 0.3722 for the actual division of this
network.

The US college football association network [3]
contains 115 nodes and 613 edges, which correspond to
football teams and games played among teams,
respectively. All teams are divided into 12 conferences.

Each conference is considered as one actual community
since the number of games played within the same
conference should be much more than those between
conferences. The actual community structure of this
network is shown as Fig. 8(c), in which the nodes with
different shapes and colors represent the football teams
associated with different conferences. The names of
different conferences are also given in Fig. 8(c). We
randomly execute GALS once for the football network.
Its clustering solution includes ten communities, which
is shown as Fig. 8(c). As we can see, except for some
teams in conferences Sunbelt and IA Independents,
almost all other teams are correctly grouped with the
other teams in their conference by our algorithm GALS.
Known from [3], these misclassified teams are mostly
independent teams that should not in fact belong to any
conference. But, by our algorithm GALS, these
independent teams are still grouped with the conference
with which they are most closely associated. The few
cases in which our algorithm seems to fail actually
correspond to nuances in the scheduling of games.
Furthermore, the average modularity Q obtained by
GALS over 50 runs is 0.6046, which is higher than the
modularity Q = 0.5518 for the actual division of this
network.

(a)

(b)

D. Liu et al.

(c)

Fig. 8. (Color online) Clustering solutions of GALS on three
widely used real-world networks with a known community
structure. (a) Clustering solution of karate network; (b)
Clustering solution of dolphin network; (c) Clustering solution
of football network.

5. Conclusion

A local search based genetic algorithm (GALS),
employing modularity Q as objective function and LAR
as genetic representation, is proposed in this paper.
GALS first adopts a Markov random walk based
method to produce the initial population, and then it
detects community structure by iteratively executing the
following three genetic operators: uniform crossover,
local search based mutation and µ+λ selection. The
proposed algorithm GALS is tested on both computer-
generated and real-world networks, and compared with
some presently competing community mining
algorithms. Experimental results demonstrate that
GALS is highly effective as well as efficient at
discovering the community structure.

While GALS has a reasonable time complexity, its
efficiency is still not ideal when handling huge networks
(such as WWW, containing millions of nodes). This
may be because the time complexity of our mutation
method LSMA is O(cn) which is (a little) worse than the
linear time, although c is much smaller than n. Thus, our
future work can be laid as follows. We intend to
improve the efficiency of LSMA from some heuristic
angles, and then validate the new GALS’s ability to find
communities in huge networks.

Also, many real-world networks consist of
communities that overlap because nodes are members of
more than one community [29]. Our current work did
not consider this aspect. Thus, in the future, our other

task is to generalize GALS to tackle overlapping
community detection, and make it able to uncover and
interpret the significant overlapping in communities that
is expected to be present in many cases.

Acknowledgements

Thanks are due to the referees for helpful comments.
This work was supported by National Natural Science
Foundation of China (60873149, 60973088, 61133011,
61202308), Scholarship Award for Excellent Doctoral
Student granted by Ministry of Education
(450060454018), Program for New Century Excellent
Talents in University (NCET-11-0204), and Jilin
University Innovation Project (450060481084).

Appendix A. The proof of Theorem 1.

Theorem 1. For ∀ i ∈ V, if the label of node i
changes under the condition that the labels of all other
nodes don’t change, function Q of the entire network is
monotonically increasing with function fi.

Proof. Given a network N = (V, E) and its
community structure C. For ∀ i ∈ V, Let the label of
node i change from r(i) to r(j), which makes the
community structure become C'. Given r(i) ≠ r(j), in
community structure C', the original community of node
i will become c'r(i) = cr(i) − {i}, and its new community
will become c'r(j) = cr(j) ∪ {i}.

From (3), we know that if any node’s community
changes, its function f will also change. It’s obvious that,
the variation of node i’s label will result in the variation
of its two related communities, which are cr(i) and cr(j).
Thus, this will cause the variation of function f of each
node in set c = cr(i) ∪ cr(j). Here, we divide the nodes of
set c into three different categories, and give the
equation of the variation of function f for each node in
each category respectively.

1) For ∀ s ∈ c'r(i), the variation of its function fs
which is defined as sfΔ is given by

() ()'

(') ()

2 2

2

r i r i

s s s

s t s t
st st

t c t c

s i
si

f f C f C
k k k k

A A
m m

k k
A

m

∈ ∈

Δ = −

⎛ ⎞ ⎛ ⎞= − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

∑ ∑ (A1)

2) For ∀ p ∈ cr(j), the variation of its function fp
which is defined as pfΔ is given by

 Genetic Algorithm with a Local Search Strategy

() ()'

(') ()

2 2

2

r j r j

p p p

p q p q
pq pq

q c q c

p i
pi

f f C f C

k k k k
A A

m m

k k
A

m

∈ ∈

Δ = −

⎛ ⎞ ⎛ ⎞
= − − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

= −

∑ ∑ (A2)

3) For node i, the variation of its function fi which is
defined as ifΔ is given by

() ()'

(') ()

2 2
r j r i

i i i

i e i e
ie ie

e c e c

f f C f C
k k k k

A A
m m∈ ∈

Δ = −

⎛ ⎞ ⎛ ⎞= − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ (A3)

Thus, the variation of function Q of the whole
network, which is caused by the variation of the label of
node i, can be deduced as follows. Here the variation of
Q is defined as QΔ .

() ()'

1
2

r i r j
s p i

s c p c
Q f f f

m ∈ ∈

⎛ ⎞
⎜ ⎟Δ = Δ + Δ + Δ
⎜ ⎟
⎝ ⎠
∑ ∑ (A4)

()

()

' 21
2

2

r i

r j

s i
si

s c

p i
pi i

p c

k k
A

m
Q

k km
A f

m

∈

∈

⎛ ⎞⎛ ⎞− −⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟

Δ = ⎜ ⎟
⎛ ⎞⎜ ⎟+ − + Δ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑

∑
 (A5)

()

()'

2 21
2

2 2

r i

r j

s i i i
si ii

s c

p i i i
pi ii i

p c

k k k k
A A

m m
Q

m k k k k
A A f

m m

∈

∈

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟− − − − +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎜ ⎟Δ = ⎜ ⎟⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟− − − + Δ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

∑

∑

(A6)

()

()

' 21
2

2

r j

r i

p i
pi

p c

s i
si i

s c

k k
A

m
Q

m k k
A f

m

∈

∈

⎛ ⎞⎛ ⎞
−⎜ ⎟⎜ ⎟

⎜ ⎟⎝ ⎠
Δ = ⎜ ⎟

⎛ ⎞⎜ ⎟− − + Δ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑

∑
 (A7)

()1 1
2 i i iQ f f f

m m
Δ = Δ + Δ = Δ (A8)

Then ()1(') () (') ()i imQ C Q C f C f C− = − . As we can

see, given (') ()i i f C f C> , there will be (') ()Q C Q C> .

References

1. D. J. Watts, and S. H. Strogatz, “Collective dynamics of
small-world networks,” Nature, vol. 393, pp. 440-442,
Jun. 1998.

2. A. L. Barabási, R. Albert, H. Jeong, and G. Bianconi,
“Power-law distribution of the world wide web,” Science,
vol. 287, pp. 2115a, Mar. 2000.

3. M. Girvan, and M. E. J. Newman. “Community structure
in social and biological networks,” Proc. Natl. Acad. Sci.,
vol. 99, pp. 7821-7826, Jun. 2002.

4. L. Danon, J. Duch, A. Diaz-Guilera, and A. Arenas,
“Comparing community structure identification,” J. Stat.
Mech., vol. 2005, pp. P09008, Sep. 2005.

5. M. E. J. Newman, and M. Girvan, “Finding and
evaluating community structure in networks,” Phys. Rev.
E, vol. 69, pp. 026113, Feb. 2004.

6. S. Fortunato, “Community detection in graphs,” Phys.
Rep., vol. 486, pp. 75-174, Jun. 2010.

7. S. Fortunato, and M. Barthélemy, “Resolution limit in
community detection,” Proc. Natl. Acad. Sci., vol. 104,
pp. 36-41, Jan. 2007.

8. B. H. Good, Y. -A. de Montjoye, and A. Clauset, “The
performance of modularity maximization in practical
contexts,” Phys. Rev. E, vol. 81, pp. 046106, Apr. 2010.

9. R. Guimera, M. Sales-Pardo, and L. A. N. Amaral,
“Modularity from fluctuations in random graphs and
complex networks,” Phys. Rev. E, vol. 70, pp. 025101,
Aug. 2004.

10. U. Brandes, D. Delling, M. Gaertler, R. Goerke, M.
Hoefer, Z. Nikoloski, and D. Wagner, “Maximizing
modularity is hard,” arXiv:physics/0608255, 2006.

11. Y. J. Park, and M. S. Song, “A genetic algorithm for
clustering problems,” in Proc. 3rd Annual Conference on
Genetic Programming (GP’98), Madison, USA, 1998, pp.
568-575.

12. E. M. Montes, and C. A. C. Coello, “A simple multi-
membered evolution strategy to solve constrained
optimization problems,” IEEE Trans. Evolutionary
Computation, vol. 9, pp. 1-17, Feb. 2005.

13. G. Syswerda, “Uniform crossover in genetic algorithms,”
in Proc. 3rd International Conference on Genetic
Algorithms (ICGA’89), Fairfax, Virginia, USA, 1989, pp.
2-9.

14. M. E. J. Newman, “Fast algorithm for detecting
community structure in networks,” Phys. Rev. E, vol. 69,
pp. 066133, Jun. 2004.

15. R. Guimera, and L. A. N. Amaral, “Functional
cartography of complex metabolic networks,” Nature, vol.
433, pp. 895-900, Feb. 2005.

16. V. D. Blondel, J. L. Guillaume, R. Lambiotte, and E.
Lefebvre, “Fast unfolding of communities in large
networks,” J. Stat. Mech., vol. 2008, pp. P10008, Oct.
2008.

17. U. N. Raghavan, R. Albert, and S. Kumara, “Near linear-
time algorithm to detect community structures in large-

D. Liu et al.

scale networks,” Phys. Rev. E, vol. 76, pp. 036106, Sep.
2007.

18. L. D. F. Costa, “Hub-based community finding,”
arXiv:cond-mat/0405022v1, 2004.

19. J. P. Bagrow, and E. M. Bollt, “Local method for
detecting communities,” Phys. Rev. E., vol. 72, pp.
046108, Oct. 2005.

20. B. Yang, W. K. Cheung, and J. Liu, “Community mining
from signed social networks,” IEEE Trans. Knowl. Data
Eng., vol. 19, pp. 1333-1348, Sep. 2007.

21. M. Rosvall, and C. T. Bergstrom, “Maps of random
walks on complex networks reveal community structure,”
Proc. Natl. Acad. Sci., vol. 105, pp. 1118-1123, Jan. 2008.

22. P. Ronhovde, and Z. Nussinov, “Multiresolution
community detection for megascale networks by
information-based replica correlations,” Phys. Rev. E, vol.
80, pp. 016109, Jul. 2009.

23. M. Tasgin, A. Herdagdelen, and H. Bingol, “Community
detection in complex networks using genetic algorithms,”
arXiv:0711.0491, 2007.

24. D. He, Z. Wang, B. Yang, and C. Zhou, “Genetic
algorithm with ensemble learning for detecting
community structure in complex networks,” in Proc.
IEEE Int. Conference on Computer Sciences and
Convergence Information Technology (ICCIT’09), Seoul,
Korea, 2009, pp. 702-707.

25. S. Li, Y. Chen, H. Du, and M. W. Feldman,“A genetic
algorithm with local search strategy for improved
detection of community structure,” Complexity, vol. 15,
pp. 53-60, Mar. 2010.

26. C. Pizzuti, “Community detection in social networks with
genetic algorithms,” in Proc. Genetic and Evolutionary
Computation Conference (GECCO’08), Atlanta, Georgia,
USA, 2008, pp. 1137-1138.

27. C. Pizzuti, “A multi-objective genetic algorithm for
community detection in networks,” in Proc. IEEE Int.
Conference on Tools with Artificial Intelligence
(ICTAI’09), Washington, DC, USA, 2009, pp. 379-386.

28. C. Shi, Z. Yan, Y. Wang, Y. Cai, and B. Wu, “A genetic
algorithm for detecting communities in large-scale
complex networks,” Adv. Complex Systems, vol. 13, pp.
3-17, Jan. 2010.

29. G. Palla, I. Derenyi, I. Farkas, and T. Vicsek,
“Uncovering the overlapping community structures of
complex networks in nature and society,” Nature, vol.
435, pp. 814-818, Jun. 2005.

30. J. Handle and J. Knowles, “An evolutionary approach to
multiobjective clustering,” IEEE Trans. Evolutionary
Computation, vol. 11, pp. 56-76, Feb. 2007.

31. N. Makate, M. Miki, T. Hiroyasu, and T. Senda,
“Multiobjective clustering with automatic k-
determination for large-scale data,” in Proc. Genetic and
Evolutionary Computation Conference (GECCO’07),
London, England, 2007, pp. 861-868.

32. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms. Cambridge, MA: MIT Press,
2001.

33. P. Pons, and M. Latapy, “Computing communities in
large networks using random walks,” Journal of Graph
Algorithms and Applications, vol. 10, pp. 191-218, Jan.
2006.

34. A. Lancichinetti, S. Fortunato, and F. Radicchi,
“Benchmark graphs for testing community detection
algorithms,” Phys. Rev. E, vol. 78, pp. 046110, Oct. 2008.

35. J. Leskovec, K. J. Lang, A. Dasgupta, and M. W.
Mahoney, “Statistical properties of community structure
in large social and information networks,” in Proc. 17th
International World Wide Web Conference (WWW’08),
Beijing, China, 2008, pp. 695-704.

36. W. W. Zachary, “An information flow model for conflict
and fission in small groups,” J. Anthropological Research,
vol. 33, pp. 452-473, 1977.

37. D. Lusseau, “The emergent properties of a dolphin social
network,” Proc Biol Sci, vol. 270, pp. S186-8, Jul. 2003.

38. M. E. J. Newman, “Modularity and community structure
in networks,” Proc. Natl. Acad. Sci., vol. 103, pp. 8577-
8582, Jun. 2006.

39. P. M. Gleiser, and L. Danon, “Community structure in
jazz,” Adv. Complex Systems, vol. 6, pp. 565-573, Jul.
2003.

40. R. Guimerà, L. Danon, A. Diaz-Guilera, F. Giralt, and A.
Arenas, “Self-similar community structure in a network
of human interactions,” Phys. Rev. E, vol. 68, pp. 065103,
Dec. 2003.

41. Network data from Mark Newman’s home page, (2006).
[Online]. Available: http://www-
personal.umich.edu/~mejn/netdata/

