
Towards a Relational Model for Component Interconnection

Marco Ant ónio Barbosa1 , Luı́s Soares Barbosa1

1Departamento de Inforḿatica – Universidade do Minho
Campus de Gualtar – 4710-057 Braga – Portugal

{marco.antonio,lsb }@di.uminho.pt

Abstract. The basic motivation of component based development is to replace
conventional programming by the composition of reusable off-the-shelf units, ex-
ternally coordinated through a network of connecting devices, to achieve a com-
mon goal. This paper introduces a newrelationalmodel for software connectors
and discusses some preliminary work on its implementation inHASKELL. The
proposed model adopts a coordination point of view in order to deal with com-
ponents’ temporal and spatial decoupling and, therefore, to provide support for
looser levels of inter-component dependency and effective external control.

1. Introduction

An increasing number of computer based systems are based on the cooperation of dis-
tributed, heterogeneous components, organized into open software architectures, that
are expected to survive in loosely-coupled environments and be easily adapted to chan-
ging application requirements. The expressioncomponent-based programming, although
it has been around for a long time, became a buzzword in mid 1990’s (see, e.g.,
[Nierstrasz and Dami, 1995, Szyperski, 1998]). The basic motivation is to replace con-
ventional programming by the composition and configuration of reusable off–the–shelf
units, often regarded as‘abstractions with plugs’. In this sense, acomponentis a ‘black-
box’ entity which both provides and requires services, encapsulated through a public in-
terface, which may exhibit both static and behavioural information.

There are essentially two ways of regarding, conceptually,component-basedsoft-
ware development. The most wide-spread, which underlies popular technologies like,
e.g., CORBA, DCOM or JAVA BEANS, reflects what could be called theobject orientation
legacy. A component, in this sense, is essentially a collection of objects and, therefore,
component interaction is achieved by mechanisms implementing the usualmethod call
semantics. As F. Arbab stresses in [Arbab, 2003] this

induces an asymmetric, unidirectional semantic dependency of users (of ser-
vices) on providers (...) which subverts independence of components, con-
tributes to the breaking of their encapsulation, and leads to a level of inter-
dependence among components that is no looser than that among objects
within a component.

An alternative point of view is inspired by research on coordination languages
[Gelernter and Carrier, 1992, Papadopoulos and Arbab, 1998] and favours strict compon-
ent decoupling in order to support a looser inter-component dependency. In this view,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634079?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

computation and coordination are clearly separated, communication becomesanonym-
ous and component interconnection is externally controled. This model is (partially)
implemented in JAVA SPACES on top of JINI and fundamental to a number of ap-
proaches to component-based development which identify communication by generic
channels as the basic interaction mechanism — see,e.g., REO [Arbab, 2003] or PICCOLA

[Nierstrasz and Achermann, 2003].

This paper adopts the latter point of view, introducing a very simple relational
model for componentconnectors— the basic entities used to build appropriategluing
codeto orchestrate components of different origins and purposes. We assume that mes-
sages are not only anonymous but also free from any sort of control information (which
prevents them from being interpreted as a method invocation or an event occurrence).
They just flow through the connector network in which the usualsendor receiveoper-
ations are, respectively, simpleread or write actions on connectors’ (or components’)
ports. The model, which is introduced in section 2, is close to F. Arbab’s approach (as
documented in,e.g., [Arbab, 2003] and [Arbab and Rutten, 2002]), but for a fundamental
difference. While Arbab’s model specifies channels as relations betweenstreams, i.e., in-
finite sequences, of messages, we resort to simpleone-steprelations between single data
elements and time tags. This leads to a simpler calculus which exploits the power of the
algebra of binary relations [Backhouse and Hoogendijk, 1993], applied to an elementary
data domain. That infinite behaviour, amenable to full coinductive reasoning, can be re-
covered from such a simpler model, is briefly discussed in section 4. Section 3 reports
some preliminary work on prototyping component connectors in HASKELL.

Notation. The paper resorts to a quite standard mathematical notation to express sets,
functions and relations. Becauserelationsare probably less familiar to the working soft-
ware engineer than, say, functions, let us briefly provide a basic introduction.

Relations. LetR : B ←− A denote a binary relation on (source) typeA and (target) type
B, andbRa stand for the representation of〈b, a〉 ∈ R. The set of relations fromA toB is
orderedby inclusion⊆, with relation equality being established by anti-symmetry. Fact
R ⊆ S means that relationS is either more defined or less deterministic thanR, that is,
for all a andb of the appropriate types,bRa⇒ bSa.

The algebra of relations is built on top of three basic operators: composition (R · S),
meet (R ∩ S) and converse (R◦). As expected,aR◦b iff bRa, meet corresponds to set-
theorectical intersection and· generalizes functional composition:b(R · S)c holds iff
there exists somea ∈ A such thatbRa ∧ aSc.

Any functionf can be seen as the relation given by its graph, which, in this paper, is also
denoted byf . Thereforebfa ≡ b = fa. In this setting functions enjoy a number of
properties of which the following is singled out by its role in the pointwise to pointfree
conversion:

b (f ◦ ·R · g) a ≡ (fb)R (ga) (1)

Conversely, any relationR : B ←− A can be uniquely transposed into a set-valued func-
tion ΛR : PB ←− A, where the transpose operatorΛ satisfies the following universal
property:

f = ΛR ≡ (bRa ≡ b ∈ (fa)) (2)

We denote by Rel the category of sets and binary relations. References
[Bird and Moor, 1997] and, mainly, [Backhouse and Hoogendijk, 1993], provide a de-
tailed account of the calculus of binary relations, in apointfreecalculational style.

2. Connectors as Relations

Software components interact through anonymous messages flowing through a connector
network. The basic intuition, borrowed from the coordination paradigm, is that connectors
and components are independent devices, which make the latter amenable to external
coordination control by the former.

Connectors haveinterface points, or ports, through which messages flow. Each port has
an interaction polarity(eitherinput or output), but, in general, connectors are blind with
respect to the data values flowing through them. Consequently, let us assumeD as the
generic type of such values. The model also assumes that, on crossing the borders of a
connector, every data value becomes labelled by atime stampwhich represents a (rather
weak) notion of time intended to expressorder of occurence. As in [Arbab, 2003], tem-
poralsimultaneityis simply understood asatomicity, in the sense that two equally tagged
input or output events are supposed to occur in an atomic way, that is, without being
interleaved by other events.

2.1. Connectors

LetC be a connector withm input andn output ports. Its semantics is given by a relation

[[C]] : (D× T)n ←− (D× T)m (3)

where〈T,≤〉 is a total order acting as the domain of time tags. A relation being, by
definition, a set of ordered pairs, we may split[[C]] into two relations: one,data.[[C]] :
Dn ←− Dm, over the data values and another,time.[[C]] : Tn ←− Tm, over the time tags,
as follows,

data.[[C]] = P(π1 · m)[[C]] and time.[[C]] = P(π2 · m)[[C]] (4)

wherePf s is the map of functionf on sets, π1, π2 are the first and second projections
associated to a cartesian product andm : (Dn×Dm)×(Tn×Tm)←− (D×T)n×(D×T)m

is a parameter re-arranjement isomorphism, indexed onm,n.

Channels. The most elementary connector is thesynchronous channelwith two ports of
opposite polarity. Its semantics is simply the identity relation on the time-tagged domain
D× T:

[[• � // •]] = IdD×T (5)

which forces input and output to become mutually blocking, in the sense that any of them
must wait for the other to be completed. The synchronous channel, however, is just a
special case, forf = id, of a more generic connector with the ability to perform, in a
systematic way, any kind of data conversion on the flow of messages. For any function
f : D←− D, the correspondingtransformeris defined by

data.[[• � pfq // •]] = f and time.[[• � pfq // •]] = IdT (6)

wheref in the right hand side is therelation denoting the graph offunctionf . Again
synchrony is forced by the specification of the time relation as the identity.

If both synchrony and the accurate delivery of messages are specified by identity relations,
any correflexive relation, that is any subset of the identity, provides channels which can
loose information. Such channels can model, for example, unreliable communications.
Therefore, we define, alossy channelas

[[• � ··· // •]] ⊆ IdD×T (7)

A filter is an example of a lossy channel in which some messages are discarded in a
controlled way, according to a given predicateφ : 2 ←− D. Noting that any predicateφ
can be seen as a relationRφ : D←− D such thatdRφd

′ iff d = d′ ∧ (φ d), define

data.[[• � pφq // •]] = Rφ and time.[[• � pφq // •]] = IdT (8)

Sources and Sinks. For each valued ∈ D, a source♦d is a device which permanentely
outputsd. It has only one output port, therefore,[[♦d]] : D × T ←− 1. Clearly, the
transpose of this relation gives a setΛ [[♦d]] : P(D× T)←− 1, defined by

(Pπ1) (Λ [[♦d]]) = {d} and (Pπ2) (Λ [[♦d]]) = T (9)

Dually, asinkhas only an input port which accepts, and discards, any possible message.
Therefore,[[�]] : 1 ←− D × T, whose functional transpose,Λ [[�]] : P1 ←− D × T, is
simply a predicate (becauseP1 ∼= 2). Therefore, define

[[�]] = true (10)

Drains. A drain • � H � • : 1 ←− (D × T)2 has two input, but no output, ports. This
means that every message dropped at one of its ports is simply lost. Drains, however,
can be classified according to their synchronization discipline. A drain issynchronousif
both write operations are requested to succeed at the same time (which implies that each
write attempt remains pending until another write occurs in the other end-point). It is
asynchronousif, on the other hand, write operations in the two ports do not coincide. The
formal definitions are, respectively,

Λ [[• � H � •]] = (π2 · π1 = π2 · π2) and Λ [[• � O � •]] = (π2 · π1 6= π2 · π2)

Broadcasters and Concentrators. Thebroadcasterconnector replicates in each of its two
output ports, any input received in its (unique) entry, as depicted below:

〈a, t〉

〈a, t〉 � •

99

%%
〈a, t〉

its semantics is, therefore, given by the diagonal relationM: (D × T)2 ←− D × T on
D× T, defined by〈y, z〉 M x iff x = y = z:

[[/]] = MD×T (11)

The dual of thebroadcasteris theconcentratorwhich accepts identical messages in both
of its input ports to be delivered on output. Formally,

[[.]] = [[/]]◦ (12)

Merger. Input and output in both broadcasters or concentrators is synchronous. In a
number of real situations, however, there is a need for a connector with the ability to
accept messages arriving asynchronously from different sources and merge them into an
unique output. Themergerconnector is depicted as aconcentrator

y

��
• � // x

z

GG

but with a totally different semantics:

x [[I]] 〈y, z〉 ≡ (x = y ∨ x = z) ∧ π2 y 6= π2 z (13)

Letφ〈y, z〉 denote the predicateπ2 y 6= π2 z. Now note that, resorting to law (1), equation
(13) can be easily converted to pointfree notation:

[[I]] = (π1 ∪ π2) · Rφ (14)

because

x [[I]] 〈y, z〉 ≡ (x = y ∨ x = z) ∧ φ(y, z)

≡ (x = π1(y, z) ∨ x = π2(y, z)) ∧ φ(y, z)

≡ (x(id◦ · π1)(y, z) ∨ x(id◦ · π2))(y, z) ∧ φ(y, z)

≡ x ((π1 ∪ π2) · Rφ) 〈y, z〉

Postponer. Temporal adjustments, through the introduction of delays, are often required
in coordination situations. In our model, apostponeris specified as

data.[[• � δ // •]] = IdD and time.[[• � δ // •]] = > (15)

Repeater. On reception of message〈a, t〉 therepeateroutputsa on all subsequent values

of time, until, eventually, a new message arrives. Formally,data.[[• � ρ // •]] = IdD and

time.[[• � ρ // •]] is characterized by the following predicate

ψ = ∀
t∈P(π1)(time.[[• � ρ // •]])

. {t′| 〈t′, t〉 ∈ time.[[• � ρ // •]]} ⊆? ↑ t

where↑ t is the principal≤-filter generated byt ands1 ⊆? s2, for s1, s2 subsets of a
total order, means that, once both of them have been enumerated as ascending chains, the
former is aprefixof the latter.

2.2. New Connectors For Old

The basic way of combining two connectors is by plugging the output ports of one of
them to the inputs of the other. Semantically, this amounts to relational composition:

[[C1 ; C2]] = [[C2]] · [[C1]] (16)

for C1, C2 with matching signatures. In the general case, however, this form of com-
position must be made partial,i.e., connecting only a (specified) subset of ports. This is
achieved by composing[[C2]] and[[C1]] using the partial relational composition operators

R ·+ S : B ←− C × A for R : B ←− C ×D,S : D ←− A

R ·+ S : B × C ←− A for R : B ←− D,S : C ×D ←− A

with the obvious definitions1, which, on connectors, correspond to operators;+ and;+,
respectively.

The other aggregation scheme isparallel composition whose semantics is given
by relationalproduct, in the general case, or relationalsplit, when both connectors have
identical input signatures,

[[C1 � C2]] = [[C1]]× [[C2]] and [[〈C1, C2〉]] = 〈[[C1]], [[C2]]〉

where× and〈 , 〉 are bothrelators in Rel 2.

Computing their pointwise definition may help to build up one’s intuition. For example,

〈y, z〉〈[[C1]], [[C2]]〉x = 〈y, z〉(π◦1 · [[C1]] ∩ π◦2 · [[C2]])x

= 〈y, z〉(π◦1 · [[C1]])x ∧ 〈y, z〉(π◦2 · [[C2]])x

= π1〈y, z〉 [[C1]] x ∧ π2〈y, z〉 [[C2]]x

= y[[C1]]x ∧ z[[C2]]x

Usingsplit one may, for example, built abroadcasterout of twosynchronous channels:

[[/]] = 〈[[• � // •]], [[• � // •]]〉 (17)

2.3. A Few Examples and Laws

Any formal model in Computer Science must provide reasonable answers to the following
questions:

• How expressiveis it (in our case, what kind of coordination schemes can be ex-
pressed within it)?
• How easy it is toreasonwithin the model (to prove properties of such schemes)?
• How can it guide an effectiveimplementationin the programming practice?

1b(R ·+ S)〈c, a〉 ⇐⇒ ∃d . bR〈c, d〉 ∧ dSa and similarly forR ·+ S.
2For what follows it is enough to retain that a relator is just an endofunctor inRel which, additionally,

preserves inclusion⊆ and commutes with converse. Relational product and split are defined asR × S =
〈R · π1, S · π2〉 and〈R,S〉 = π◦

1 · R ∩ π◦
2 · S, respectively.

The last question is dealt in section 3. For the moment, however, and in order to illustrate
the expressive power of the proposed model, consider the following example of a typical
coordination pattern:

External Control Flow. The aim of this pattern is to assure that the flow of messages in
a synchronous channelσ is externally controled, that is, a control signal, produced by an
external source, is required for a received message to be delivered at the output end-point.
Within our model this is achieved by directing messages to the input of abroadcaster
whose output ports are connected to channelσ and to asynchronous drainwhich, on its
turn, accepts the control signals. The resulting picture is

m � σ // o

i
� •

77

'' n � H � e

wherei, o,m, n ∈ D× T stand for the messages present at the different points within the
connector. Formally, the new pattern is given by the following expression in the connector
algebra:

/ ;+ ((• � H � •) � (• � σ // •)) (18)

The intuition on the correctness of this scheme is that, because, both the outputs of the
broadcasterand the two end-points of thedrain are synchronized, the read operation
on channelσ is completed simultaneously with the writing of the control signal on the
free end-point of thedrain. The reason for choosing adrain is simply that the actual
contents of control messages is irrelevant in this context. Formally, one may argue that
the semantics of; and of the basic connectors involved entails

(m,n) [[/]] i ⇒ i = m = n

n [[• � H � •]] e ⇒ π2 n = π2 e

m [[• � σ // •]] o ⇒ m = o

which leads to the desired conclusion on the time tags ofo ande, that is, π2 o = π2 e.

Synchronization Barrier. The scheme above can be adapted to implement what is called
in the coordination literature asynchronization barrier, that is, the enforcing of mutual
synchronization between two channels. Expression

(/� /) ; ((• � σ1 // •) � (• � H � •) � (• � σ2 // •)) (19)

represents such a system and may be depicted as

• � σ1 // o1

i1
� •

77

'' •_
H

_
•

i2
� •

77

'' • � σ2 // o2

Connector Laws. As glimpsed in the examples above, an algebra of connectors begins to
emerge in which a variety of coordination patterns can be expressed. Moreover connect-
ors in this model enjoy a number of properties generically aplicable to reason and trans-
form such patterns. Their validity is easily established by simple computations within the
relational calculus. Let us look briefly into some of them.

• First notice that asynchronous channelacts as the identity for connector compos-
ition,

(C ; • � // •) = C = (• � // • ; C) (20)

for C with a matching signature. As; inherits associativity from composition in
Rel, the algebra has, at least, the structure of a category.
• Similarly, alossy channelacts as an absorving element for sequential composition

with any kind of synchronous channelsσ (includingfilters):

(• � ··· // • ; • � σ // •) = (• � σ // • ; • � ··· // •) = • � ··· // • (21)

• The following laws state the expected behaviour oftransformersandfilters com-
position:

(• � pfq // • ; • � pgq // •) = • � pg·fq // • (22)

(• � Rφ // • ; • � Rψ // •) = • � Rφ∧ψ // • (23)

• A synchronous channelcan be implemented by the composition of abroadcaster
and aconcentrator:

(/ ; .) = • � // • (24)

However, replacing aconcentratorby amergerin the same pattern leads todead-
lock because of incompatible synchronization policies:

(/ ; I) = | (25)

where|: 1 ←− 1 representsdeadlockas a special connector whose semantics is
simply the empty relation,i.e., [[|]] = ∅.

• As a last example, the following law shows how anasynchronous draincan be
realized in two alternative ways:

• � O � • = I ; / ; • � H � • = I ; � (26)

Spatial Extension. A major limitation of the component connectors introduced so far
is the absence of buffering capacities. A typical example of a buffered connector would
be anasynchronous channelin which reading and writing are non mutually blocking
operations.

To accommodate this kind of connectors in our repertoire requires the introduction
of some form of internal memory,i.e., an internal state space. LetU be the type of such
memory. A buffered connector is then modelled as a relation involving not only the input
and output time-tagged domains, as before, but alsoU , that is

[[C]] : (D× T)× U ←− U × (D× T) (27)

which can also be represented, by transposition to the categorySet of sets and set-
theorectic functions, by function

[[C]] : P((D× T)× U)←− U × (D× T) (28)

or, in an equivalent way,

[[C]] : P((D× T)× U)(D×T) ←− U (29)

that is, in the form of a coalgebra [Rutten, 2000] for functor FX =
P(X × (D× T))(D×T). The coalgebraic format is adequate to single outU as the
connector internal state space, not externally available. For example, a channel with
a single buffering capacity is modelled as a coalgebra overU = D × T, whereas an
unbounded buffer requiresU = (D × T)∗, where notationX∗ stands, as usual, for finite
sequences ofX. In both cases a write operation updates the state variable and a read
operation consumes it (or, respectively, its last element).

The use of coalgebras of this type to model buffered connectors has the main advantage
of being a smooth extension of the previous relational model. Actually, any relation can
be seen as a coalgebra over the singleton set,i.e., U = 1. Moreover, techniques of
coalgebraic analysis, namelybisimulation, can be uniformly used to reason about both
sorts of component connectors.

3. A Haskell Implementation

This section reports some preliminary work on a HASKELL implementation of the co-
ordination model discussed above.

3.1. Connectors in HASKELL

Our starting point was Concurrent HASKELL, a very expressive extension of the language
proposed in [Jones et al., 1996]. This extension provides the main features present in any
typical concurrent programming language, namely, processes and a notion of atomically

mutable state in order to support inter–process communication and cooperation. In par-
ticular, the library offers a primitiveforkIO to start a fresh concurrent process, as well
as the ability to create, read and write mutable variables of typesMVar or CVar . CVar
is used in the construction ofsynchronous channels, while MVar has a similar role in the
construction ofasynchronousones. The basic difference between them is thatMVar holds
a buffering stream, while this is absent fromCVar , in which case buffering is limited to
a single value.

Such primitives, however, are not flexible enough to support coordination schemes within
the model discussed in the previous section. Therefore we have replaced the denomination
channelby basic connectorand defined it by the following data type:

data Connector a = Connector (End (Buffer a))
(End (Buffer a))
(Time_tag)

where,End is of the typeMVar andBuffer is a sequence of data items. TheBuffer
type, modelling the end-points of a basic connector, can contain either a a single value, a
unbounded or a bounded buffering capacity. This allows us to construct both,synchronous
andasynchronousconnectors and to implement policies that regulates the behaviour of
drainsandlossyconnectors.

In this setting, a basic connector is a one–to–one interaction scheme which provides two
end-points (known as thesourceandsink end-points, respectively), to external connec-
tion, and atime tag which contain the creation time for the connector. It is written by
inserting values into thesinkend-point, and read by removing them from thesourceend-
point. The flow of data is locallyone way: from a component (or other connector) into
the target connector or from the latter to the former.

In general, however, the library allows the construction of connectors with a potentially
arbitrary number of end-points. The number and orientation of such end-points define, in
each case, the connector type.

3.2. Basic Operations

Connectors are equipped with a number of basic access operations:create, read, write
andtake. Let us describe briefly each of them.

Create. Its signature is

_create :: (ConType,Filter) -> IO (Connector a)

where,

• ConType defines the type of the connector to be created,
• andFilter is an optional parameter which regulates the data flow through an

appropriate predicate (with* denoting the alwaystrue predicate).

ConType is specified by a string which ranges through the following values, corres-
ponding to the basic channels introduced in section 2:sync , async , syncfilter ,
lossy , syncdrain , asyncdrain , postponer andantecipator . The identifi-
ers are self-explanatory. For instance, to create an asynchronous connector with a filter of
type Integer, that is, which disposes all non integer data, we declare

_create (async,Int)

The associated action is

con_type == sync = do {
end <- newEmptyMVar;
source <- newMVar end ;
sink <- newMVar end ;
ttag <- getClockTime;
return (Connector source sink ttag)

}

Similarly, to create an asynchronous drain, write

_create (asyncdrain,*)

which performs

con_type == sync = do {
end <- newEmptyMVar;
source <- newMVar end ;
source <- newMVar end ;
ttag <- getClockTime;
return (Connector source source ttag)

}

Write. Thewrite operation is given by

_write :: Connector a -> a -> IO ()

The operation suspends the performing process (a component port or a connector end-
point) until the valuea is written to the output end.

Read. On the other hand, thereadoperation is given by

_read :: Connector a -> IO a

which suspends the performing process until a value is read from the source end-point.
The value read is not removed from the connector.

Take. This is the destructive variant of read, in the sense that the value read from the
source end-point is actually removed from the connector.

3.3. Composing Connectors

The library provides the three basic forms of connector composition discussed above.
Due to space limitations, we restrict ourselves to sketch two small examples.

Example: a producer/consumer pattern. Two connectorsAB andCDare created using
the operationcreatewithout any specified filter:

con_AB = _create(sync,*)
con_CD = _create(sync,*)

Now suppose there are four independent active processes:P1, P2, P3 andP4, of which
P1 andP3 areproducersand, dually,P2 andP4 areconsumers. We then link processes
P2 andP3 using the basic operationsread and write. As a result, one gets a connector
that sends values made available byP1 and consumes them atP4. The corresponding
HASKELL code is as follows:

conn = do
value <- _read con_AB
_write con_CD value

Functionconn reads a value from thesourceconnector end-point,AB and writes it into
thesinkend-pointCD. The result will be a flow of the data fromA to D.

Example: a barrier synchronizer. A more complex, but already introduced, example
is the barrier synchronizer. In this implementation such a connector is specified by a
combination of foursynchronous channels(previously grouped on twobroadcasters) and
asynchronous drain.

con_AB = _create(sync,*)
con_CD = _create(sync,*)
con_EF = _create(syncdrain,*)
con_GH = _create(sync,*)
con_GH = _create(sync,*)

In the code of functionconn below, ony the behaviour of the sychronous drain is shown:
conn = do

...
val1 <- _take c_AB
_write c_CD val1
val2 <- _take c_GH
_write c_IJ val2
...

4. Conclusions and Future Work
This paper introduced arelational model for connectors of software components, which
adopts a coordination point of view in order to deal effectively with components’ temporal
and spatial decoupling and support looser levels of inter-component dependency. It was
also discussed its incorporation on the HASKELL programming language.

The model is in debt to previous work of F. Arbab and his team at CWI, sharing with it
a number of basic intuitions. Our fundamental departure from Arbab’s work (and also
from other stream based models such as,e.g., [Broy, 1987, Bergner et al., 2000]) is the
choice of simple data level relations to model connectors, whereas other authors resort
to relations over streams. Our option leads to a clearly simpler semantics. In order to
be able, however, to reason effectively about thetemporalbehaviour of connectors (and,
of course, the resulting coordination patterns) we need to recover something close to the
stream model from our own relations. The idea leading our current work is that connector
semantics can be specified at thegenelevel, describing just the one-step behaviour, be-
cause itstemporal extensioncan be computed by standard mechanisms. In fact, the beha-
viour of a relationR : B ←− A arises, by coinduction, as the unique arrow(ΛR)ω which
makes the following diagram commute

(PB)ω 〈head,tail〉 // PB × (PB)ω

Aω

(ΛR)ω

OO

〈head,tail〉// A× Aω ΛR×id // PB × Aω

id×(ΛR)ω

OO

Clearly,(ΛR)ω maps a stream of inputs to a stream of sets of outputs. In short, our claim
is that one may safely start with a quite elementary relational model and, then,

• introducebufferingcapacities through the specification of a non trivial state space,
which amounts to provide a sort ofspatial extensionon the connectors semantics,
• and recover the temporal behaviour of component connectors, either simple or

buffered, by computing their image on the correspondingfinal coalgebra, instead
of reasoning at such (more complex) level from the outset3.

A lot remains to be done at both thetheorecticaland theprogramminglevels. In particular
we are working on techniques for establishing, in a straightforward way, equivalence and
refinement for connectors (see [Meng and Barbosa, 2004] for some preliminary results).

A particularly important application area for this model, and corresponding calcu-
lus, is the formalisation ofsoftware architectural patterns[Allen and Garlan, 1997,
Fiadeiro and Lopes, 1997] and the study of their laws. How easily the model scales
up to accommodatedynamically re-configurableconnecting patterns, as in,e.g.,
[Costa and Reggio, 1997] or [Wermelinger and Fiadeiro, 1998], remains an open challen-
ging question.

Acknowledgements. This research was carried on in the context of the PURE Pro-
ject (Program Understanding and Re-engineering) supported by FCT under contract
POSI/ICHS/44304/2002 .

References

Allen, R. and Garlan, D. (1997). A formal basis for architectural connection.ACM
TOSEM, 6(3):213–249.

Arbab, F. (2003). Abstract behaviour types: a foundation model for components and their
composition. In de Boer, F. S., Bonsangue, M., Graf, S., and de Roever, W.-P., editors,
Proc. First International Symposium on Formal Methods for Components and Objects
(FMCO’02), pages 33–70. Springer Lect. Notes Comp. Sci. (2852).

Arbab, F. and Rutten, J. (2002). A coinductive calculus of component connectors. CWI
Tech. Rep. SEN-R0216, CWI, Amsterdam. To appear in the proceedings of WADT’02.

Backhouse, R. C. and Hoogendijk, P. F. (1993). Elements of a relational theory of data-
types. In M̈oller, B., Partsch, H., and Schuman, S., editors,Formal Program Develop-
ment, pages 7–42. Springer Lect. Notes Comp. Sci. (755).

Barbosa, L. S. (2003). Towards a Calculus of State-based Software Components.Journal
of Universal Computer Science, 9(8):891–909.

Barbosa, L. S. and Oliveira, J. N. (2003). State-based components made generic. In
Gumm, H. P., editor,CMCS’03, Elect. Notes in Theor. Comp. Sci., volume 82.1.

Bergner, K., Rausch, A., Sihling, M., Vilbig, A., and Broy, M. (2000). A Formal Model
for Componentware. In Leavens, G. T. and Sitaraman, M., editors,Foundations of
Component-Based Systems, pages 189–210. Cambridge University Press.

3This builds on our own previous work on coalgebraic models for software components as documented
in, e.g., [Barbosa and Oliveira, 2003, Barbosa, 2003].

Bird, R. and Moor, O. (1997).The Algebra of Programming. Series in Computer Science.
Prentice-Hall International.

Broy, M. (1987). Semantics of finite and infinite networks of communicating agents.
Distributed Computing, (2).

Costa, G. and Reggio, G. (1997). Specification of abstract dynamic data types: A temporal
logic approach.Theor. Comp. Sci., 173(2).

Fiadeiro, J. and Lopes, A. (1997). Semantics of architectural connectors. InProc. of
TAPSOFT’97, pages 505–519. Springer Lect. Notes Comp. Sci. (1214).

Gelernter, D. and Carrier, N. (1992). Coordination languages and their significance.Com-
munication of the ACM, 2(35):97–107.

Jones, S. P., Gordon, A., and Finne, S. (1996). Concurrent Haskell. InConference Re-
cord of POPL ’96: The23rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 295–308, St. Petersburg Beach, Florida.

Meng, S. and Barbosa, L. S. (2004). On refinement of generic software components.
In 10th Int. Conf. Algebraic Methods and Software Technology (AMAST), Stirling.
Springer Lect. Notes Comp. Sci. (to appear).

Nierstrasz, O. and Achermann, F. (2003). A calculus for modeling software components.
In de Boer, F. S., Bonsangue, M., Graf, S., and de Roever, W.-P., editors,Proc. First In-
ternational Symposium on Formal Methods for Components and Objects (FMCO’02),
pages 339–360. Springer Lect. Notes Comp. Sci. (2852).

Nierstrasz, O. and Dami, L. (1995). Component-oriented software technology. In Nier-
strasz, O. and Tsichritzis, D., editors,Object-Oriented Software Composition, pages
3–28. Prentice-Hall International.

Papadopoulos, G. and Arbab, F. (1998). Coordination models and languages. InAdvances
in Computers — The Engineering of Large Systems, volume 46, pages 329–400.

Rutten, J. (2000). Universal coalgebra: A theory of systems.Theor. Comp. Sci., 249(1):3–
80. (Revised version of CWI Techn. Rep. CS-R9652, 1996).

Szyperski, C. (1998). Component Software, Beyond Object-Oriented Programming.
Addison-Wesley.

Wermelinger, M. and Fiadeiro, J. (1998). Connectors for mobile programs.IEEE Trans.
on Software Eng., 24(5):331–341.

