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Abstract

This paper introduces a generic semantic framework for component-based development, expressed
in the unified modelling language UML. The principles of a coalgebraic semantics for class, object
and statechart diagrams as well as for use cases, are developed. It is also discussed how to for-
malize the refinement steps in the development process based upon a suitable notion of behavior
refinement. In this way, a formal basis for component-based development in UML is studied, which
allows the construction of more complex and specific systems from independent components.
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1 Introduction

Component-based development [22] became accepted in industry as a new ef-
fective paradigm and widely considered the cornerstone of software engineering
in the years to come. Within the component-based paradigm a system con-
sists of a collection of components. Each component is a unit of composition
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with contractually specified interfaces. It can be deployed independently and
is subject to composition by third parties.

It has been widely recognized that component-based development is a
rather intricate activity and there is still no general agreement on precise
definitions of both components and component assembly. Thus the need for
formal foundations of component-based development was identified, especially
in relation to widely used component-oriented design notations such as UML
[20].

The starting point of the research reported here is the observation that
coalgebraic structures [11,21] may provide not only a powerful semantic do-
main for componentware, but also handy techniques for defining and reasoning
about system’s behavior, including a general notion of (bi)simulation and a
coinduction proof principle. Therefore, this paper aims to a semantic frame-
work in which the most popular notations used in UML can be mapped, in
order to provide a basis for rigorous component-based development. The pa-
per begins with a brief glimpse of the “components as coalgebras” approach,
proposed by the authors in a series of previous papers [1,2,3]. This is followed,
in Section 3, by a coalgebraic characterization of some crucial diagrams used
in UML. In Section 4, the author’s previous work on refinement of coalgebraic
models discussed in [15], is framed to entail appropriate notions of refinement
of UML models. This enables not only the formalization of (parts of) UML
descriptions but also of its transformations as a basis for stepwise separate
development. Finally, the prospects for future work are discussed in Section
5.

2 Components as Coalgebras

In this section we introduce a coalgebraic model for state-based components,
following closely the “components as coalgebras” approach proposed by L. Bar-
bosa et al in [1,2,3]. This approach provides an observational semantics for
software components and a generic assembly calculus, in the sense that the
proposed constructions are parametric on a notion of component behavior.

Components interact with their environment via interfaces. Every interface
provides a set of typed channels for receiving and sending messages, acting as
a type for the corresponding component.

Definition 2.1 Let I and O be sets of typed input and output channels,
respectively. The pair (I, O), denoted by I � O, is called an interface and
any component p with such an interface is typed as p : I → O.

In the simplest, deterministic case, the behavior of a component p is cap-
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tured by the output it produces, which is determined by the supplied input.
But reality is often more complicated, for one may have to deal with com-
ponents whose behavioral pattern is, e.g., partial or even non deterministic.
Therefore, to proceed in a generic way, the behavior model is abstracted to a
strong monad B. Of course, B = Id retrieves the simple deterministic behav-
ior, whereas B = P or B = Id + 1 would model non deterministic or partial
behavior, respectively. Therefore, a component p : I → O can be modelled
by a coalgebra for the Set endo-functor TB = B(Id × O)I . In this way, its
computation will not simply produce an output and a continuation state, but
a B-structure of such pairs. Formally, such a component p is modelled as a
pointed concrete coalgebra

〈Up, αp : Up → B(Up × O)I , u0 ∈ Up〉

where a specific value u0 is taken as its ‘initial state’ (or ‘seed’) and the
dynamics is captured by currying the state-transition function αp : Up × I →
B(Up × O).

Successive observations of a component p reveal its allowed behavioral pat-
terns. For each state value u ∈ Up, the behavior of p at u (more precisely, from
u onwards) organize itself into a tree-like structure, because it depends on the
sequences of input items processed. Such trees, whose arcs are labelled with
I values and nodes with O values, can be represented by functions from non
empty sequence of I to B-structures of output items. In other words, the space
of behaviors of a component with interface I � O is the set (BO)I+

, which is in
fact the carrier νT of the final TB-coalgebra (νT, ωT : νT → TBνT). Therefore,
by finality, from any other TB-coalgebra p, there is a unique morphism [(p)]
making the following diagram to commute:

νT

ωT� B(νT × O)I

Up

[(p)]
�

αp� B(Up × O)I

B([(p)] × O)I�

Applying morphism [(p)] to a state value u ∈ Up gives the observable behavior
of a sequence of p transitions starting at u. By instantiating B with concrete
strong monads like P and Id + 1, it is possible to model different behavior
patterns such as non-determinism and partial behavior respectively.

Having defined generic components as concrete coalgebras, one may nat-
urally wonder how do they get composed and what kind of calculus emerges
from this framework. Components are “arrows” and so arrows between com-
ponents are “arrows between arrows”, which motivates the adoption of a bi-
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categorical framework to structure our semantic universe. In brief, a bicat-
egory Cp is built whose objects are the interface universes I, O, · · · , arrows
are seeded concrete coalgebras and 2-cells (arrows between arrows) are the
corresponding coalgebra morphisms. 2-cell composition is inherited from Set
and the identity on component p is defined as the identity idUp on the carrier
of p. Then for each pair 〈I, O〉 of objects, the construction of Cp defines a
hom-category Cp(I, O), whose arrows

h : 〈Up, αp : Up → B(Up × O)I , up ∈ Up〉 → 〈Uq, αq : Uq → B(Uq × O)I , uq ∈ Uq〉
are maps h : Up → Uq that satisfy the following conditions:

αq · h = TBh · αp and hup = uq

For each triple of objects 〈I, K, O〉, a composition law is given by a functor:

;I,K,O : Cp(I, K) × Cp(K, O) → Cp(I, O)

whose action on components p and q is given by

p; q = 〈Up × Uq, αp;q, 〈up, uq〉 ∈ Up × Uq〉
where αp;q : Up × Uq × I → B(Up × Uq × O) is detailed as follows 3 :

αp;q : Up × Uq × I
∼=−−−→ Up × I × Uq

αp×id−−−→ B(Up × K) × Uq

τr−−−→ B(Up × K × Uq)
∼=−−−→ B(Up × (Uq × K))

B(id×αq)−−−−−→ B(Up × B(Uq × O))
Bτl−−−→ BB(Up × (Uq × O))

∼=−−−→ BB(Up × Uq × O)
µ−−−→ B(Up × Uq × O)

The action of “;” on 2-cells is simply given by h; k = h × k. Finally, for
each object K, an identity law is given by a functor copyK : 1 → Cp(K, K),
whose action on objects is the constant component 〈1, αcopyK

, ∗ ∈ 1〉, where
αcopyK

= η1×K . Similarly, the action on morphisms is the constant morphism
id1.

Besides the ‘pipeline’ sequential composition defined above, components
can be aggregated in a number of different ways. A calculus emerges in [2] from
the structure of Cp including a ‘wrapping’ combinator as well as combinators
capturing external choice p � q, parallel composition p � q and concurrent
composition p� q. Finally, generalized interaction is catered through a sort of
‘feedback’ mechanism on a subset of input ends.

3 Notice that µ is the monad multiplication, η its unit and τr and τl the right and left
strengths, respectively.
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3 A Formal Semantics for UML

The central idea of our research on the formalization of UML is that a set
of UML diagrams denote coalgebraic specifications as introduced by Jacobs
[8,9]. More precisely, we intend to translate all the graphical symbols and
annotations in the UML syntax, into functors and properties of a coalgebraic
specification. Therefore standard definitions in universal coalgebra, such as
bisimilarity and refinement, become available to reason and transform UML
designs.

3.1 Class Diagrams

One of the main components in a UML description (as presented in [17]) is
the class diagram. A class diagram shows the static structure of a system,
consisting of a set of classes and relationships between them.

In UML, a class is an abstract description of a set of objects with similar
structure, behavior and relationships. The description of a class includes the
attributes and operations common to all of the objects belonging to it. Every
object o of a class C in a system has an identifier ido which is unique within the
system. We denote the set of all identifiers by Id. Therefore, an object o : C is
represented as a triple o = (ido, UC, αC : UC → T(UC)) where UC is the state
space of class C, which consists of all the possible states for a C-object, and T
is a functor encapsulating a signature of attributes and methods. During the
lifetime of an object, its local state u may change over the state space UC, but
its identifier ido, UC itself and the transition structure αC remain the same.

Following the work of Jacobs et al [7,8,19] on coalgebraic semantics, every
class in a UML class diagram is taken as a coalgebraic specification Spec, i.e.,

Definition 3.1 A coalgebraic specification Spec is a tuple (T, Φ, Ψ) in which:

• T is a functor on a local state space U , representing the signature of all the
attributes and methods of the class;

• Φ is a set of axioms giving the constraints on the functors for the attributes
and methods to characterize the properties of the class;

• Ψ is an axiom describing the properties that hold for newly created objects.

A model (class implementation) of a given class specification Spec =
(T, Φ, Ψ) is a triple c = (U, α : U → T(U), u0), where U is a carrier set
interpreting the state space of the class, α : U → T(U) is the transition struc-
ture which satisfies all the properties given by Φ and u0 ∈ U is an initial state
satisfying Ψ.

The semantics of a concrete class C in a UML class diagram is defined
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as the category Coalg(Spec), whose objects are models of the corresponding
coalgebraic class specification Spec and the arrows are initial state preserving
homomorphisms between them. Formally,

[[C]]
∆
= Coalg(TC, ΦC, ΨC) if isAbstract(C) = False

where (TC, ΦC, ΨC) is the specification of class C and the boolean value func-
tion isAbstract specifies whether the class C can be directly instantiated. This
category is a subcategory of Cp, defined in the previous section. In detail, its
objects are

Obj(Coalg(TC, ΦC, ΨC)) = {c = (UC, αC : UC → TC(UC), u0 ∈ UC) |
(c |= ΦC) ∧ (c, u0 |= ΨC)}

where c |= ΦC means that all the axioms in ΦC are satisfied by coalgebra c
and c, u0 |= ΨC means that the properties in ΨC are satisfied by the initial
state u0 of c. Their formalization is immaterial for the purposes of the present
paper.

Let us now look at the specification of attributes. The default UML syntax
is

visibility name: type-expr[multiplicity ordering] = initial value{property-string}
Therefore, the semantic function of an attribute At in class C is defined as
follows:

[[v At : T [m] = i{p}]] ∆
={At : UC → TAt(UC) | [[At[m]]] ∧ [[At = i]] ∧ [[At{p}]]}

where TAt = P[[T ]], with P standing for the powerset functor, which is required
to model attribute’s multiplicity (it can be dropped whenever the multiplicity
is exactly one). The semantics for multiplicity of an attribute At in class C is

[[At[m]]]
∆
= ∀u ∈ UC . card(At(u)) = m

or, if specified as a range,

[[At[l..k]]]
∆
= ∀u ∈ UC . l ≤ card(At(u)) ≤ k

The initial value is used for initializing the attribute of a newly created object.
Hence,

[[At = i]]
∆
= ∀(UC, αC, u0) ∈ Obj([[C]]).At(u0) = i

The optional property string indicates property values of the attribute, like
changeability. Due to length restrictions, we omit its semantics as well as the
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coursestudent courseID : Number
name: String

CourseStudent
name: String *
studentID: Number

*takecourse

Fig. 1. Association

semantic functions for visibility of attributes, operations, interfaces, etc. which
can be found in [14]. Note that in this framework attributes and operations are
very similar: only the form of the signature functor changes. The distinction
lies in the difference between observation and computation, only the latter
being the source of change in object states.

An association in a class diagram describes the connections among objects
in a system. It may have two or more association ends. Figure 1 shows an
example of an association.

Suppose SpecU and SpecV are the class specifications of classes U and
V in a class diagram and A is a binary association between them. Also
assume that c = (U, α, u0) and d = (V, β, v0) are objects in Coalg(SpecU)
and Coalg(SpecV) respectively. Then association A, which connects the two
coalgebras, can be interpreted 4 as a space SA ⊆ P((Id × U) × (Id × V )).
Identifiers in the set Id are necessary to distinguish objects of the same class
being in the same state. An element s ∈ SA is a state of the association
which records a set of object pairs linked by the association simultaneously at
the individual states paired at s. Every pair of objects in SA is called a link
between them.

Every association has three basic components: a name, a role and the
multiplicity at each of its ends. The semantics for an association is given
by the corresponding observers in each of the classes being related by the
association. Let A be such an association between classes U and V. The role
names and multiplicities on the two ends are, respectively, uA, vA, and mU ,
mV , the later being two sets of non-negative integers. Then the semantics of
A is defined as a pair of the coalgebraic observers:

(uA : (Id × V ) → P(Id × U), vA : (Id × U) → P(Id × V )) (1)

where U and V are the statespaces of coalgebras (U, α : U → TU(U), u0) and
(V, β : V → TV (V ), v0) corresponding to the semantics of classes U and V.
Furthermore, the two coalgebraic observers must be related as follows:

oU ∈ uA(oV ) ⇔ oV ∈ vA(oU) (2)

4 strictly speaking, what is connected by the association A are their classes: and the two
coalgebras are connected by a link of A.
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Summing up, the semantics of an association is given by the pair of ob-
servers in (1) which satisfies (2):

[[UuA
A

vAV]]
∆
= {(uA, vA) | (2)}

The UML specification [17] states that each association end has a multiplicity
constraint (may be unspecified in an incomplete model) which is “a subset of
the open set of non-negative integers”. Should multiplicity be given explicitly
in the diagram, the semantic function will become:

[[UuA
mU A

vA
mV

V]]
∆
={(uA, vA) | (2) ∧ (∀oU : Id × U.(card(vA(oU)) ∈ mV ))∧

(∀oV : Id × V.(card(uA(oV )) ∈ mU))}

There is an entire family of optional properties that is provided by UML
and may be given to associations in a class diagram. For example, UML allows
an association to have its own attributes, which is represented by an associa-
tion class, i.e., an association which is also a class. Generally, an association
class can be represented as a class with two one-to-many associations.

Therefore, the semantics of an association class is defined by the tupling of
the semantics of this class together with the semantics of the two associations,
as follows:

[[UuV
mU AC

vU
mV

V]]
∆
={(ac, (uA, aU), (aV , vA)) | ac ∈ Obj([[AC]])∧

(uA, aU) ∈ [[UuA
1 −aU

mV
AC]] ∧ (aV , vA) ∈ [[ACaV

mU
−vA

1 V]]∧
∀oU : Id × U, oV : Id × V.((oV ∈ vU(oU) ⇔
∃!oA : Id × AC.oV = vA(oA) ∧ oA = aU(oU))∧

(oU ∈ uV (oV ) ⇔ ∃!oA : Id × AC.oU = uA(oA) ∧ oA = aV (oV )))}

The last predicate ensures the wellformedness of the object links via AC in
both directions. Let us now turn to the semantics of generalization.

Generalization in a class diagram describes the inheritance relationship
between a general class (superclass) and a more specialized class (subclass).
The fact that a class D is a subclass of C in a class diagram is represented as
C �−−− D. It is also said that D inherits from C.

If there is such an inheritance relationship between D and C, a forgetful
functor G : Coalg(D) → Coalg(C) between the corresponding categories
of models can be derived as shown in [7]. In our framework, the semantics
of the generalization relationship in UML class diagrams is given by the col-
lection of all the possible inheritance morphisms between the models of the

S. Meng et al. / Electronic Notes in Theoretical Computer Science 122 (2005) 229–245236



corresponding class specifications, i.e.,

[[C �−−− D]]
∆
= {g : d → c | d ∈ Coalg(D) ∧ c ∈ Coalg(C)}

where g is the inheritance morphism from d to c. Such a morphism con-
sists of a forgetful functor and a natural transformation between the functors
corresponding to the two classes.

Generalization relations organize classes into a lattice, with the most gen-
eralized class at the top of the hierarchy (eventually an abstract class). The
meet and join operators are defined as the superclass and subclass (for mul-
tiple inheritance) of classes respectively. Note that an abstract class may not
have direct instances, and, therefore, it can not be interpreted in the same way
as a concrete class. However, from the generalization relationship between an
abstract class and its subclasses, its semantics can be recovered as the smallest
superclass of all of its subclasses (or the least upper bound in the lattice of
classes). Translated to category theory this means that the semantics of an
abstract class with respect to its subclasses is the colimit of the corresponding
subclass coalgebras, i.e.,

[[C{Abstract} �−−− ∗{C1,C2, . . . ,Cn}]] ∆
= ColimitCp(c1, c2, . . . , cn)

where ci are the coalgebras in [[Ci]] respectively.

3.2 Object Diagrams and Class Diagrams

We may now sum up the previous discussion, centered at the class level, in
order to give the semantics of class diagrams, which is defined via object
diagrams.

An object diagram is a snapshot of the corresponding class diagram. It
exhibits a set of objects and their relationships in a system at a specific point in
time. These objects and their relationships are semantically defined as above.
Thus, denoting the system state space by Σ, an object diagram represents a
system state σ ∈ Σ and can be seen as an instance of the corresponding class
diagram. Therefore, an element σ ∈ Σ is interpreted as the product of states
of different objects at the same point in time.

Then, the system can be modelled as a coalgebra c = (Σ, α : Σ → T(Σ)),
where α describes all the possible transitions between system states. Formally,

Definition 3.2 The semantics of a class diagram CD is defined by the cat-
egory Coalg(CD), whose objects are coalgebras (Σ, c : Σ → T(Σ)), where
Σ is the system state space which contains all the possible system states. T
is the tensor product of all the signature functors of the component classes
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and associations in the class diagram, which describes the possible system
state transitions and observations. The arrows are T-homomorphisms between
them.

3.3 Use Cases

In UML, use cases describe functional requirements. A use case is defined as
“a sequence of transactions in a system, whose task is to yield a measurable
value to an individual actor of the system” [12]. Thus, we can interpret a
use case coalgebraically as a sequence of actions followed by some (eventu-
ally combined) observations. Single actions represent atomic use cases which
change the system from one state to another. Such actions include creating
new objects and deleting old objects, forming or deleting links between objects
or modifying attribute values of objects.

The signature of an atomic use case is again defined by a functor T. Let Σ
be the system state space, as defined in the semantics of class diagrams. Then
a use case is interpreted as a function uc : Σ → T(Σ). An example should
demonstrate the coinductive formalization of use cases.

Consider a use case BB describing the process of borrowing a book in a
library (see [14] for the complete example) as specified in Figure 2.

Let Σ be the state space of the system. Then the behavior of BB can be
defined by a coalgebraic function bb : Σ → ΣStudent×Book. If student s0 borrows
book b0, then the observable effects can be specified coinductively:

pre � loans(s′0(bb(σ, s0, b0))) = loans(s′0(σ)) ∪ {b0}
pre � borrower(b′0(bb(σ, s0, b0))) = s′0(σ)

where s′0, b
′
0 are observers on Σ for obtaining the objects s0, b0 and σ ∈ Σ.

Notice that, the purpose of precondition pre is to guarantee the multiplicity
constraints in the class diagram.

In addition to the system operations, an actor may also perform other
actions to change the system state. So use cases are more generically specified
by integrating the system actions and actor actions together. How can this be
specified in our framework? The component calculus mentioned in section 2
provides a set of combinators (notably, for sequential and parallel composition)
which can be used for getting more complex use-cases from composing atomic
ones. For example, the use case BB is defined as a sequential composition
of the atomic actions corresponding to events 1 and 2, another use case for
returning a book, corresponding to event 3, when the condition is true, and
event 4.
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Use Case Borrow Book

Actors Reader, Librarian

Precondition The book can be borrowed.

Flow of Events 1. The use case begins when the reader chooses a book that is not already lent;

2. The librarian checks whether the reader could borrow any more books;

3. If the number of books borrowed by the reader arrived the upper bound

Include Return Book;

4. The librarian assigns the reader as the borrower of the book and states a deadline

for returning the book.

Postcondition The reader has successfully borrowed the book.

Fig. 2. Borrow Book use case

3.4 Statechart Diagrams

In UML statechart diagrams describe the dynamic behavior of systems. Sev-
eral formal semantics for statechart diagrams have been proposed previously.
For example, in [13] input-output labelled transition systems are used as the
semantic domain. Our aim is to give a coalgebraic characterization of stat-
echarts, so that consistency checks between class diagrams and statechart
diagrams became proofs that the coalgebra (statechart) is a model of the
corresponding coalgebraic specification (class diagram). Similarly, refinement
(implementation) relations can be defined ranging over different view models.

Because of the hierarchical structure of statecharts, we will endow the
set of configurations with a coalgebraic structure induced by the operational
semantics rather than simply construct the coalgebraic structure over the set
of states. Functor T captures the shape of such a coalgebra:

T(X) = B(X × PE)E

where E denotes the set of all events — notice that events, at this stage, may
have parameters rather than remaining just primitive signals. B is a strong
monad which specifies the behavior pattern of the statechart (typically the
powerset monad). For a given statechart SC, let CF be the set of configura-
tions and (CF, α : CF → T(CF )) the corresponding T-coalgebra. Hence, the
behavior of SC is given by

[[SC]] : λs : CF . α(s)

Note that directly defining the coalgebraic semantics may lead to a more
faithful model, since we have the freedom to choose the signature functor
appropriately. Concerning verification, the coalgebraic approach often allows
for a smaller state space, when compared with direct encoding as a Kripke
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structure, and makes the verification of system properties more effective (as
shown by D. Pattinson in [18] ). A detailed discussion can be found in [16].
Furthermore, the generic notion of component refinement, proposed by the
authors in [15], can be adapted to the context of UML and used for checking
consistency of different models. Such is purpose of the following section.

4 Refinement

To make proper use of UML models in a development process we need a
clear notion of refinement between components clarifying what it means for
a component to implement another. Orthogonal to the horizontal decompo-
sition of the system structure, the vertical refinement of concrete components
from abstract ones provides an approach for stepwise separate development
of component-based systems. In the coalgebraic framework sketched in this
paper, three kinds of refinement relations between components can be de-
fined. In any case the semantic mapping defined for UML models makes them
associated with a proper refinement ordering.

• Behavioral refinement, which typically relates components of the same inter-
face, where the refinement is based on a simulation preorder between the two
components. Since morphisms between components of the same interface
are in fact coalgebra homomorphisms which, therefore, entail bisimilarity,
we must seek for a weaker notion of a morphism between components, still
preserving the source component dynamics. Concerning UML, this kind of
refinement is mainly used for refinement of behavioral models, especially,
for statechart diagrams.

• Interface refinement, which is concerned with what one may call plugging
compatibility. It relates components of different interfaces, and the ques-
tion is whether a component can be transformed, by suitable wiring, to
replace another component with a different interface. As the structure of
components interface types encodes the available operations, this may cap-
ture situations of extension of component’s functionality, in the sense that
the ‘concrete’ component may introduce new operations, and is used for
development with conceptual models, i.e., class diagrams and use cases.

• and architectural refinement, which is used for decomposing a component
with a specified behavior into a distributed system architecture, i.e., a family
of components combined in parallel, which is also modelled as a concrete
coalgebra. Such a notion of refinement is mainly used in the development
of system architectures, i.e., for component and deployment diagrams.
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We say that a component p behaviorally refines component q if the behav-
ioral patterns observed for p are a structural restriction, with respect to the
behavioral model captured by monad B, of those of q. To make such a ‘defi-
nition’ more precise we describe behavioral patterns concretely as generalized
transitions. Thus a possible (and intuitive) way of regarding component p as a
behavioral refinement of q is to consider that p transitions are preserved in q.
For non deterministic components this is understood simply as set inclusion.
But one may also want to consider additional restrictions. For example, to
stipulate that if p has no transitions from a given state, q should also have
no transitions from the corresponding state(s). Recall that a component mor-
phism from p to q is a seed preserving function h : Up −→ Uq such that
B(h × id) · αp = αq · (h × id). In terms of transitions, this equation is trans-
lated into the following two requirements (by a straightforward generalization
of an argument in [21]):

u
〈i,o〉−→p u′ ⇒ h u

〈i,o〉−→q h u′ (3)

h u
〈i,o〉−→q v′ ⇒ ∃u′∈U s.t. u

〈i,o〉−→p u′ ∧ u′ = h v′ (4)

which capture the fact that, not only p dynamics, as represented by the in-
duced transition relation, is preserved by h (3), but also q dynamics is reflected
back over the same h (4).

To define a weaker notion of coalgebra morphism, let ≤ be an order on a
Set endo-functor T [10] (concretely, mapping every set U into a collection of
preorders ≤TU ), referred to as a refinement preorder. Then,

Definition 4.1 Let T be an extended polynomial functor on Set and consider
two T-coalgebras p = (U, α : U → T(U)) and q = (V, β : V → T(V )). A
forward morphism h : p → q with respect to a refinement preorder ≤, is a
function from U to V such that

T h · α ≤ β · h

The existence of a forward morphism connecting two components p and
q witnesses a refinement situation whose symmetric closure coincides, as ex-
pected, with bisimulation. In the sequel we define behavioral refinement as
the existence of a forward morphism up to bisimulation 5 . Formally,

Definition 4.2 Given components p and q, p is a behavioral refinement of q,

5 In [15] the dual notion of a backwards morphism, i.e., one that satisfies β · h ≤ T h · α, is
also studied, leading to a notion of backward refinement which do have some applications,
although the underlying intuition seems less familiar.
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written p �B q, if there exist components r and s such that p ∼ r, q ∼ s and
there exists a (seed preserving) forward morphism from r to s.

Behavioral refinement characterizes the preservation of component behav-
ior. But if we rely solely on behavioral refinement, the inability to change the
syntactic interface will force us to work at the same level of interface abstrac-
tion throughout the whole development process. To avoid this, a more general
notion of refinement, called interface refinement is introduced, which relates
components with different interfaces.

Definition 4.3 Let p : I → O and q : I ′ → O′ be components. If there exist
functions w1 : I ′ → I and w2 : O → O′, such that

p[w1, w2] �B q

then p is an interface refinement of q modulo the downwards function w1 and
the upwards function w2, written as p �(w1,w2) q.

Interface refinement supports the systematic construction of new compo-
nents from existing ones. Generally, for any component p, and functions w1,
w2,

p �(w1,w2) p[w1, w2]

One situation where this technique is useful is when we have an already com-
pleted off-the-shelf component and want to adapt the syntactic interface of this
component to fit some context requirements. Therefore, interface refinement
provides a systematic pattern for interface adaptation of components.

Both kinds of refinement relations introduced above are defined with re-
spect to the underlying black-box behavior of components. However, when
we develop a system, it is certainly not enough to characterize its black-box
behavior only, we also need to capture some internal structural aspects. For
this purpose, we introduce the notion of architectural refinement.

For this let us define an architecture as a tuple S = 〈I, O, C, R〉 where I
and O are the input and output interface of the system, respectively, C =
{pk = 〈Uk, αk, uk〉}k=1,2,··· ,n denotes a finite set of components, and R denotes
a finite set of combinators together with the components being combined by
them. In fact, systems can be decomposed hierarchically, and regarded as
ordinary components again, which means that the notion of behavioral re-
finement remains applicable. The architectural refinement relation is then
therefore defined as a behavioral refinement within the given interface:

Definition 4.4 Let S and S ′ be two systems. If I = I ′, O = O′, and [[S]] �B

[[S ′]], then we say that S is an architectural refinement of S ′, written as S �A

S ′.
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The most obvious use of a notion of refinement is to compare two alterna-
tive designs for the same component. We take every design as a separate model
in UML and compare them at the semantic level by defining their semantics
as coalgebras. For M1 and M2 UML models, we define

M1 �B M2 ⇔ [[M1]] �B [[M2]]

M1 �(w1,w2) M2 ⇔ [[M1]] �(w1,w2) [[M2]]

M1 �A M2 ⇔ [[M1]] �A [[M2]]

Another use of the refinement order is to check the consistency between models
of the same system.

5 Conclusions and Future Work

We have presented a generic semantic framework for component-based devel-
opment starting from UML descriptions, extending previous work on com-
ponentware detailed on a series of papers under the slogan “components as
coalgebras” [1,2,3,15], where components are made generic in the sense that
their behavioral patterns are described by strong monads acting as parame-
ters in the calculus. Essential parts of a coalgebraic semantics for UML class
diagrams have been presented in this paper. It has been shown in detail how
classes, associations and generalizations in a UML diagram can be interpreted
as coalgebraic specifications. Furthermore an outlook on the formalization
of object, use-case and statechart diagrams has also been given. Although,
space limitation preclude a more technical discussion of other diagrams, the
reader should by now get an idea how a coalgebraic semantics facilitate the
integration of static and dynamic aspects of UML.

Another major aspect of our framework is refinement, which formalizes the
replaceability of components. Refinement is a very basic idea in sequential pro-
gramming whose foundations can be traced back to Hoare’s landmark paper
[6] (see [5] for a recent account). However, for component-based systems, the
situation is far more complex (see, e.g., [4]). In this paper we investigated re-
finement at three, inter-related, levels: behavioral, interface and architectural
level. Our framework allows the notion of refinement to change the interface
and granularity of components.

A major influence in our work was Jacobs and Tews research on object-
oriented systems [8,9,23]. However, instead of defining and resorting to a spe-
cific (coalgebraic) specification language (Ccsl), we adopt a rather pragmatic
approach: that of using UML diagrams to denote coalgebraic specifications.
Another difference between our work and the formalization of UML in [23] is
that we do not restrict ourselves to class diagrams.
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Actually, this paper intends to be a step towards a unifying coalgebraic
semantics for UML. Currently, our research programme includes further work
on use cases, statechart diagrams, and suitable notions of consistency among
UML models. Further UML elements, such as interaction diagrams, will be
addressed at a later stage. The calculus provided in the framework is a promis-
ing candidate to model the interactions. However, having a formal semantics is
not enough. The next step will involve research on applications of the seman-
tics: our long term research aim is to propose a use-case driven development
method for UML designs, supported by algebraic laws and coinductive proof
methods. On the technological side, the approach will be supported by a
combination of a model checker and a test-case generator for UML diagrams.
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