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Abstract 

In order to further improve the performance of current genetic algorithms aiming at discovering communities, a 
local search based genetic algorithm (GALS) is here proposed. The core of GALS is a local search based mutation 
technique. In order to overcome the drawbacks of traditional mutation methods, the paper develops the concept of 
marginal gene and then the local monotonicity of modularity function Q is deduced from each node’s local view. 
Based on these two elements, a new mutation method combined with a local search strategy is presented. GALS 
has been evaluated on both synthetic benchmarks and several real networks, and compared with some presently 
competing algorithms. Experimental results show that GALS is highly effective and efficient for discovering 
community structure. 

Keywords: Complex network; Community mining; Network clustering; Genetic algorithm; Local search; 
Modularity Q 

                                                 
* Corresponding author. 

1. Introduction 

Many complex systems in the real world exist in the 
form of networks, such as social networks, biological 
networks, Web networks, etc, which are collectively 
referred to as complex networks. The area of complex 
networks has attracted many researchers from different 
fields such as physics, mathematics, computer science, 
etc. While a considerable body of work addressed basic 
statistical properties of complex networks, such as the 
existence of a “small world effect” [1] and the presence 
of “power laws” in the link distribution [2], another 
property has also been given particular attention, that is, 
“community structure”: where the nodes in networks are 
often found to cluster into tightly-knit groups with a 
high density of within-group edges and a lower density 
of between-group edges [3]. The community mining 
problem (CMP), which this paper refers to, is to 

discover and interpret community structures from 
various complex network data. 

The ability to detect community structure is useful 
in many aspects [4]. For example, nodes belonging to 
the same community may have much more common 
features than those in different communities, which 
could be used to simplify the functional analysis of 
complex networks. Furthermore, community structure 
may provide insights in understanding some 
uncharacteristic property of a complex network system. 
For instance, in the world wide web, community 
analysis has uncovered thematic clusters; in biochemical 
or neural networks, communities may be functional 
groups and separating the network into such groups 
could simplify functional analysis considerably.  

In the past few years, the most popular method to 
detect communities in graphs consists in the 
optimization of a quality function, modularity Q 
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introduced by Newman and Girvan [5]. Modularity Q 
gives a clear and precise definition of the characteristics 
of the acknowledged community and has had very 
successful application in practice [6], although it is still 
not free from drawbacks (suffers from resolution limits 
[7], exhibits extreme degeneracy [8], has random graphs 
with high modularity due to fluctuations [9], etc). 

The search for the partition with maximal 
modularity is in general a great challenge since it was 
proved to be a NP-hard (non-deterministic polynomial-
time hard) problem [10]. Many heuristics relying on 
different approaches have been introduced to 
approximate the optimal partition, and some of them are 
able to find fairly good approximate solutions in a 
reasonable time. But there is still room for improvement 
in their performance, in terms of both effectiveness and 
efficiency.  

Because of the effectiveness in approaching NP-
hard problems, genetic algorithms have become a 
competitive community mining method. In order to 
further improve the performance of those former genetic 
algorithms for CMP, a local search based genetic 
algorithm GALS is proposed in this paper. Our GALS 
employs modularity Q as objective function, and takes a 
graph-based representation LAR [11] as genetic 
representation. In GALS, we first adopt a Markov 
random walk based method to generate the initial 
population; and then we detect community structure by 
iteratively executing the following three genetic 
operators: uniform crossover [12], local search based 
mutation and µ+λ selection [13]. Moreover, the genetic 
operators, which are employed by GALS, make each 
LAR chromosome in the population correspond to a 
spanning subgraph of the original network. Thus the 
solution space of GALS can be reduced, which 
improves both the search efficiency and convergence 
rate of this algorithm.  

It is noteworthy that, the core of GALS is the local 
search based mutation method. For overcoming the 
drawbacks of traditional mutation methods, we first 
present and name the  concept of marginal gene, and 
then deduce the local monotonicity of modularity Q 
from each node’s local view. Based on these above two 
points, an effective and efficient mutation method 
combined with a local search strategy is finally 
proposed. 

2. Related Works 

Over the last decade, many approaches have been 
proposed to the analysis of the community structures in 
complex networks. They adopt different types of 
principles and techniques, rooted in physics, 
mathematics, computer science, and so on. They mainly 
include: divisive methods, e.g. Girvan-Newman (GN) 
algorithm [3]; modularity optimization methods, e.g. 
Fast Newman (FN) algorithm [14], Simulated 
Annealing (SA) algorithm [15], Fast Unfolding 
Algorithm (FUA) [16]; label passing methods, e.g. 
Label Propagation Algorithm (LPA) [17], hub-based 
algorithms [18, 19]; dynamic methods, e.g. Finding 
and Extracting Communities (FEC) [20], Infomap 
algorithm [21], Ronhovde and Nussinov (RN) algorithm 
[22]; and others. The interested readers can consult the 
excellent and comprehensive survey by Fortunato [6]. 

Especially, because of the effectiveness to 
approximately solve NP-hard problems, genetic 
algorithm (GA) is currently becoming a class among the 
competitive methods for modularity optimization. At 
present two main types of genetic representation 
strategy are employed by GA in solving community 
mining problems.  

The first one is a string-of-group encoding (SGE). 
As each node is only denoted by an arbitrary label in a 
SGE chromosome, the traditional crossover operators 
(such as uniform, one-point and two-point crossover) is 
not well-fit for the task. This placed pressure on the 
design of new types of crossover operators. Several 
works in this line are as follows. Tasgin et al. [23] 
presented, for the first time, the use of a genetic 
algorithm to detect communities. In their method, a one-
way crossover operator is proposed, which has been 
proven to be effective for this string-of-group encoding. 
He et al. [24] proposed a genetic algorithm with 
ensemble learning for discovering communities. They 
replaced the traditional crossover operator with a new 
multi-individual crossover operator based on the idea of 
clustering ensemble, which also performs very well. Li 
et al. [25] proposed a genetic algorithm for community 
detection, which adopts the one-way crossover operator 
and introduces a new type of local search operator. 
However, the above methods are all only effective for 
some small sized benchmarks. Thus, the research 
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community began to focus on a second type of encoding 
strategy. 

The second one is called the locus-based adjacency 
representation (LAR), which is indeed a graph-based 
representation. As each community corresponds to a 
component in any a LAR chromosome, this type of 
representation strategy is well-fit for most of the 
traditional crossover operators. There are some related 
works as follows. Pizzuti et al. [26] proposed a genetic 
algorithm using LAR representation for the first time, 
which adopts the traditional operators (such as uniform 
crossover and random mutation) for the detection of 
communities. Later, they further improved their former 
method by employing two types of community 
functions, and presented a multi-objective genetic 
algorithm [27]. But the performance of both these two 
approaches also looks only effective under the small 
benchmarks as before. Shi et al. [28] proposed another 
genetic algorithm with LAR representation, in which a 
new crossover operator, similar with the one-way 
crossover operator, is introduced. As far as we know, 
this is the first genetic algorithm that is able to cluster 
several large networks. However, its clustering quality 
is still not ideal when compared with some current 
competing algorithms for community detection.  

In our recent study, we found out that, the traditional 
random mutation operator often results in merging 
and/or splitting communities for the LAR representation, 
although it has some advances for the crossover 
operation. This will make it unable to effectively 
achieve its local search function, and then lead to the 
inefficacy of genetic algorithms. Thus, in our opinion, 
designing an efficient and effective mutation operator 
for the LAR representation may be a good solution, 
which may make a genetic algorithm have stronger 
ability to deal with actual large-scale networks. 

3. Algorithm 

3.1. Problem definition 

Let N = (V, E) denote an unweighted and undirected 
network, where V is the set of nodes (or vertices) and E 
is the set of edges (or links). Let a k-way partition of the 
network be defined as π = {c1, c2, …, ck}, where c1, 
c2, …, ck denote the k clusters, and satisfy 

1 ii k
c V

≤ ≤
∪ =  

and 
1 ii k

c
≤ ≤
∩ = ∅ . If partition π has the property that 

within-cluster edges are dense and between-cluster 
edges are sparse, it’s called a community structure of 
this network. This is a way of defining non-overlapping 
communities. However, it should be noted that, the 
communities may overlap in many real-world networks, 
i.e. some nodes may belong to more than one 
community simultaneously [29]. Here we mainly 
focused on hard clustering, and did not consider 
overlapping communities in this present work. 

In 2004, Newman and Girvan proposed an important 
quality metric for assessment of partitioning a network 
into communities, which is called modularity Q [5]. The 
idea of modularity Q steams from the intuition that a 
network with community structure is different from a 
random network. Therefore, this function Q can be 
defined as the difference between the fraction of edges 
that fall within communities and the expected value of 
the same edge quantity if edges fell at random without 
regard for the community structure. As modularity Q 
has been widely accepted by the scientific community 
[6], in this paper we also choose to employ it as the 
objective function that is to be maximized. 

Given the network N and supposing its nodes are 
divided into some communities such that node i belongs 
to community cr(i) in which r(i) denotes the label of 
node i, then function Q is defined as 

( )1 ( ), ( )
2 2

i j
ij

ij

k k
Q A r i r j

m m
⎛ ⎞⎛ ⎞

= − ×δ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ .       (1) 

Here A = (Aij)n×n denotes the adjacency matrix of 
network N, in which Aij = 1 if nodes i and j connect with 
each other, Aij = 0 otherwise. The δ  function ( , )u vδ  is 
equal to 1 if u = v and 0 otherwise. The degree ki of any 
node i is defined as i ijjk A= ∑ , and the total number 

of edges m in this network is defined as 1
2 ijijm A= ∑ . 

3.2. Genetic representation 

Algorithm GALS in this paper adopts the locus-based 
adjacency representation (LAR) proposed by [11]. At 
present, this representation (or encoding) schema was 
also employed by [30, 31] for multi-objective clustering 
problem and by [26-28] for community mining problem. 
In this graph-based representation, any individual 
(chromosome) g in the population consists of n genes, in 
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which each gene corresponds to a node in network N 
and n denotes the total number of nodes in this network. 
Each gene i can take an arbitrary allele value j in the 
range of {1, …, n}, which can be interpreted as a link 
between nodes i and j existing in the corresponding 
graph G of individual g. This also means that, node i 
will be in a same community with node j in the partition 
denoted by this individual. The decoding process for a 
LAR individual is to identify all the components from 
graph G, and the nodes belonging to the same 
component are assigned to a same community. This 
decoding process can be done in a linear time as shown 
by [32]. A simple example of the LAR representation is 
illustrated as Fig. 1. 

 
(a) 

  
(b) 

 
(c) 

Fig. 1. (Color online) An illustration for the locus-based 
adjacency representation. (a) A sample network consisting of 

eleven nodes; (b) One out of many possible chromosomes; (c) 
The corresponding graph of this chromosome. 

The locus-based adjacency representation has two 
major advantages for solving community mining 
problems. Firstly, the community number denoted by 
each individual is automatically determined in the 
decoding process, thus there is no need for us to know 
the number of communities in advance. Hence, we can 
effortlessly evaluate a network clustering solutions with 
different community numbers during the execution 
process of GALS, and finally attain the best solution 
with the most suitable community number. Secondly, 
LAR representation is well suited for standard crossover 
operators, such as uniform, one-point and two-point 
crossover. For community mining problems, if we use 
the traditional genetic representations such as string-of-
group encoding, the above crossover operators will be 
highly disruptive, as well as detrimental, for the 
community detection process. In contrast, the graph-
based representation can effortlessly implement its 
global search function by merging and splitting 
communities, while maintaining good heritability. 

3.3. Population initialization 

Here we first introduce the idea of safe individuals 
proposed by [26], and then give a Markov random walk 
based individual generation method which can produce 
safe, accurate and diverse initial individuals. 

If an individual is randomly generated, some 
components in its corresponding graph G may be 
disconnected in the original network N, which also 
means G may be not a subgraph of N. For example, an 
individual could contain an allele value j in the ith 
position, which means there is a link between nodes i 
and j in its corresponding graph G, but there may be no 
connection between these two nodes in network N. 
However, in a network with community structure, there 
is the obvious intuition that any a node should have one 
of its neighbors in the same community or it, itself, is a 
community. Thus, the solution space of chromosomes 
can be reduced if the above heuristics is considered, 
which means one can make any individual in the 
population be a spanning subgraph of the original 
network N. Then the individual that satisfies the above 
condition is called a safe individual, the population that 
is composed of safe individuals is called a safe 



 Genetic Algorithm with a Local Search Strategy 
 

 

population, and the solution space of safe individuals is 
called a safe solution space.  

The whole solution space of LAR representation is 
nn, while the safe solution space is 1

n
ii k

=∏ , where n is 
the total number of nodes and ki is the degree of node i 
in network N. As most complex networks are sparse 
graphs, for any node i, ki can be regarded as a constant 
(ki << n). Thus it is obvious that the safe solution space 
is much smaller than the whole solution space. 
Therefore, if the search region of our algorithm GALS 
can be restricted to the range of the safe solution space, 
its search efficiency and convergence rate can both be 
improved. 

In order to achieve the above goal, we propose a 
Markov random walk based individual generation 
method (MRW), which is based on the natural 
community property possessed by complex networks.  

In a network, let qij be the probability that an agent 
freely walks from an arbitrary node i to one of its 
neighbor nodes j within one step, which is also called 
the transition probability of one-step random walk. In 
terms of the adjacency matrix of N, A = (Aij)n×n, qij is 
defined by (2). Here the agent’s random walk can be 
regarded as a discrete Markov process. 

ij
ij

irr

A
q

A
=
∑

.                                (2) 

From the view of a Markov random walk, when a 
network has community structure, a random walk agent 
should find it difficult to move outside its own 
community boundary, whereas it should be easy for it to 
reach other nodes within its community, as link density 
within a community should be high, by definition. In 
other words, the probability for remaining in the same 
community, that is, a random walk agent starts from any 
node and stays in its own community, should be greater 
than that of going out to a different community. The 
readers, who are interested in heuristic based random 
walks to find communities, can consult the related and 
excellent work by Pons and Latapy [33]. 

Based on the above idea, in algorithm MRW, we 
make any gene i in a chromosome select its allele value 
j in the range of {1, …, n} by using the one-step 
transition probability qij. It’s obvious that the 
individuals generated by MRW are not only safe but 
also accurate and diverse, which can improve the 
performance of our genetic algorithm GALS. 

3.4. Selection and crossover operators 

The role of a selection operator is to sieve out 
(deterministically or probabilistically) the solution that 
have been generated through the use of the other genetic 
operators. In order to keep the fittest individuals from 
each generation and improve the convergence speed of 
genetic algorithm (GA) at the same time, a µ+λ 
selection strategy [12], preferred by GA for solving 
combinatorial optimization problems, is employed in 
this paper. The process of µ+λ selection can be 
described as follows. Let the size of parent population 
be µ, and λ offspring be generated from randomly 
chosen parents, then we single out µ best individuals 
among parents and offspring as the population of next 
generation. 

As a global search operator in GA, uniform 
crossover (UC) [13] is adopted in this paper. Given two 
randomly chosen parents A and B, and a randomly 
generated binary vector v, uniform crossover then 
selects the genes where v is 1 from parent A, and selects 
the genes where v is 0 from parent B, and then combines 
the genes to form a new child C. Mathematically 
speaking, one has C = A.*v + B.*(1-v), where (.*) 
denotes array multiplication. It’s obvious that if parents 
A and B both are safe individuals, their child C is 
forcibly a safe one too. This is because any gene i 
containing a value j in the child must comes from one of 
its two parents, meanwhile, this edge <i, j> will 
necessarily exist in network N due to the safety of the 
parents. Thus, we find out that the uniform crossover 
will not violate the safety of the population in GA. 
Furthermore; here we choose the uniform crossover in 
favor of one-point or two-point crossover. This is 
because it is unbiased with respect to the ordering of 
genes and can generate any combination of alleles from 
the two parents within a single crossover operation. An 
example for the operation of uniform crossover on LAR 
chromosomes is shown as Fig. 2. 
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(a) 

 
(b) 

  
(c) 

 
(d) 

Fig. 2. (Color online) An illustration of the uniform crossover 
on the network in Fig. 1(a). (a) The corresponding graph of 
parent A; (b) The corresponding graph of parent B; (c) 
Uniform crossover of parents A and B yielding child C by 
using random binary vector v; (d) The corresponding graph of 
child C. 

3.5. Mutation operator 

The mutation operator is the most important part in this 
paper. Here, for the community mining problem, we 
first introduce a concept called marginal gene intended 
to overcome the drawbacks of current mutation methods. 
Then, we propose an efficient and effective local search 
based mutation algorithm, which operates with the aid 
of this marginal gene. 

3.5.1 .  Marginal gene 

Recently, the random mutation strategy was mainly 
adopted as a local search operator by most genetic 
algorithms which employed LAR representation [26-28, 
30, 31]. However, this type of mutation operator is not 
well suited for the community mining problem. 

In the opinion of Guimera and Amaral, when 
solving community mining problems, it’s an effective 
method to generate a new candidate solution by 
iteratively executing the following three types of 
operations on the current candidate solution, which 
includes “move single nodes from one community to 
another”, “merge multi-communities” and “split single 
communities” [15]. In a genetic algorithm, the crossover 
operator is regarded as a macroscopic operation on 
individuals, while the mutation operator is regarded as a 
microscopic operation on individuals. Thus, in a genetic 
algorithm for solving community mining problems, if 
the crossover operator can achieve its global search 
function by merging and splitting communities, and the 
mutation operator can achieve its local search function 
by moving single nodes between communities, this 
genetic algorithm leads to a strong ability in searching. 
Each individual in this paper corresponds to a graph, 
and each component in the graph corresponds to a 
community. Thus it’s obvious that the uniform 
crossover in Sec. 3.4 can effortlessly achieve its 
function of merging and splitting communities. Then, 
the mutation operator in this section should be requested 
to have the ability to effectively achieve its intended 
function of moving single nodes between communities.  

However, our study shows that the traditional 
mutation operator [26-28, 30, 31] often results in 
merging and/or splitting communities, which will make 
it unable to effectively achieve its local search function, 
and then lead to the inefficacy of a genetic algorithm. 
For example, in an individual (or chromosome) g, let 
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nodes i and j belong to different communities (or 
components), and gene i select the j as its allele value by 
a single mutation operation, then this mutation operation 
will very likely lead to the combination of these two 
communities, which also means the two components 
denoted by nodes i and j may be merged into a bigger 
one by building a new link <i, j> between them. A 
simple example is shown as Fig. 3(c). It’s obvious that 
this is an undesirable situation. Thus, as the following 
presentation will show, we will offer an effective 
solution to this problem. 

 
Definition 1. (Marginal Gene) Given an arbitrary 

LAR chromosome g, if the allele values of all genes in g 
are not equal to j, gene j is called a marginal gene in g, 
which is also called a marginal node. 

 
Note that any LAR chromosome g corresponds to a 

directed graph G, although we depict it as an undirected 
graph in the above sections for simplification. All nodes 
in G will not point at marginal nodes known from 
Definition 1. Thus, a single mutation operation on a 
marginal node can implement this node’s movement 
from one community to another. Meanwhile, it will not 
result in merging or splitting communities. It’s obvious 
that, with the aid of marginal nodes, the mutation 
operator can successfully achieve its local search 
function. A simple example which describes a single 
mutation operation on an arbitrary marginal node is 
shown as Fig. 3(d). 

  
(a) 

 
(b) 

  
(c) 

 
(d) 

Fig. 3. (Color online) An illustration of the mutation operation 
for the network in Fig. 1(a). Note that, in order to depict the 
mutation process more clearly, here we adopt the directed 
graph to express a chromosome. (a) An arbitrary chromosome 
A; (b) Its corresponding directed graph G; (c) A single 
mutation operation on non-marginal node 7 for chromosome A, 
which results in splitting and/or merging communities; (d) A 
single mutation operation on marginal node 2 for chromosome 
A, which implements this node’s movement from the red 
community to the blue one, and does not result in merging or 
splitting communities. 

Now, we have to pay attention to the proportion of 
marginal genes that appear in a LAR chromosome. We 
first focus on the randomly generated chromosome g, 
and then generalize it to a more universal situation. Let 
there be n genes in g, then the probability that any gene 
i takes some value j is p = 1/n; on the contrary, the 
probability that gene i doesn’t take value j is 1−p; and 



D. Liu et al. 
 

 

then the probability that all genes in g don’t take value j 
is β = (1−1/n)n. Thus the probability that the marginal 
genes appear in chromosome g should be β. β(n) is a 
monotonically increasing function, and 
lim ( ) 1/ 0.3679n n eβ→+∞ = ≈ . Also, the total number 
of nodes in almost all real networks is greater than 10, 
and one has p(10) = 0.3487. Thus, the proportion of 
marginal genes appearing in a chromosome g should be 
β(n) ∈ (0.3487~0.3679), n > 10. Moreover, our 
experiments show that the above conclusion is also fit 
for more general chromosomes in a universal situation. 
In this sense, if we execute a mutation operation on all 
marginal genes for a chromosome, it’s equivalent to that 
of executing a mutation operation on this chromosome 
by mutation rate β. 

3.5.2.  Local search based mutation algorithm 

In this section, we first deduce the local monotonicity of 
modularity function Q, and then propose a fast, as well 
as effective, local search based mutation algorithm 
(LSMA), constructed with the aid of marginal nodes, as 
by Definition 1. 

In order to cleverly implement single node 
movements between communities in algorithm LSMA, 
we now offer some theoretical analyses on our objective 
function Q, from each node’s local view. We convert (1) 
to (3), where cr(i) denotes the community of node i. It’s 
obvious that, equation (3) makes function Q as the sum 
of local function f of all nodes. From each node’s local 
point of view, function f can be regarded as the 
difference between the number of edges that fall within 
communities and the expected number of edges that fall 
within communities. Therefore, the function f of each 
node can measure whether a network division indicates 
a strong community structure from each node’s local 
point of view. Some Propositions and Theorems on 
function f are given as follows. 

( )

1 ,
2 2

r i

i j
i i ij

i j c

k k
Q f f A

m m∈

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
∑ ∑         (3) 

 
Proposition 1. For ∀ i ∈ V, the local function fi of 

any node i in a complex network is only related to its 
own community cr(i). 

Proposition 1 is obvious according to (3). 

 
Theorem 1. For ∀ i ∈ V, if the label of node i 

changes under the condition that the labels of all other 
nodes don’t change, function Q of the entire network is 
monotonically increasing with function fi. 

Please see the Appendix part for the Proof of 
Theorem 1.  

 
Again, there is the simple intuition that, any node in 

a complex network which has a community structure 
should have the same label as one of its neighbors, or be 
in itself is a community. Thus, in our mutation 
algorithm, any marginal node i can take a node j in the 
range of NSi (instead of V) as its allele value, where NSi 
denotes the neighbour set of node i and V is the node set 
of the network.  

Further, known from Theorem 1, function Q of a 
network is monotonically increasing with any node’s 
local function f. In order to further improve the 
performance of our mutation method, we select here 
node j from NSi, which can maximize function fi, as the 
allele value of marginal node i. Here we only consider 
marginal nodes. Thus, when a single mutation operation 
is executed on any a marginal node i, the labels of all 
other nodes will not change, which will necessarily 
meet the condition which is required by Theorem 1.  

Moreover, note that any safe individual is still a safe 
one after executing our mutation method.  

Based on the above discussions, we now present a 
fast and effective local search based mutation algorithm 
LSMA, described as Fig. 4. 
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Fig. 4.  LSMA algorithm. 

As we can see, in algorithm LSMA, the variation of 
any a node’s allele value denotes the node’s movement 
from its original community (or component) to another 
one in the corresponding graph of chromosome g. 
Meanwhile, it will not result in merging or splitting 
communities, as these nodes are all marginal nodes. On 
the contrary, a mutation operation on non-marginal 
nodes will necessarily lead to merging or splitting 
communities for g, thus these non-marginal nodes are 
not suitable for our algorithm LSMA. As we can see, 
only marginal nodes can meet the requests of LSMA, 
and this method is especially designed for the marginal 
nodes. 

In order to further explain the effectiveness as well 
as efficiency of LSMA, some Propositions are given as 
follows. 

 
Proposition 2. For any chromosome g that adopts 

LAR representation, the value of fitness function Q will 
not decrease after executing LSMA algorithm. 

Proof. Known from the algorithm flow of LSMA, 
any marginal gene i in chromosome g will necessarily 
take one of its neighbours j which can maximize its 
function fi as its allele value after a LSMA operation. 
This means node i will move to the community of node 
j and it will not result in merging or splitting 
communities, which also means node i will take the 
label of node j as its new label under the condition that 
the labels of all other nodes don’t change. Known from 
Theorem 1, if the variation of the label of one node 
makes its function f increase under the condition that the 
labels of all other nodes don’t change, this variation will 
cause an increase of the Q-value of the entire network. 
Thus, the mutation operation on any marginal gene in 
chromosome g will not make the Q-value of the 
network decrease.  

 
In network N, let the total number of nodes be n, the 

average degree of all the nodes be k, and the average 
community size in the network clustering solution 
denoted by chromosome g in algorithm LSMA be c. 
The time complexity analysis of LSMA is given as 
follows.  

 

Proposition 3. The time complexity of algorithm 
LSMA is O(cn). 

Proof. It’s obvious that the time complexity of the 
8th step is the highest in LSMA. Step 8 computes 
function fi of each marginal node i for all the labels of 
its neighbours. Because the labels of any node’s 
neighbours are likely to overlap, the average number, to 
evaluate function f for each node i in step 8, can’t be 
greater than k. Known from Proposition 1, the average 
time that function f is computed once can’t be greater 
than c. The total number of marginal nodes is about βn 
in a LAR chromosome. Thus, the time complexity of 
LSMA can’t be greater than O(βnkc). Furthermore, as 
complex networks are always sparse graphs, which 
means k is a constant, and parameter β is also a constant, 
then the time complexity of LSMA can be given by 
O(cn). 

3.6. Algorithm GALS 

Based on the discussion in above sections, the 
description of algorithm GALS is given as Fig. 5. 

 

Fig. 5. GALS algorithm. 

Algorithm GALS starts by adopting a Markov 
random walk based individual generation method 
(MRW) to produce the initial population. Then, it 
detects the network community structure by iteratively 
executing the following three genetic operators: uniform 
crossover; local search based mutation; and µ+λ 
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selection. It’s obvious that: the individuals in initial 
population produced by MRW are not only safe but also 
accurate and diverse; our crossover operator can 
effortlessly achieve its global search function by 
merging and/or splitting communities for LAR 
chromosome; our mutation operator can effectively 
achieve its local search function by cleverly and directly 
moving single marginal nodes between communities; 
our selection operator makes the best individuals enter 
the next generation, embodying Darwin’s “survival of 
the fittest” paradigm, although it doesn’t deal with 
single LAR chromosomes.  

Moreover, the population produced by MRW is a 
safe one. Meanwhile, the two genetic operators 
(uniform crossover and local search based mutation), 
that can change the structure of LAR chromosome, will 
also not violate the safety of the safe population. Thus it 
will make algorithm GALS able to detect community 
structure in the range of a safe solution space, which is 
much smaller than the whole solution space. From this 
perspective, the search efficiency and convergence 
speed of algorithm GALS can both be improved. 

In network N, let the total number of nodes be n, and 
the average community size in all of the LAR 
chromosomes during the execution process of algorithm 
GALS be c. It’s obvious that c is much smaller than n. 
The time complexity of GALS is given as follows.  

 
Proposition 4. The time complexity of algorithm 

GALS is O(cn). 
Proof. It’s obvious that the time complexity of the 

4th step is the highest in GALS, and the time of other 
steps are all equal to or less than O(n). The run time of 
algorithm LSMA in step 4 will be Lλ, and the run time 
of a single LSMA run is O(cn), known from Proposition 
3. Thus, the run time for step 4 in GALS will be 
O(Lλcn). Because each of the parameters in GALS can 
be regarded as a constant, the run time for step 4 in 
GALS can be also given by O(cn). Therefore, the time 
complexity of GALS is O(cn). 

4. Experiments and Evaluation 

In order to evaluate the performance of algorithm GALS, 
we tested it on two types of benchmark artificial 
networks, as well as in some widely used real-world 
networks.  

In the experiment, our GALS is compared with six 
representative community mining algorithms, in which 
FN [14], FUA [16], TGA (Tasgin’s Genetic Algorithm) 
[23] and GACD (Genetic Algorithm for Community 
Detection) [28] are modularity optimization methods, 
while FEC [20] and LPA [17] are heuristic methods. 
Note that FUA has been regarded as one of the most 
effective community mining methods by the famous 
survey of Fortunato [6], and TGA and GACD both are 
known and current genetic algorithms for community 
detection. 

In algorithm GALS, there are three parameters: 
iteration number L, parent population size µ and 
offspring population size λ, which are all standard 
parameters in genetic algorithm. They can be set as: L = 
500, µ = 80 and λ = 60 based on [12, 26, 27] as well as 
in our own experience. 

All experiments are done on a single Dell Server 
(Intel(R) Xeon(R) CPU 5130 @ 2.00GHz 2.00GHz 
processor with 4Gbytes of main memory), and the 
source code of the algorithms used here can all be 
obtainable from the authors. 

4.1. Computer-generated networks 

We adopt two types of randomly generated synthetic 
networks (by both Newman model [3] and LFR model 
[34]) with a known community structure to evaluate the 
performance of the algorithms. Moreover, here we 
employ a widely used accuracy measure so called 
Normalized Mutual Information (NMI) [4]. The NMI 
measure, which makes use of information theory models, 
is regarded as a relatively fair metric compared with the 
other ones [4]. 

4.1.1.  Newman benchmark 

The first type of synthetic networks employed here is 
that proposed by Newman et al [3]. For this benchmark, 
each graph consists of n = 128 vertices divided into 4 
groups of 32 nodes. Each vertex has on average zin 
edges connecting it to members of the same group and 
zout edges to members of other groups, with zin and zout 
chosen such that the total expected degree zin+zout = 16, 
in this case. As zout is increased from the small initial 
values, the resulting graphs pose greater and greater 
challenges to the community mining algorithms. In Fig. 
6(a), we show the NMI accuracy attained by each 
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algorithm as a function of zout. As we can see, our 
algorithm GALS outperforms all the other six methods 
in terms of NMI accuracy on this benchmark. 

Computing speed is another very important criterion 
to evaluate the performance of an algorithm. Time 
complexity analysis for GALS has been given by 
proposition 4 in Sec. 3.6. Nevertheless, here we show 
the actual running time of GALS from an experimental 
angle, so as to further evaluate its efficiency.  

Here we also adopt the synthetic networks based on 
Newman model [3]. For this application, each graph 
consists of n = 100a vertices divided into a groups of 
100 nodes. Each vertex has on average zin = 10 edges 
connecting it to members of the same group and zout = 6 
edges to members of other groups. The only difference 
between the networks used here and the former ones is 
that, now zout is fixed while the community number a is 
changeable. Fig. 6(b) shows the trend that the running 
time of GALS exhibits with the network scale. As we 
can see, the running time of GALS is proportional to the 
scale of the network under the condition that the 
average community size of the actual community 
structure is about a constant. Therefore, the experiment 
can not only validate the correctness of Proposition 4 
(the time complexity of GALS is O(cn)), but also shows 
that the average community size c of all the LAR 
chromosomes during the running process of GALS is 
proportional to the average community size in the actual 
community structure of the network. Also, it is 
noteworthy that, the sizes of well-defined communities 
in large-scale real networks are generally much smaller 
than the scales of networks [35].  
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Fig. 6. (Color online) Test the performance of GALS on 
Newman benchmark. (a) Compare GALS with GN, FN, FEC, 
FUA, TGA and GACD in terms of NMI accuracy; (b) The 
actual running time of GALS is as a function of the network 
scale. 

4.1.2.  LFR benchmark 

In order to further evaluate the accuracy of these 
algorithms, a new type of benchmark proposed by 
Lancichinetti et al. [34] is also adopted here. Unlike the 
Newman benchmark where all the vertices have an 
identical degree and all the community sizes are the 
same, both the degree and the community size 
distributions in the LFR benchmark are power law, 
which is a statistical property that most real-world 
networks seem to share. 

Following the experiment designed by [34], the 
parameters setting for the LFR benchmark networks are 
as follows. The network size n is set to either 1000 or 
5000, the minimum community size cmin is set to either 
10 or 20, and the mixing parameter μ (each vertex 
shares a fraction μ of its edges with vertices in other 
communities) varies from 0 to 0.8 with interval 0.05. 
We keep the remaining parameters fixed: the average 
degree d is 20, the maximum degree dmax is 2.5×d, the 
maximum community size cmax is 5×cmin, and the 
exponents of the power-law distribution of vertex 
degrees τ1 and community sizes τ2 are -2 and -1 
respectively. In Fig. 7, we show that the NMI accuracy 
attained by each algorithm is as a function of the mixing 
parameter μ. As we can see, GALS is competitive with 
FUA, and outperforms the other five methods in terms 
of NMI accuracy on this new benchmark. 
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Fig. 7. (Color online) Compare GALS with FN, FEC, LPA, 
FUA, TGA and GACD in terms of NMI accuracy on the LFR 
benchmark networks. (a) Comparison on small networks with 
small communities (n = 1000, cmin = 10, cmax = 50). (b) 

Comparison on small networks with big communities (n = 
1000, cmin = 20, cmax = 100). (c) Comparison on big networks 
with small communities (n = 5000, cmin = 10, cmax = 50). (d) 
Comparison on big networks with big communities (n = 5000, 
cmin = 20, cmax = 100). 

4.2. Real-world networks 

As real networks may have some different topological 
properties from the synthetic ones, here we adopt seven 
widely used real-world networks to further evaluate the 
performance of these algorithms. The networks not only 
include small graphs containing dozens of nodes, but 
also include large graphs containing tens of thousands 
of nodes. A description of them is given as Table 1.  

 
Table 1. Real-world networks used in the evaluation. 

Networks V(N) E(N) Description 
karate 34 78 Zachary’s karate club [36] 
dolphin 62 160 Dolphin social network [37] 
polbooks 105 441 Books about US politics [38] 
football 115 613 American College football [3] 
jazz 198 5,484 Jazz musicians network [39] 
email 1,133 5,451 Emails of human interactions [40] 
internet 22,963 48,436 A snapshot of the Internet [41] 

 
Because the inherent community structure for real 

networks is usually unknown, here we adopt the most 
commonly used modularity Q [5] to evaluate the 
performance of these algorithms. Table 2 shows the 
average result (over 50 runs) that compares our method 
GALS with FN, FEC, LPA, FUA, TGA and GACD in 
terms of function Q on the real-world networks 
described in Table 1. As we can see, the clustering 
quality of our method GALS is also competitive with 
that of FUA, and better than that of the other five 
algorithms. 

 
Table 2. Compare GALS with FN, FEC, LPA, FUA, TGA and GACD 

in terms of Q on real networks. 
Q-value FN FEC LPA FUA TGA GACD GALS
karate 0.3807 0.3744 0.3646 0.4188 0.4039 0.4198 0.4198
dolphin 0.5104 0.4976 0.4802 0.5268 0.5241 0.5294 0.5294
polbooks 0.5020 0.4904 0.5006 0.4986 0.5245 0.5272 0.5272
football 0.5497 0.5697 0.5865 0.6046 0.5937 0.6044 0.6046
jazz 0.4389 0.4440 0.3422 0.4431 0.4406 0.4435 0.4449
email 0.5037 0.5173 0.3706 0.5406 0.1871 0.4422 0.5599
internet 0.6378 0.6104 0.4978 0.6613 0.1141 0.5365 0.6560

 
In the seven real networks from Table 1, there are 

only three that have known community structures. They 
are the well-known karate network, dolphin network 
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and football network. Here we try to further analyze 
GALS’s clustering solutions in terms of the actual 
community structures of these three networks. Note that 
the running result of GALS for each of these three 
networks is usually the same at each time. 

Zachary’s karate club network [36] is a social 
network of friendships between 34 members of a karate 
club at a US university in the 1970s. Its actual 
community structure is shown as Fig. 8(a), in which red 
squares represent members associated with the principle 
karate teacher’s faction while blue triangles represent 
members associated with the club administrator’s 
faction. We randomly execute GALS once for the karate 
network. Its clustering solution includes four 
communities, which is shown as Fig. 8(a). As we can 
see, GALS can not only correctly discover the actual 
community structure of karate network, but also divide 
each actual community into two well-separated sub-
communities. Furthermore, the average modularity Q 
obtained by GALS over 50 runs is 0.4198, which is 
higher than the modularity Q = 0.3715 for the actual 
division of this network. 

The dolphin network [37] describes the social 
relationship of 62 bottlenose dolphins living in Doubtful 
Sound of New Zealand, which was first established by 
Lusseau based on his experimental observations of the 
dolphins for seven years. During his research studies, he 
found these dolphins were separated into two groups for 
some reasons. The actual community structure of this 
network is shown as Fig. 8(b), in which the red squares 
represent members associated with the larger 
community while blue triangles represent members 
associated with the smaller community. We randomly 
execute GALS once for the dolphin network. Its 
clustering solution includes five communities which are 
shown as Fig. 8(b). As we can see, GALS can not only 
discover actual community structure of the dolphin 
network correctly, but also divide the larger actual 
community into four well-separated sub-communities. 
Furthermore, the average modularity Q obtained by 
GALS over 50 runs is 0.5294, which is higher than the 
modularity Q = 0.3722 for the actual division of this 
network. 

The US college football association network [3] 
contains 115 nodes and 613 edges, which correspond to 
football teams and games played among teams, 
respectively. All teams are divided into 12 conferences. 

Each conference is considered as one actual community 
since the number of games played within the same 
conference should be much more than those between 
conferences. The actual community structure of this 
network is shown as Fig. 8(c), in which the nodes with 
different shapes and colors represent the football teams 
associated with different conferences. The names of 
different conferences are also given in Fig. 8(c). We 
randomly execute GALS once for the football network. 
Its clustering solution includes ten communities, which 
is shown as Fig. 8(c). As we can see, except for some 
teams in conferences Sunbelt and IA Independents, 
almost all other teams are correctly grouped with the 
other teams in their conference by our algorithm GALS. 
Known from [3], these misclassified teams are mostly 
independent teams that should not in fact belong to any 
conference. But, by our algorithm GALS, these 
independent teams are still grouped with the conference 
with which they are most closely associated. The few 
cases in which our algorithm seems to fail actually 
correspond to nuances in the scheduling of games. 
Furthermore, the average modularity Q obtained by 
GALS over 50 runs is 0.6046, which is higher than the 
modularity Q = 0.5518 for the actual division of this 
network. 

 
(a) 

 
(b) 
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Fig. 8. (Color online) Clustering solutions of GALS on three 
widely used real-world networks with a known community 
structure. (a) Clustering solution of karate network; (b) 
Clustering solution of dolphin network; (c) Clustering solution 
of football network. 

5. Conclusion 

A local search based genetic algorithm (GALS), 
employing modularity Q as objective function and LAR 
as genetic representation, is proposed in this paper. 
GALS first adopts a Markov random walk based 
method to produce the initial population, and then it 
detects community structure by iteratively executing the 
following three genetic operators: uniform crossover, 
local search based mutation and µ+λ selection. The 
proposed algorithm GALS is tested on both computer-
generated and real-world networks, and compared with 
some presently competing community mining 
algorithms. Experimental results demonstrate that 
GALS is highly effective as well as efficient at 
discovering the community structure. 

While GALS has a reasonable time complexity, its 
efficiency is still not ideal when handling huge networks 
(such as WWW, containing millions of nodes). This 
may be because the time complexity of our mutation 
method LSMA is O(cn) which is (a little) worse than the 
linear time, although c is much smaller than n. Thus, our 
future work can be laid as follows. We intend to 
improve the efficiency of LSMA from some heuristic 
angles, and then validate the new GALS’s ability to find 
communities in huge networks. 

Also, many real-world networks consist of 
communities that overlap because nodes are members of 
more than one community [29]. Our current work did 
not consider this aspect. Thus, in the future, our other 

task is to generalize GALS to tackle overlapping 
community detection, and make it able to uncover and 
interpret the significant overlapping in communities that 
is expected to be present in many cases. 
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Appendix A.  The proof of Theorem 1. 

Theorem 1. For ∀ i ∈ V, if the label of node i 
changes under the condition that the labels of all other 
nodes don’t change, function Q of the entire network is 
monotonically increasing with function fi. 

Proof. Given a network N = (V, E) and its 
community structure C. For ∀ i ∈ V, Let the label of 
node i change from r(i) to r(j), which makes the 
community structure become C'. Given r(i) ≠ r(j), in 
community structure C', the original community of node 
i will become c'r(i) = cr(i) − {i}, and its new community 
will become c'r(j) = cr(j) ∪ {i}. 

From (3), we know that if any node’s community 
changes, its function f will also change. It’s obvious that, 
the variation of node i’s label will result in the variation 
of its two related communities, which are cr(i) and cr(j). 
Thus, this will cause the variation of function f of each 
node in set c = cr(i) ∪ cr(j). Here, we divide the nodes of 
set c into three different categories, and give the 
equation of the variation of function f for each node in 
each category respectively. 

1) For ∀ s ∈ c'r(i), the variation of its function fs 
which is defined as sfΔ  is given by 
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2) For ∀ p ∈ cr(j), the variation of its function fp 
which is defined as pfΔ  is given by 
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3) For node i, the variation of its function fi which is 
defined as ifΔ  is given by 
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Thus, the variation of function Q of the whole 
network, which is caused by the variation of the label of 
node i, can be deduced as follows. Here the variation of 
Q is defined as QΔ . 
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Then ( )1( ') ( ) ( ') ( )i imQ C Q C f C f C− = − . As we can 

see, given ( ') ( )i i f C f C> , there will be ( ') ( )Q C Q C> . 
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