
Software and Systems Modeling manuscript No.
(will be inserted by the editor)

Translating between Alloy Specifications and UML Class
Diagrams Annotated with OCL

Alcino Cunha ¨ Ana Garis ¨ Daniel Riesco

Received: date / Accepted: date

Abstract Model-Driven Engineering (MDE) is a Soft-
ware Engineering approach based on model transfor-
mations at di↵erent abstraction levels. It prescribes the
development of software by successively transforming
models from abstract (specifications) to more concrete
ones (code). Alloy is an increasingly popular lightweight
formal specification language that supports automatic
verification. Unfortunately, its widespread industrial a-
doption is hampered by the lack of an ecosystem of
MDE tools, namely code generators. This paper pre-
sents a model transformation from Alloy to UML Class
Diagrams annotated with OCL (UML+OCL), and shows
how an existing transformation from UML+OCL to Al-
loy can be improved to handle dynamic issues. The pro-
posed bidirectional transformation enables a smooth in-
tegration of Alloy in current MDE contexts, by allowing
UML+OCL specifications to be transformed to Alloy
for validation and verification, to correct and possibly
refine them inside Alloy, and to translate them back to
UML+OCL for sharing with stakeholders or to reuse
current Model-Driven Architecture (MDA) tools to re-
fine them towards code.

Keywords MDE ¨ Alloy ¨ UML ¨ OCL

Alcino Cunha
HASLab, INESC TEC and Universidade do Minho
Braga, Portugal
E-mail: alcino@di.uminho.pt

Ana Garis
Universidad Nacional de San Luis
San Luis, Argentina
E-mail: agaris@unsl.edu.ar

Daniel Riesco
Universidad Nacional de San Luis
San Luis, Argentina
E-mail: driesco@unsl.edu.ar

1 Introduction

MDE is a promising Software Engineering approach us-
ing models at di↵erent abstraction levels. Software is
developed by successively transforming models from ab-
stract to more concrete ones. UML+OCL [30,31] have
been successfully adopted in the MDE context through
the MDA initiative [29]. In order to support UML+OCL
in MDE, di↵erent tools have been developed such as
code generators and reverse engineering tools. Due to
the informality and ambiguity of the UML semantics
it also has been combined with formal methods to in-
crease the confidence in the software development pro-
cess. Formal methods use semantically precise mathe-
matical concepts to model software, helping the user
to, for example, discover design flaws, inconsistencies
in informal requirements, or the implications of such
requirements. The main disadvantage of some formal
methods, such as those involving interactive theorem
proving, is that they require a considerable initial learn-
ing e↵ort and thus are frequently avoided by software
engineers responding to time and cost constraints.

In contrast with such “heavyweight” formal meth-
ods, Alloy [22] is a “lightweight” formal language with a
simple notation, easy to learn, easy to use, that includes
a friendly Validation and Verification (V&V) tool. Its
specification language is based on first-order relational
logic, with a familiar object-oriented notation. The au-
tomatic Alloy Analyzer allows the generation of snap-
shots showing instances of the model as well as assertion
checking. Given the undecidability of Alloy’s logic, such
automatic analysis must be bounded by a user specified
scope. However, it is still highly e↵ective since most
counterexamples can be found within small scopes.

Although very few UML software developers are
familiar with formal methods, Alloy could be easily

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634074?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Alcino Cunha et al.

adopted by UML practitioners due to its simplicity and
its resemblance with UML. Both Alloy and UML can
benefit if two-way transformations are developed be-
tween them. On the one hand, from the UML prac-
titioners point of view, the Alloy Analyzer could be
exploited as a model verification tool in an MDE con-
text. On the other hand, from the Alloy practitioners
point of view, a myriad of UML tools could be used
in order to unleash Alloy’s potential for MDE. Specif-
ically, there exist multiple code generators to di↵erent
platforms and programming languages, such as JEE,
CORBA, Java, C, C++, C# and Python, that could
be used to refine Alloy specifications.

Further benefits could be achieved by developers fa-
miliar with both Alloy and UML. They could be com-
bined in the software development process: start by us-
ing UML Class Diagrams (CDs) to specify requirements
at high abstraction level, then translate them to Alloy
and formally specify invariants and operations, perform
model validation and verification using Alloy Analyzer,
and finally translate back to UML+OCL in order to use
the aforementioned code generation tools.

The main contribution of this paper is a model trans-
formation from Alloy specifications to UML+OCL. Al-
though the semantic correspondence between elements
of UML and Alloy was already analyzed in [2,1], the
translation from Alloy to UML+OCL has not been con-
sidered yet. This translation opens new challenges since
several Alloy expressions do not have a direct equivalent
in UML or OCL. Additionally, it requires us to explore
di↵erent Alloy idioms in order to identify a specification
style compatible with UML+OCL models. Therefore,
we define a subset of the Alloy language which includes
UML+OCL compatible expressions, and we study the
semantics of the syntactic elements of Alloy, CDs and
OCL. We redefine the EBNF of Alloy’s grammar to rec-
ognize expressions in this subset and specify the trans-
formation rules.

Another contribution is to show how the existing
translation between UML+OCL and Alloy [2,1] can be
extended to target the identified Alloy subset. In par-
ticular, we show how to handle correctly OCL pre- and
post-conditions occurring in method specification. This
allows us to fully support the aforementioned roundtrip
scenarios. Our approach is illustrated with a couple of
case studies.

The rest of the document is structured as follows.
Next section introduces preliminary concepts related to
Alloy. We then formally present, in Sections 3 and 4,
respectively, the source Alloy and target UML+OCL
meta-models accepted by our translation. The relation-
ship between Alloy and CDs is presented in Section 5.
The transformation from Alloy to OCL is presented in

Section 6, and the opposite translation, from OCL to
Alloy, in Section 7. Section 8 presents some of the case
studies that were developed to validate the proposed
transformation. The related work is discussed in Sec-
tion 9 and the last section presents the conclusions and
future work.

2 Alloy

Alloy is a formal language based on first-order relational
logic [22]. It is supported by the Alloy Analyzer tool,
that uses SAT solvers to enable automatic model ver-
ification, bounded by a user specified scope. An Alloy
specification consists of a module with a set of imports
and zero or more paragraphs. A paragraph can either
be a signature declaration, a constraint, an assertion or
a command. A signature declaration represents a set of
atoms. An atom is a unity with three fundamental prop-
erties: it is indivisible, immutable and uninterpreted.
Optionally, a signature declaration can introduce fields.
Fields represent sets of tuples of atoms and are inter-
preted as relations between signatures. Constraints are
defined by facts, predicates and functions. Facts are in-
variants; i.e, their associated constraints always hold.
Predicates are named constraints, which can be used
in diverse contexts. The di↵erence between a fact and
a predicate is that the first one always holds while the
second one only holds when invoked. Finally, functions
describe named expressions, which can be also reused
in diverse contexts. Assertions allow the expression of
properties that are expected to hold as consequence of
the stated facts. Commands are instructions to perform
particular analysis. Alloy provides two commands for
analysis: run and check. Command run gives instruc-
tions to the analyzer to search for an instance of a given
predicate, and command check to search for a coun-
terexample of a given assertion.

Alloy’s logic is quite generic and does not commit
to a particular specification style. For example, since
atoms are immutable there is no standard way to model
the dynamic behavior of operations, and several idioms
have been proposed to address this issue. One of the
most popular is to introduce a signature denoting the
overall state of the system, and model operations as
predicates that specify the relationship between pre-
and post-states. Two variants of this idiom are possible,
known respectively as global state and local state. In the
former all mutable fields are defined in the global state
signature. In the latter, the state signature is added
locally as an extra column at the end of each mutable
field. The local state idiom is more modular, since fields
are still declared in the signature they naturally belong
to. On the other hand, the global state idiom forces all

Translating between Alloy Specifications and UML Class Diagrams Annotated with OCL 3

dynamic fields to be artificially grouped together. The
designation local state can be misleading, since the state
is also global - the “local” concerns only the location it
appears in field declarations.

In this paper we will assume the local state id-
iom to specify operations. Note that Alloy models con-
forming to the global state idiom can be easily con-
verted to the local one using a simple refactoring [18].
Without loss of generality, we will also assume the dis-
tinguished state signature to be denoted as Time. An
operation op will be specified using a predicate pred

op[...,t,t’:Time] {...} with two special parame-
ters t and t’ denoting, respectively, the pre- and post-
state. Functions will be used to model queries that do
not change the state. As such, in functions only one of
those special parameters is needed.

Figure 1 presents an example of an Alloy model
conforming to the local state idiom. It is a variant of
the address book model first presented in [22]. Besides
the mandatory Time signature, the model introduces
two top level signatures, namely Book to model address
books and Target to model their content. A target can
either be a Name or an Addr. Some addresses are emails.
This set is modeled by signature email, which is a sub-
set of Addr. Names can be of two types: Alias or Group.
Such types were declared in the enumeration signature
Type, which is just a shorthand for the following alter-
native declaration:

abstract sig Type { }

one sig Alias, Group extends Type { }

The multiplicity keyword one forces Alias and Group

to be singletons.
Mutable fields must specify Time as the last column.

In this model we have two mutable fields: names that
maps books to the addressed names, and addr that for
each book, maps names to the respective targets. The
model also declares one immutable field, namely type,
that specifies the type of each name. Field declarations
can also introduce multiplicity constraints: for example,
type maps a name to exactly one type, while names

maps each book to some names.
In Alloy everything is a relation. For example, sets

and signatures are unary relations and variables are
just (unary) singleton relations. As such, relational op-
erators such as composition can be used for various
purposes. For example, in the first fact the expression
b.addr.t denotes the value of the relation addr of
book b at instant t. Note that the relational expression
b.addr.t is contained in the cartesian product Name ->

Target. If we compose it with the Target set, we get all
names in the domain of that relation. As such, the first
fact is an invariant that restricts all names in the second

Fig. 2 An instance of an address book

column of the addr field of a book to be registered in
the respective names field. The second fact also ensures
a similar referential integrity, namely that all names in
the third column of the addr field are registered in the
address book (the operator & denotes relation intersec-
tion). The third fact imposes that all names registered
in a book have some address. The fourth fact uses the
transitive closure operator ^ to ensure that the addr

relation is acyclic. The fifth fact limits the addresses
of aliases to at most one target. Finally, the last fact
imposes that names have at most one email address
(operator :> restricts the range of a relation to a given
set). The first run commands attempts to verify that
the model is consistent, by requesting the Alloy Ana-
lyzer to search for a model instance containing exactly
one address book that satisfies the specified invariants.
Figure 2 presents one such instance, projected over the
single book and time atoms specified in the scope.

Predicate add models an operation that adds a new
target to a name in an address book. In the body of
operations, constraints that do not refer to t’ can be
seen as pre-conditions. For example, n in b.names.t

is a pre-condition that requires names to be registered
before adding a new target. Otherwise we have post-
conditions. For example, the post-condition b.addr.t’

= b.addr.t + n->a states that, after executing oper-
ation add, relation b.addr should have an additional
tuple: operator + denotes relation union and the carte-
sian product n->a between singletons n and a builds
a singleton binary relation, i.e, a tuple. The last post-
condition establishes the frame of the operation, stating
that the relation names does not change its value. Since
Alloy has no special syntax to model operations, frame
conditions must be stated explicitly. The second run

command verifies that the add operation is consistent.

4 Alcino Cunha et al.

module AddressBook

sig Time { }

abstract sig Target { }

sig Addr extends Target { }

sig email in Addr { }

sig Name extends Target { type : one Type }

enum Type { Alias, Group }

sig Book { names: Name some -> Time, addr: Name -> Target set -> Time }

fact { all t : Time | all b : Book | b.addr.t.Target in b.names.t }

fact { all t : Time | all b : Book | (Name.(b.addr.t) & Name) in b.names.t }

fact { all t : Time | all b : Book | all n : b.names.t | some n.(b.addr.t) }

fact { all t : Time | all b : Book | no n : Name | n in n.^(b.addr.t) }

fact { all t : Time | all b : Book | all n : type.Alias | lone n.(b.addr.t) }

fact { all t : Time | all b : Book | all n : Name | lone n.(b.addr.t :> email) }

run { } for 4 but exactly 1 Book, exactly 1 Time

pred add [b: Book, n: Name, a: Target, t,t’: Time] {

n in b.names.t

a not in n.(b.addr.t)

b.addr.t’ = b.addr.t + n->a

b.names.t’ = b.names.t

}

run add for 3 but 1 Book, 2 Time

fun lookup [b: Book, n: Name, t: Time] : set Addr { n.^(b.addr.t) & Addr }

check { all t : Time, b : Book, n : b.names.t | some lookup[b,n,t] } for 4 but 1 Time, 1 Book

Fig. 1 An address book specification in Alloy.

Function lookupmodels a query that returns the set
of addresses of a given name. Again, transitive closure
is used to recursively traverse relation addr. Finally, a
check command is used to verify that lookup always
returns some address for every name registered in an
address book. Since no counterexamples are produced,
this assertion holds for all instances within the specified
scope.

3 Characterizing source Alloy models

The Alloy subset accepted by our model transformation
is defined in Figure 3. This subset restricts models to
conform to the local state idiom, informally introduced
in Section 2. In particular, the model must declare a
distinguished state signature denoted Time. The last
column of a mutable relation declaration must be Time.
If Time is omitted then the relation is immutable. Mu-
table subsets of a signature A can be declared using a
binary relation of type A -> Time, that associates each
a P A with the set of Time points where such a belongs

to the set. For example, to model a (mutable) subset
of valid addresses in our example we could change the
Addr signature declaration as follows:

sig Addr extends Target {

valid : set Time

}

On the other hand, to model immutable subsets we rely
on signature inclusion. That is the case, for example, of
the email subset of Addr. We assume that signature
inclusion is only used for this particular purpose, and
as such it should not declare any fields. Moreover, sig-
natures declared with inclusion cannot be further ex-
tended or include other signatures. Support for arbi-
trary signature inclusion is not desirable, since it is not
possible to specify using just CDs that a class is a non-
disjoint subset of another class.

We capture such restrictions in the grammar by
partitioning the name space of identifiers into disjoint
sets, and by placing subset signatures identifiers in the
namespace irelId of immutable relation identifiers, in-
stead of sigId which denotes the set of signature iden-

Translating between Alloy Specifications and UML Class Diagrams Annotated with OCL 5

tifiers. Other namespaces are: relId for mutable rela-
tion identifiers, varId for variable identifiers, constId

for singleton signatures that extend enumerations, fu-
nId for function identifiers, and predId for predicate
identifiers. The following convention will be followed
for naming variables denoting the various grammar ele-
ments: x, y, z for variable identifiers (varId); A,B,C for
signature identifiers (sigId) and types in general; K for
singleton signature identifier (constId)R,S, T for muta-
ble relation and set identifiers (relId); U for immutable
relation and set identifier (irelId); �, ,' for formulas
(form); �, ,⌥ for relational expressions (expr); and
↵,�, � for integer expressions (intExpr).

Concerning operation and query modeling, all predi-
cates must have t and t’ as parameters, while functions
have only t. Note that Time, t, and t’ are treated as
reserved keywords.

Besides these structural restrictions, the syntax of
formulas is further restricted to ensure a sound op-
erational semantics [19]. Namely, every relational ex-
pression occurring in a formula must be state-bound, in
the sense that each mutable relation identifier is within
scope of a time variable. To simplify the presentation
of the translation, we ensure this restriction by forc-
ing mutable relation identifiers to be composed with ei-
ther t or t’. However, our tool accepts a more relaxed
syntax, where each occurrence of a mutable relation
identifier is required to be a subterm of either �.t or
�.t’, where � denotes a relational expression without
time variables. For example, given relations R : A ->

Time and S : B -> Time, the expression (R+S).t is
state-bound and would be accepted.

Besides conforming to the local state idiom, an Alloy
model must satisfy some additional restrictions due to
the limitations of UML+OCL, as described in the UML
Class Diagram metamodel [30] and the OCLmetamodel
[31]:

– OCL does not allow the specification of arbitrary
temporal formulas, and thus all facts must be invari-
ants. To ensure this, facts are restricted to formulas
without any time variables (that is, referring only
to immutable fields), or must be of the form all

t:Time | �, with t the only time variable that oc-
curs in formula �.

– Field declarations must refer to signature identifiers
instead of arbitrary relational expressions. This en-
sures that the type of each column corresponds to
a single signature, instead of an arbitrary disjunc-
tion of signatures, as prescribed in the Alloy type
system [9]. Since fields will be represented by at-
tributes or associations in UML, without this re-
striction we might not be able to determine the type
of attributes or association ends.

– OCL requires a context (a class) for all invariants
and methods. As such, Alloy facts must be further
restricted to include at least one additional uni-
versally quantified variable besides the special time
variable. The type of this variable will determine the
OCL context. Moreover, functions and predicates
are required to have at least one parameter besides
the special time parameters. The type of the first
parameter will determine the context of the target
method.

– Predicate call is not supported, since OCL constraints
can only invoke side-e↵ect free queries.

– Assertions and commands will not be considered,
since they do not have a counterpart in OCL. In
general they only make sense for model V&V, for
which OCL is currently not well suited. We pre-
scribe that model V&V should be performed using
the Alloy Analyzer, so those constructs can safely
be ignored when translating to OCL.

The grammar of Figure 3 also includes some addi-
tional minor restrictions, that do not limit the expres-
sivity of the language, but whose inclusion would unnec-
essarily complicate the translation. In particular, mul-
tiplicity constraints can only occur in the last column
(not counting the optional Time) of a field declaration.
A field relating more than two signatures will be rep-
resented by a qualified association in UML, and those
only support multiplicities in the association ends. Mul-
tiplicities are just syntactic sugar to normal facts any-
way, and thus additional multiplicities can be easily
supported with a refactoring. Consider our running ex-
ample. If we wanted to restrict addr to have at most
one Name associated with each Target in each Book, it
could have been declared as follows in standard Alloy:

sig Book {

addr: Name lone -> Target set -> Time

}

Instead we require the following equivalent fact:

fact { all t : Time | all b : Book |

all x : Target | lone b.(addr.t).x

}

Moreover, we do not allow signature facts, nor mul-
tiplicities in signature declaration. Again, these restric-
tions can easily be lifted by means of trivial refactor-
ings.

4 Characterizing target UML+OCL models

The CDs produced and accepted by our transformation
are restricted as follows:

6 Alcino Cunha et al.

module ::“ module moduleId sig Time {} paragraph˚

paragraph ::“ sigDecl | enumDecl | factDecl | funDecl | predDecl

sigDecl ::“ rabstracts sig sigId rextends sigIds sigBody | sig irelId in sigId {}
sigBody ::“ { rfieldDeclp,fieldDeclq˚

s }
fieldDecl ::“ setDecl | relDecl

setDecl ::“ relId : set Time

relDecl ::“ irelId : psigId ->q

˚
rmults sigId | relId : sigId rmults -> Time | relId : psigId ->q

`
rmults sigId -> Time

mult ::“ lone | one | some | set

enumDecl ::“ enum sigId { constIdp,constIdq

˚ }
factDecl ::“ fact {all varId:sigId | form} | fact {all t:Time | all varId:sigId | form}

funDecl ::“ fun funId[pvarId:sigId,q

`t:Time] : set sigId { expr }

predDecl ::“ pred predId[pvarId:sigId,q

`t,t’:Time] { form` }
form ::“ expr r! | nots compOp expr | form logicOp form | form => form r, forms | form implies form r, forms |

! form | not form | intExpr r! | nots intCompOp intExpr | no expr | lone expr | one expr | some expr |

quant varId:expr | form

logicOp ::“ && | and | || | or | <=> | iff

compOp ::“ = | in

intCompOp ::“ = | < | > | =< | >=

quant ::“ all | no | lone | one | some

expr ::“ varId | sigId | constId | irelId | relId.t | relId.t’ | none | univ | iden | expr relOp expr | ~expr | ^expr | *expr |

{varId:exprp,varId:exprq

` | form} | funId[pvarId,q

`t] | funId[pvarId,q

`t’]

relOp ::“ . | + | - | & | <: | :> | -> | ++

intExpr ::“ integer | #expr | intExpr intOp intExpr | sum varId:expr | intExpr

intOp ::“ + | -

Fig. 3 Subset of Alloy accepted by the transformation.

– Model types can only be classes, enumeration classes,
or sets of these. Classes can optionally be abstract.

– Multiple inheritance is not supported, since it has no
counterpart in Alloy strucutural features. For sim-
ilar reasons, property and operation overriding is
also not supported.

– The multiplicity of association ends is restricted as
follows: the lower bound can either be 0 or 1, and
the upper bound 1 or *.

– Associations can optionally be qualified by classes
or enumeration classes.

– Class atributes can also have the type Boolean. No
other primitive type is currently supported.

– Currently, the only supported attribute of proper-
ties is readOnly, to distinguish between mutable
and immutable properties.

– The type of an operation parameter must either be
a class or an enumeration class. The return type
of a query must be a set and the query itself must
be side-e↵ect free (i.e, the attribute isQuery is set
to true). Non-query operations cannot have return
values.

Likewise to [2,1], among popular UML elements not
currently supported we have association classes, inter-
faces, and aggregation and composition associations.
Given our intended usage scenarios we aim at produc-
ing human readable models. As such, our goal was to
identify a subset of CDs features that have a direct
counterpart in Alloy structural features. For example,
it is well known that multiple inheritance can be mod-
eled in Alloy using additional fields and facts [23], or a
deep embedding strategy [24], but the resulting mod-
els would be rather cumbersome and di�cult to un-
derstand. However, some of these restrictions (namely
the restriction on multiplicities of association ends) can
currently be supported by means of trivial refactorings
to OCL invariants.

Concerning OCL, the subset supported by our trans-
formation is presented in Figure 4. The supported con-
straints are class invariants, specification of a query
result using body, and specification of pre and post

conditions of non-query operations. Concerning OCL
formulas and expressions, we significantly depart from
the previous translation between OCL and Alloy [2,1] in
a key issue concerning OCL semantics. When an associ-

Translating between Alloy Specifications and UML Class Diagrams Annotated with OCL 7

package ::“ package packageId constraint˚ endpackage

contraint ::“ context classId inv |

context classId::queryId(rdeclp,declq˚
s):Set(classId) body |

context classId::opId(rdeclp,declq˚
s) ppre | postq

˚

inv ::“ inv: form

body ::“ body: setExpr

pre ::“ pre: form

post ::“ post: form

decl ::“ varId:classId

form ::“ true | false | not form | form and form | form or form | form implies form | if form then form else form endif |

object = object | intExpr compOp intExpr | setOrObject->forAll(varId | form) | setOrObject->exists(varId | form) |

setOrObject->isEmpty() | setOrObject->includes(object) | object.propIdr@pres | object.oclIsKindOf(classId)

compOp ::“ = | < | > | <= | >=

object ::“ self | varId | classId::constId | object.oclAsType(classId)

ref ::“ object.propIdr@presr[objectp,objectq

˚]s

setExpr ::“ classId.allInstances() | setOrObject->union(setExpr) | setOrObject->intersection(setExpr) |

setOrObject->select(varId | form) | setOrObject->reject(varId | form) | setOrObject->closure(varId | setExpr)

setOrObject->asSet() | object.queryIdr@pres(robjectp,objectq

˚
s)

setOrObject ::“ object | ref | setExpr

intExpr ::“ integer | intExpr + intExpr | intExpr - intExpr | setOrObject->size() | setOrObject->collect(varId | intExpr)->sum()

Fig. 4 Subset of OCL targeted by the transformation.

ation has multiplicity 0..1, OCL navigation may yield
an undefined value, leading to a three valued logic se-
mantics. Since Alloy’s logic is the standard two-valued
one, Anastasakis et al. [2,1] address this issue by as-
suming that an OCL undefined expression is equiva-
lent to an empty set, trading o↵ a semantics preserving
transformation for a more flexible syntax. On the other
hand, we prefer to restrict the syntax to an OCL sub-
set that avoids such undefined expressions, and thus
achieve a semantics preserving transformation. In par-
ticular, we require all navigations to be handled as sets,
by constraining them to be followed by a set operation
or property (signaled by the operator ->). Note that
this does not restrict the expressivity of the supported
OCL subset when compared to [2,1]; at most it can
lead to a more cumbersome usage. In fact, we support
a more expressive syntax, since, besides the usual set
operations and logical connectives, we also support the
closure operation recently added to OCL 2.3 [31].

5 Relationship between Alloy and UML class

diagrams

The relationship between CDs and Alloy declarations
is straightforward, as noticed in [2,1,34,25]: in general,
classes correspond to signatures (preserving the inher-
itance relation), associations and attributes to fields,
and methods to predicates and functions.

We consider the same relationships in our transla-
tions, but with the novelty that we handle both mutable
and immutable fields, and some fields may lead to non-
binary associations. As seen in Figure 3, a field can be
of three kinds:

– An immutable relation with type U : A1 -> . . .

-> m An, where m is a multiplicity constraint, to
be mapped to a readOnly qualified association U

between A1 and An, with A2, . . . , An´1 as qualifiers.
– A mutable relation with type R : A -> set Time,

denoting an mutable subset R of A, to be mapped
to an attribute R of class A with type Boolean.

– A mutable relation with type R : A1 -> . . . ->

An m -> Time, to be mapped to a qualified asso-
ciation R between A1 and An, with A2, . . . , An´1 as
qualifiers.

For associations, the multiplicity at the end depends
on m: 0..* for set; 1..* for some; 0..1 for lone; and
1..1 for one. If m is absent, the default is set. If the
relation is binary, with type A1 -> m A2, and m is
either lone or one it is more natural to encode it as
attribute of A1 with type A2.

The signature to class mapping also has a couple of
exceptions:

– A signatures declared as sig U in A { }, denot-
ing an immutable subset U of A, will be mapped to a
readOnly attribute U of class A with type Boolean.

8 Alcino Cunha et al.

– An enumeration signature enum A { K1,. . .,Kn }
will be mapped to an enumerated data type declara-
tion: A will be mapped to an enumeration class and
K1, . . ., Kn to enumeration literals of that class.

6 From Alloy to OCL

The model transformation from the Alloy subset de-
scribed in Section 3 to the OCL subset defined in Sec-
tion 4 will be formalized using an embedding function
v¨w. To simplify the presentation, this function will ac-
cept and produce concrete syntax.

6.1 Typing issues

We will assume the source Alloy model to be well-typed,
according to the typing system described in [9]. This
type system is very relaxed: an error occurs when a
expression can be shown to always be empty at static
time. For example, the composition �. is well-defined
for any relational expressions �: A -> B and : C

-> D, if the intersection of types B and C is non-
empty. The type of a relational expression is itself a
relation: a set of tuples of atomic signatures (i.e. sig-
natures that are not further extended, such as Book,
Addr, Alias, and Group in our running example). For
each non-abstract signature A that is extended, a spe-
cial atomic signature A$ is used to denote the set of
atoms not contained in any of its extensions. The type
inference rules ensure that all the tuples in the type
relation have the same arity. Given a relational expres-
sion � of arity |�|, we will denote the type of its n-th
column as �n (assuming 0 † n § |�|). The type of a
column is guaranteed to be a set of atomic signatures.
For example, consider the following Alloy model:

sig A {s : set B}

sig B extends A {}

The type of relation s is txA$, By, xB, Byu, meaning that
it either contains tuples whose first component is in
A$ and second component is in B or tuples whose first
component is in B and second component is also in B.
In this case s1 is tA$, Bu and s2 is tBu.

We will often need to quantify over such arbitrary
type columns. To do so in OCL, the quantification must
be reduced to iterations over concrete classes. As such,
the shorthand notation presented in Figure 5 will be
used, where tA1, . . . , Anu denotes a set of atomic sig-
natures.

To avoid formula explosion, if a subset of a type
exactly matches the type of a signature we quantify

instead over the respective class. For example,

tA$, Bu.allInstances()->forAll(. . .)

would be translated to the expected

A.allInstances()->forAll(. . .)

since the type of signature A is tA$, Bu. If after such
merging, an atomic signature denoting a remainder type
(such as A$) is still present, the set of its instances must
be explicitly computed in OCL, since it does not cor-
respond to an existing class. This can be easily done
by subtracting from the parent class all instances of its
extensions. For example

A$.allInstances()

would be translated as

A.allInstances()->reject(a | a.oclIsKindOf(B))

Occasionally, we will also need to determine the par-
ent of a given signature: given signature A we will de-
note its parent as A, when defined. Technically, the need
to determine the type of an expression (or the parent
of a given signature) makes it necessary to parameter-
ize the embedding function with information about the
meta-model (namely, the extends relation). To simplify
the presentation, we will leave this parameter implicit.

6.2 Module, Fact, Function and Predicate Declarations

The translation of an Alloy module is triggered by the
following rule:

vmodule m sig Time {} p1 . . . pmw ”

package m vp1w . . . vpmw endpackage

Figure 6 details the transformations of fact, function
and predicate declarations. Signature and enumeration
declarations are ignored in the OCL generation, and are
only used in the CD generation detailed in the previous
section.

In OCL, all invariants and method specifications
must be defined in the context of a class. For Alloy
facts, the type of the first universally quantified variable
(appart from the mandatory Time one) will determine
the context of the generated invariant. The translation
of formulas must then be parametrized with the name
of the variable that will denote the self object. For
functions and predicates, the context is determined by
the type of the first parameter. In a predicate, all for-
mulas where t’ does not occur will be translated as
pre-conditions. Otherwise, they are translated as post-
conditions.

Translating between Alloy Specifications and UML Class Diagrams Annotated with OCL 9

tA1, . . . , An

u.allInstances()->forAll(x|�) ”

A1.allInstances()->forAll(x|�) and . . . and A

n

.allInstances()->forAll(x|�)

tA1, . . . , An

u.allInstances()->exists(x|�) ”

A1.allInstances()->exists(x|�) or . . . or A

n

.allInstances()->exists(x|�)

tA1, . . . , An

u.allInstances()->select(x|�) ”

A1.allInstances()->select(x|�)->union(. . . ->union(An

.allInstances()->select(x|�)) . . .)

tA1, . . . , An

u.allInstances()->collect(x|�)->sum() ”

A1.allInstances()->collect(x|�)->sum() + . . . + A

n

.allInstances()->collect(x|�)->sum()

�.isKindOf(tA1, . . . , An

u) ” �.isKindOf(A1) or . . . or �.isKindOf(A
n

)

Fig. 5 OCL shorthand notation for iteration over sets of classes.

vfact {all t:Time | all x:A | �}w ”

context A

inv: v�w

x

vfact {all x:A | �}w ”

context A

inv: v�w

x

vfun f[x1:A1, . . . ,xn

:A
n

,t:Time] : set B { � }w ”

context A1::f(x2:A2, . . . ,xn

:A
n

):Set(B)

body: B.allInstances()->select(y|vxyy P �w

x1)

vpred f[x1:A1, . . . ,xn

:A
n

,t,t’:Time] { �1 . . .�

m

}w ”

context A1::f(x2:A2, . . . ,xn

:A
n

)

pre: v�1w

x1 if t’ does not occur in �1

post: v�1w

1
x1

otherwise

. . .

pre: v�

m

w

x1 if t’ does not occur in �

m

post: v�

m

w

1
x1

otherwise

Fig. 6 Translation of Alloy fact, function and predicate dec-
larations.

Two slightly di↵erent formula translations will be
defined, due to di↵erent meanings that variable t as-
sumes in di↵erent contexts. In a post-condition, an ex-
pression R.t should be translated as R@pre, since t

denotes the pre-state, while in invariants, functions and
pre-conditions it should be translated just as R. As
such, we will use v�w to translate a formula � that oc-
curs in an invariant, function, or pre-condition; and v�w

1

to translate a formula � that occurs in a post-condition.

6.3 Formulas

The translation of formulas is presented in Figure 7.
We omit the definition of v¨w

1 because for formulas it is
identical - it will only di↵er when applied to relational
expressions. We also omit the definition for the (alter-
native) textual versions of logical operators and the in-
fix negated forms. Most logic operators have a direct

counterpart in OCL and can thus be trivially trans-
lated. OCL does not support directly the non-standard
quantifiers no and one, but they can be encoded, for in-
stance, using equivalent formulas that check the cardi-
nality of the subset of the type satisfying the quantified
formula.

The trickiest part of the translation concerns the
atomic formulas � in , where � and are arbitrary
relational expressions. This formula cannot be encoded
using set inclusion because |�| can be greater than 1,
and, unlike Alloy, OCL does not support the construc-
tion of arbitrary relations as normal first-order values.
As such, relational expressions will be translated by
building their standard first-order denotational seman-
tics: a relational expression � will be translated to a
formula that checks if a tuple xy1, . . . , y|�|y belongs to
the denoted relation. The inclusion � in can thus
be translated to a formula that checks if all tuples of
the appropriate type that belong to � also belong to .
Note that the type system ensures that the arity of �
and are the same.

6.4 Expressions

The translation of relational expressions is presented in
Figure 8. As explained above, this translation encodes
the standard first-order semantics of relational opera-
tors. A brief explanation of the most interesting rules
follows:

– Testing if a unary tuple is a member of a variable
can be done with a simple equality test. Note that,
as mentioned before, Alloy variables are singleton
unary relations. If the variable denotes the self ob-
ject then this identifier is used instead.

– Testing if a unary tuple is a member of a signature
depends on the kind of signature declaration: if it
is a subset signature, we just check the value of the
generated boolean attribute; if it is a singleton sig-
nature that extends an enumeration we check if it

10 Alcino Cunha et al.

v� in w

x

” �

1.allInstances()->forAll(y1| . . .

�

|�|.allInstances()->forAll(y|�|| vxy1, . . . , y|�|y P �w

x

implies vxy1, . . . , y|�|y P w

x

) . . .)

v� = w

x

” v� in w

x

and v in �w

x

v� && w

x

” v�w

x

and v w

x

v� || w

x

” v�w

x

or v w

x

v� <=> w

x

” v� => w

x

and v => �w

x

v� => w

x

” v�w

x

implies v w

x

v� => ,'w

x

” if v�w

x

then v w

x

else v'w

x

endif

v!�w

x

” not v�w

x

v↵ = �w

x

” v↵w

x

= v�w

x

v↵ < �w

x

” v↵w

x

< v�w

x

v↵ > �w

x

” v↵w

x

> v�w

x

v↵ =< �w

x

” v↵w

x

<= v�w

x

v↵ >= �w

x

” v↵w

x

>= v�w

x

vno �w

x

” v#� = 0w

x

vlone �w

x

” v#� =< 1w

x

vone �w

x

” v#� = 1w

x

vsome �w

x

” v#� >= 1w

x

vall y:� | �w

x

” �

1.allInstances()->forAll(y|vxyy P �w implies v�w

x

)

vsome y:� | �w

x

” �

1.allInstances()->exists(y|vxyy P �w and v�w

x

)

vno y:� | �w

x

” �

1.allInstances()->select(y|vxyy P �w and v�w

x

)->isEmpty()

vlone y:� | �w

x

” �

1.allInstances()->select(y|vxyy P �w and v�w

x

)->size() <= 1

vone y:� | �w

x

” �

1.allInstances()->select(y|vxyy P �w and v�w

x

)->size() = 1

Fig. 7 Translation of Alloy formulas.

is equal to the respective enumeration literal; oth-
erwise, we test if it is one of the instances of the
respective class.

– To test if an unary tuple belongs to R.t, which is
only possible if R denotes a mutable set, we just
check the value of the generated boolean attribute.

– To test if a non unary tuple belongs to R (when R

is immutable) or R.t (when R is mutable) we just
navigate the respective qualified association R.

– The semantics of the relational composition �.

leads to a new existential quantifier over the me-
diating type. We quantify over �|�|

X

1 because
the composition only succeeds for values belonging
to the intersection of both types. This optimization
reduces the number of quantifiers in the output for-
mula.

– Testing if xy1, . . . , yny is included in the relational
overriding � ++ is reduced to a membership test
over if xy1, . . . , yn´1y belongs to its domain; oth-
erwise a membership test over � is generated.

– Translation of transitive closure can be done with
the OCL closure operation, that iteratively accu-
mulates the set denoted by the enclosed expression
until a fixed point is reached.

– In a relation defined by the comprehension {z1:�1,

. . ., zn:�n | �}, the membership test is translated
by just applying the predicate � to the tuple vari-
ables y1, . . . , yn instead of z1, . . . , zn and checking if
the tuple variables are contained in the respective
sets.

The translation of relational expressions occurring
in post-conditions is almost identical, with the excep-
tion of the rules presented in Figure 9, where relation
identifiers within scope t are evaluated in the pre-state.

Figure 10 presents the translation of Alloy integer
expressions to OCL. Alloy expression #� computes the
size of a relational expression � of arbitrary arity. In
OCL we can only compute the size of sets, so we reduce
such computation to sets by resorting to the following
equivalence, that holds when |�| ° 1.

#� “

ÿ

yP�1

#py.�q

6.5 Simplifications and casts

The blind application of the above translation rules usu-
ally results in obfuscated OCL specifications, mainly

Translating between Alloy Specifications and UML Class Diagrams Annotated with OCL 11

vxyy P zw

x

”

y=self if z “ x

y=z otherwise

vxyy P Aw

x

” y.oclIsKindOf(A)

vxyy P Kw

x

” y=K::K

vxy1, . . . , yny P Uw

x

”

y1.U[y2, . . . ,yn´1]->includes(yn) if n ° 1
y1.U otherwise

vxy1, . . . , yny P R.tw

x

”

y1.R[y2, . . . ,yn´1]->includes(yn) if n ° 1
y1.R otherwise

vxyy P nonew

x

” false

vxyy P univw

x

” true

vxy1, y2y P idenw

x

” y1=y2

vxy1, . . . , yny P �. w

x

” p�

|�|
X

1
q.allInstances()->exists(y| vxy1, . . . , y|�|´1, yy P �w

x

and vxy, y|�|, . . . , yny P w

x

)

vxy1, . . . , yny P � + w

x

” vxy1, . . . , yny P �w

x

or vxy1, . . . , yny P w

x

vxy1, . . . , yny P � - w

x

” vxy1, . . . , yny P �w

x

and (not vxy1, . . . , yny P w

x

)

vxy1, . . . , yny P � & w

x

” vxy1, . . . , yny P �w

x

and vxy1, . . . , yny P w

x

vxy1, . . . , yny P � <: w

x

” vxy1y P �w

x

and vxy1, . . . , yny P w

x

vxy1, . . . , yny P � :> w

x

” vxy1, . . . , yny P �w

x

and vxy

n

y P w

x

vxy1, . . . , yny P � -> w

x

” vxy1, . . . , y|�|y P �w

x

and vxy|�|`1, . . . , yny P w

x

vxy1, . . . , yny P � ++ w

x

” if vxy1, . . . , yn´1y P . n

w

x

then vxy1, . . . , yny P w

x

else vxy1, . . . , yny P �w

x

endif

vxy1, . . . , yny P ~�w

x

” vxy

n

, . . . , y1y P �w

x

vxy1, y2y P ^�w

x

” y1->closure(z1|�
2.allInstances()->select(z2|vxz1, z2y P �w))->includes(y2)

vxy1, y2y P *�w

x

” y1=yn or vxy1, yny P ^�w

x

vxy1, . . . , yny P {z1:�1, . . . ,zn:�n

| �}w

x

” vxy1y P �1w and . . . and vxy

n

y P �

n

ry1{z1, . . . , yn´1{z

n´1sw and v�ry1{z1, . . . , yn{z

n

sw

x

vxyy P f[y1, . . . ,yn,t]w

x

” y1.f(y2, . . . ,yn)->includes(y)

Fig. 8 Translation of Alloy relational expressions.

vxy1, . . . , yny P R.tw

1
x

”

y1.R@pre[y2, . . . ,yn´1]->includes(yn) if n ° 1
y1.R@pre otherwise

vxy1, . . . , yny P R.t’w

1
x

”

y1.R[y2, . . . ,yn´1]->includes(yn) if n ° 1
y1.R otherwise

vxyy P f[y1, . . . ,yn,t]w

1
x

” y1.f@pre(y2, . . . ,yn)->includes(y)

vxyy P f[y1, . . . ,yn,t’]w

1
x

” y1.f(y2, . . . ,yn)->includes(y)

Fig. 9 Translation of Alloy relational expressions in post-conditions.

vnw

x

” n

v#�w

x

”

�

1.allInstances->select(y|vxyy P �w

x

)->size() if |�| “ 1
�

1.allInstances->collect(y|v#(y.�)w

x

)->sum() otherwise

v↵ + �w

x

” v↵w

x

+ v�w

x

v↵ - �w

x

” v↵w

x

- v�w

x

vsum y:� | ↵w

x

” �

1->select(y | vxyy P �w

x

)->collect(y | v↵w

x

)->sum()

Fig. 10 Translation of Alloy integer expressions.

12 Alcino Cunha et al.

due to the introduction of quantifiers in the transla-
tion of the relational inclusion and composition. Fortu-
nately, some first-order equivalences can be applied to
the result in order to simplify it, namely, the one point
rules for eliminating quantifiers. The rewrite rules cur-
rently being applied to simplify the result are presented
in Figure 11. fcp�q computes the free variables of � and
�r�{xs is the standard capture avoiding substitution of
x by � in �.

The translation of field membership presented in
Figure 8 is not always safe, and may require additional
type checkings and casts. Alloy’s type system is quite
liberal and allows access to a field from any signature
that includes the owner of the field. A reference like
this would generate a type error in OCL. Consider, for
example, the following Alloy model:

sig A { r : set A }

sig B extends A { s : set A }

fact { all a : A | r.a in s.a }

Translation of the fact with the aforementioned rules
would yield the following OCL invariant:

context A

inv: A.allInstances()->forAll(v0 |

v0.r->includes(self) implies

v0.s->includes(self))

The expression v0.s yields a type error, since s is not
a property of A. Whenever this situation occurs we in-
clude an appropriate type-check and cast to preserve
the original semantics. For example, in the expression
y1.R[y2, . . . ,yn´1]->includes(yn) of Figure 8 when
the type of variable yi is not contained in R

i we output
the following OCL expression:

yi.oclIsKindOf(R
i) and

y1.R[y2, . . . ,yi.oclAsType(R
i), . . . ,yn´1]->

includes(yn)

To simplify the presentation, these type-checkings and
casts are not included in Figure 8 but are implemented
in the translation tool. For example, the OCL invariant
obtained from the above fact is:

context A

inv: A.allInstances()->forAll(v0 |

v0.r->includes(self) implies

(v0.oclIsKindOf(B) and

v0.oclAsType(B).s->includes(self)))

A similar problem occurs in closures. In Alloy we
can compute the closure of an expression � : A -> B

even when B is a supertype of A. Direct translation to
OCL with the closure operation would yield an error

since the accumulated set must have the same or a sub-
type. In such situations we cast the initial A to a B

and proceed accordingly. An example of such situation
occurs in our running case study, when we compute the
closure of the expression b.addr.t with type Name ->

Target. The result of the translation with the respec-
tive casts can be seen in Figure 18.

7 From OCL to Alloy

In this section we show how to extend the OCL to Al-
loy translation previously developed by Anastasakis et
al. [2,1] to handle correctly dynamic issues, by resort-
ing to the local state idiom presented in Section 3. The
translation accepts the OCL subset formalized in Sec-
tion 4 and will also be formalized using an (overloaded)
embedding function v¨w that accepts and produces con-
crete syntax.

The translation of an OCL package with an asso-
ciated UML diagram cd is triggered by the following
rule, where vcdw denotes the Alloy structural specifi-
cation obtained from applying the rules described in
Section 5 to the diagram cd.

vpackage p c1 . . . cm endpackagew ”

module p sig Time {} vcdw vc1w . . . vcmw

Again we have two slightly di↵erent versions of the
translation, one to be applied to invariants, query bod-
ies, and pre-conditions, and a primed version to be ap-
plied to post-conditions. However, we no longer need to
parameterize the translation with the variable denot-
ing the self object, since we will use an equally named
variable in Alloy to denote it instead of generating an
arbitrary fresh name. We also assume a similar nam-
ing convention for variables denoting the several gram-
mar non-terminals, namely: x, y, z for variable identi-
fiers (varId); A,B,C for class identifiers (classId); K
for enumeration literals (constId) R,S, T for properties
with the readOnly attribute set to false; U for prop-
erties with the readOnly attribute set to true; o for
object expressions (object); �, ,' for formulas (form);
�, ,⌥ for set or object expressions (setOrObject); and
↵,�, � for integer expressions (intExpr).

The translation of OCL constraints is presented in
Figure 12, and basically undoes the transformation pre-
sented in Figure 6: invariants yield facts that quantify
over Time and the signature corresponding to the con-
text class; queries yield functions with two extra param-
eters that denote the self object and the Time atom
required by the local state idiom; and non-query oper-
ations yield predicates with three extra parameters to

Translating between Alloy Specifications and UML Class Diagrams Annotated with OCL 13

�->exists(x | x= and �) ” �r {xs, if y R fvp�q

�->forAll(x | x= implies �) ” �r {xs, if y R fvp�q

� = � ” true

true and � ” �

� and true ” �

� and � ” �

false or � ” �

� or false ” �

� or � ” �

true implies � ” �

�.forAll(x | �) ” �.forAll(x | �rtrue{�.includes(x)s)

�.exists(x | �) ” �.exists(x | �rtrue{�.includes(x)s)

�.select(x | �) ” �.select(x | �rtrue{�.includes(x)s)

�.collect(x | �) ” �.collect(x | �rtrue{�.includes(x)s)

A.allInstances().forAll(x | �) ” A.allInstances().forAll(x | �rtrue{x.oclIsKindOf(A)s)

A.allInstances().exists(x | �) ” A.allInstances().forAll(x | �rtrue{x.oclIsKindOf(A)s)

A.allInstances().select(x | �) ” A.allInstances().forAll(x | �rtrue{x.oclIsKindOf(A)s)

A.allInstances().collect(x | �) ” A.allInstances().forAll(x | �rtrue{x.oclIsKindOf(A)s)

A.allInstances().select(x | �).includes(x) ” �, if x R fvp�q

�->closure(x |)->asSet() ” �->closure(x |)->asSet()

�->asSet()->size() ” �->size()

Fig. 11 OCL Simplification rules.

vcontext A cw ”

fact { all t:Time | all self:A | vcw }
vcontext A::q(x1:A1, . . . ,xn

:A
n

):Set(B) cw ”

fun q[self:A,x1:A1, . . . ,xn

:A
n

,t:Time] : set B {vcw}
vcontext A::m(x1:A1, . . . ,xn

:A
n

) c1 . . . c

n

w ”

pred m[self:A,x1:A1, . . . ,xn

:A
n

,t,t’:Time] {vc1w . . . vc

n

w}

vinv: �w ” v�w

vbody: �w ” v�w

vpre: �w ” v�w

vpost: �w ” v�w

1

Fig. 12 Translation of OCL contraints.

denote the self object and the two Time atoms denot-
ing the pre- and post-state.

The translation of OCL formulas is presented in Fig-
ure 13. For most cases it is straightforward, since Alloy
has direct counterparts for most logic connectives. Sur-
prisingly, Alloy has no literals to denote the true and
false values, so we choose some simple expressions to
denote them, namely no none and some none. Testing
if a boolean attribute R holds for some object o can be
done with an inclusion test for the corresponding bi-
nary relation R projected over the current time atom.

vtruew ” no none

vfalsew ” some none

vnot �w ” !v�w

v� and w ” v�w && v w

v� or w ” v�w || v w

v� implies w ” v�w => v w

vif � then else ' endifw ” v�w => v w, v'w

vo1 = o2w ” vo1w = vo2w

v↵ = �w ” v↵w = v�w

v↵ < �w ” v↵w < v�w

v↵ > �w ” v↵w > v�w

v↵ <= �w ” v↵w =< v�w

v↵ >= �w ” v↵w >= v�w

v�->forAll(y | �)w ” all y:v�w | v�w

v�->exists(y | �)w ” some y:v�w | v�w

v�->isEmpty()w ” no v�w

v�->includes(o)w ” vow in v�w

vo.Rw ” vow in R.t

vo.Uw ” vow in U

vo.oclIsKindOf(A)w ” vow in A

Fig. 13 Translation of OCL formulas.

14 Alcino Cunha et al.

vyw ” y

vA::Kw ” K

vo.oclAsType(A)w ” vow

vo.Rw ” vow.R.t

vo.R[o1, . . . ,on]w ” vo

n

w.(. . . vo1w.(vow.R.t) . . .)

vo.Uw ” vow.U

vo.U[o1, . . . ,on]w ” vo

n

w.(. . . vo1w.(vow.U) . . .)

vA.allInstances()w ” A

v�->union()w ” v�w + v w

v�->intersection()w ” v�w & v w

v�->select(y | �)w ” {y:v�w | v�w}
v�->reject(y | �)w ” {y:v�w | !v�w}

v�->closure(y |)w ” v�w.^{y:univ,z:v w | vtruew}
v�->asSet()w ” v�w

vo.f(o1, . . . ,on)w ” f[vow,vo1w, . . . ,vo

n

w,t]

Fig. 14 Translation of OCL set and object expressions.

If it is a readOnly attribute U we check if the object is
contained in the respective signature.

The translation of OCL set and object expressions is
presented in Figure 14. Again, the translation is rather
straightforward with the following exceptions:

– We assume the source model to be well typed. Given
the flexibility of the Alloy type system, which allows
access to a field from any atom contained in super-
or sub-signature, type casts can just be ignored.

– Similarly, the asSet() operation can be ignored since
both scalars and sets are modeled by relations in Al-
loy.

– Association navigation is handled by composition.
If the association is not readOnly we also compose
with the Time variable t.

– While in Alloy the closure operator can be applied
to a binary relation, in OCL it accumulates a set
(possibly dependent on y) over an initial set � un-
til a fix-point is reached. To encode the latter using
the former, we first construct a binary relation that
contains all possible tuples xy, pyqy using compre-
hension, and then compose the initial set � with
the closure of this relation to obtain the desired fix-
point.

The translation of OCL expressions occurring in
post-conditions is exactly the same as the one used in
the other constraints, with the exceptions presented in
Figure 15. In a post-condition a property marked with
@pre should be evaluated in the pre-state, and thus
the corresponding relation or query is accessed with
the pre-state Time variable t. Otherwise, the post-state
Time variable t’ is used instead.

vo.R@prew

1
” vow

1.R.t

vo.R@pre[o1, . . . ,on]w

1
” vo

n

w

1.(. . . vo1w

1.(vow

1.R.t) . . .)

vo.Rw

1
” vow

1.R.t’

vo.R[o1, . . . ,on]w

1
” vo

n

w

1.(. . . vo1w

1.(vow

1.R.t’) . . .)

vo.f@pre(o1, . . . ,on)w

1
” f[vow

1,vo1w

1, . . . ,vo

n

w

1,t]

vo.f(o1, . . . ,on)w

1
” f[vow,vo1w

1, . . . ,vo

n

w

1,t’]

Fig. 15 Translation of OCL set and object expressions in
post conditions.

vnw ” n

v↵ + �w ” v↵w + v�w

v↵ - �w ” v↵w - v�w

v�->size()w ” #v�w

v�->collect(y | ↵)->sum()w ” sum y:v�w | v↵w

Fig. 16 Translation of OCL integer expressions.

Finally, the translation of integer expressions is pre-
sented in Figure 16. The only interesting case is that
of the combination of operations collect and sum: the
first computes a bag with all integer expressions ↵pyq

for each y in �, and then sum adds up all those values.
This is exactly the same semantics of the sum quanti-
fier in Alloy, that we use to translate such combination.
To avoid the semantic mismatch between Alloy’s wrap
around semantics and OCL unbounded semantics for
integers, the “Forbid Overflows” option, recently added
to the version 4.2 of the Alloy Analyzer [26], should be
used. This option excludes instances that would lead
to arithmetic overflow, thus preventing spurious coun-
terexamples in the analysis.

8 Deployment and Case Studies

We have implemented the proposed transformations in
Haskell, and deployed them as the following command
line tools:

alloy2cd Accepts an Alloy model conforming to the
syntax of Figure 3 and produces an CD in the OMG
standard XML Metadata Interchange (XMI) for-
mat.

alloy2ocl Accepts an Alloy model conforming to the
syntax of Figure 3 and produces an OCL specifica-
tion conforming to the syntax of Figure 4.

cd2alloy Accepts an XMI CD and produces an Alloy
model containing only structural features (declara-
tions).

ocl2alloy Accepts an OCL specification conforming
to the syntax of Figure 4 and an associated CD and

Translating between Alloy Specifications and UML Class Diagrams Annotated with OCL 15

Fig. 17 UML class diagram obtained from the Alloy address
book example.

produces an Alloy model conforming to the syntax
of Figure 3.

These tools and the (open-source) source code are
available for download at the project website:

http://sourceforge.net/projects/alloymda

We will now describe two simple case-studies that were
used to validate our tool: the first is the address book
example, and the second illustrates our bidirectional
transformation, by starting with an UML+OCL specifi-
cation, which is then translated for Alloy for V&V, and
translated back to UML+OCL after corrections and
enhancements. Other case-studies can be found in the
project website. We used DresdenOCL [8] to validate
the generated OCL specifications. Unfortunately, this
tool still does not support qualified associations, and
thus we could only validate OCL specifications with bi-
nary ones. Besides syntax and type-checking, this tools
allows us to interpret OCL specifications against model
instances, and to generate AspectJ code that instru-
ments Java code with constraint checkers.

8.1 Address book

The CD generated from the address book example of
Figure 1 using the alloy2cd tools is depicted in Fig-
ure 17. As described in Section 5, the enumeration sig-
nature Type was translated as an enumeration class.
The ternary relation addr is modeled as a qualified as-
sociation. Given the one multiplicity, relation type is
modeled by an attribute. The subset signature email is
also modelled by an attribute with Boolean type. Since
both these relations are immutable, these attributes are
marked as readOnly.

The OCL model generated using the alloy2ocl tool
is presented in Figure 18. Except for manual indenta-
tion for better comprehension, the shown OCL is ex-
actly the one produced by the tool. Notice the use of

Fig. 19 Simple genealogy UML diagram.

type-checks and casts to correctly handle the closure op-
eration. Obviously, the ocl2alloy tool can be applied
to the generated OCL, resulting in a syntactically more
complex Alloy model, although semantically equivalent,
than the one presented in Figure 1. The reason for such
is that, unlike for OCL, we have still not developed sim-
plification rules for Alloy models. We intend to do so in
the near future.

8.2 Genealogy

Consider now the CD of Figure 19. It describes a sim-
plistic genealogy model. A Person can have a known bi-
ological father and mother, which are, respectively, a
Man and a Woman. Moreover we model the nationality
of a person as a singleton attribute pointing to the re-
spective enumeration class. The father and mother

properties are marked as readOnly. We also have a
query denoted ancestry that is supposed to return the
set of all known ancestors of a given person, and an
operation named change that changes the nationality
of a person.

This CD is complemented with the OCL specifica-
tion of Figure 20. The first constraint specifies the result
of the ancestry query using a closure, that iteratively
accumulates all known fathers and mothers. Notice the
usage of type checks and casts to decide if a given person
is either a man or a woman. The second constraint is
an invariant that states that no-one can be an ancestor
of itself. The third constraint is an invariant that in-
tends to restrict the nationality of every person to the
one of the nationalities of his/her ancestors. Finally,
operation change requires as a pre-condition that the
new nationality is in one of nationalities of his/her an-
cestors, and the post-condition updates the nationality
attribute accordingly.

Figure 22 presents the Alloy model generated with
the ocl2alloy tool. Except for the translation of clo-

16 Alcino Cunha et al.

package AddressBook

context Book

inv: Name.allInstances()->forAll(v0 |

(Target.allInstances()->exists(v1 | self.addr[v0]->includes(v1)) implies self.names->includes(v0)))

context Book

inv: Name.allInstances()->forAll(v6 |

(Name.allInstances()->exists(v7 | self.addr[v7]->includes(v6)) implies self.names->includes(v6)))

context Book

inv: Name.allInstances()->forAll(n | (self.names->includes(n) implies (self.addr[n]->size() >= 1)))

context Book

inv: Name.allInstances()->select(n | n.oclAsType(Target)->closure(v20 | Target.allInstances()->select(v21 |

(v20.oclIsKindOf(Name) and self.addr[v20.oclAsType(Name)]->includes(v21))))->includes(n))->isEmpty()

context Book

inv: Name.allInstances()->forAll(n | (n.type->includes(Type::Alias) implies (self.addr[n]->size() <= 1)))

context Book

inv: Name.allInstances()->forAll(n |

(Addr.allInstances()->select(v29 | (self.addr[n]->includes(v29) and v29.email))->size() <= 1))

context Book::add(n:Name,a:Target)

pre: self.names->includes(n)

pre: (not self.addr[n]->includes(a))

post: (Name.allInstances()->forAll(v40 | Target.allInstances()->forAll(v41 |

(self.addr[v40]->includes(v41) implies

(self.addr@pre[v40]->includes(v41) or ((v40 = n) and (v41 = a)))))) and

Name.allInstances()->forAll(v46 | Target.allInstances()->forAll(v47 |

((self.addr@pre[v46]->includes(v47) or ((v46 = n) and (v47 = a))) implies

self.addr[v46]->includes(v47)))))

post: (Name.allInstances()->forAll(v52 | (self.names->includes(v52) implies self.names@pre->includes(v52))) and

Name.allInstances()->forAll(v57 | (self.names@pre->includes(v57) implies self.names->includes(v57))))

context Book::lookup(n:Name):Set(Addr)

body: n.oclAsType(Target)->closure(v64 | Target.allInstances()->select(v65 |

(v64.oclIsKindOf(Name) and self.addr[v64.oclAsType(Name)]->includes(v65))))

endpackage

Fig. 18 OCL specification obtained from the Alloy address book example.

package Genealogy

context Person::ancestry():Set(Person)

body: self->closure(x | Person.allInstances()->select(y |

y.oclIsKindOf(Man) and x.father->includes(y.oclAsType(Man)) or

y.oclIsKindOf(Woman) and x.mother->includes(y.oclAsType(Woman))))

context Person

inv: not self.ancestry()->includes(self)

context Person

inv: Nationality.allInstances()->forAll(n | self.nationality->includes(n) implies

self.ancestry()->exists(p | p.nationality->includes(n)))

context Person::change(n:Nationality)

pre: self.ancestry()->exists(p | p.nationality->includes(n))

post: self.nationality->includes(n)

endpackage

endpackage

Fig. 20 OCL specification of the simple genealogy.

Translating between Alloy Specifications and UML Class Diagrams Annotated with OCL 17

module Genealogy

sig Time {}

abstract sig Person { father : lone Man, mother : lone Woman, nationality : Nationality one -> Time }

enum Nationality {Argentine,Portuguese}

sig Man extends Person {}

sig Woman extends Person {}

fun ancestry [self : Person,t : Time] : set Person {

self.^{x : univ,v0 : {y : Person | ((y in Man) && (y in x.father)) || ((y in Woman) && (y in x.mother))} | no none}

}

fact {all t : Time | all self : Person | self not in ancestry[self,t]}

fact {all t : Time | all self : Person | all n : Nationality |

(n in self.(nationality.t)) => (some p : ancestry[self,t] | n in p.(nationality.t))

}

pred change [self : Person,n : Nationality,t,t’ : Time] {

some p : ancestry[self,t] | n in p.(nationality.t)

n in self.(nationality.t’)

}

Fig. 21 Alloy specification obtained from the simple genealogy CD and OCL.

sure, the resulting model is quite readable. We can now
use the Alloy Analyzer tool to perform some V&V, for
example checking the consistency of the model using a
run command to search for a valid instance with some
person. Unfortunately, no such instance exists, meaning
that the original OCL specification is inconsistent. The
problem is the second invariant that, to be satisfied, re-
quires every person to have some known ancestry, which
obviously cannot be satisfied by a finite instance.

In this case, it is trivial to correct the correspond-
ing fact as presented in Figure 22. Moreover, we re-
fine the generated Alloy model with additional muta-
ble wife and husband relations, and new facts to ensure
that these relations are symmetric and no-one marries
an ancestor. We also add an operation marry, with a
pre-condition requiring the groom to not be previously
married, a post-condition that adds the bride to the
wife relationship, and a frame-condition stating that
all other men preserve their marital status.

Finally, we can translate the corrected and enhanced
Alloy model back to OCL using the tool alloy2ocl,
resulting in the specification in Figure 23. Due to the
implemented simplifications, the constraints that were
present in the original model are almost identical. As
discussed in Section 4, the generated OCL model is a bit
verbose, given our safety requirement to use the result
of navigations as sets.

9 Related Work

The translation from Alloy to UML+OCL could foster
the usage of Alloy in the MDE context. As mentioned

before, a lot of UML tools have been developed to sup-
port MDA. However, even though OCL tools have im-
proved in the last years, they still have several limita-
tions regarding model V&V. Formal methods have been
proposed as a valuable alternative to improve these lim-
itations. In fact, they have been successfully integrated
in the MDA, as shown in HOL-OCL [5], USE [20] or
UML2Alloy [2,1].

Due to its suitability for V&V, Alloy is a better
candidate for the early modeling phase of the software
development process. After the validation process with
Alloy, models can be translated to UML class diagrams
and OCL in order to enable the usage of MDA-UML
tools as well as MDA-OCL tools. Most of the UML tools
allow transformations from CDs to di↵erent platforms
and programming languages, such as JEE, CORBA,
Java, C, C++, C# and Python. Additionally, there ex-
ist OCL tools for code generation, such as OCLtoSQL [7]
and DresdenOCL [8].

The relationship between UML+OCL and Alloy has
been extensively studied by Anastaskis et al. [2,1], re-
sulting in a prototype tool named UML2Alloy, that
translates UML+OCL models to Alloy. Likewise to our
proposal, this translation considers the basic elements
of CDs: classes, attributes and associations; and ex-
cludes interfaces, dependencies and signals. Unlike our
proposal, it does not support qualified associations, and
CDs are restricted to binary associations. Although the
authors hint that dynamic issues could be modeled in
Alloy, using an idiom such as the local state one [1,
page 133], the specified (and implemented) translation
still does not consider them: they constraint all at-

18 Alcino Cunha et al.

module Genealogy

sig Time {}

abstract sig Person { father : lone Man, mother : lone Woman, nationality : Nationality one -> Time }

enum Nationality {Argentine,Portuguese}

sig Man extends Person { wife : Woman lone -> Time }

sig Woman extends Person { husband : Man lone -> Time }

fun ancestry [self : Person,t : Time] : set Person {

self.^{x : univ,v0 : {y : Person | ((y in Man) && (y in x.father)) || ((y in Woman) && (y in x.mother))} | no none}

}

fact {all t : Time | all self : Person | self not in ancestry[self,t]}

fact {all t : Time | all self : Person | all n : Nationality |

(some ancestry[self,t] and n in self.(nationality.t)) => (some p : ancestry[self,t] | n in p.(nationality.t))

}

fact {all t : Time | all p : Woman | p.(husband.t) = (wife.t).p}

fact {all t : Time | all p : Person | no (p.(wife+husband).t & ancestry[p,t])}

pred change [self : Person,n : Nationality,t,t’ : Time] {

some p : ancestry[self,t] | n in p.(nationality.t)

n in self.(nationality.t’)

}

pred marry [m : Man, w : Woman, t,t’ : Time] {

no m.wife.t

w in m.wife.t’

all x : Man-m | x.wife.t’ = x.wife.t

}

Fig. 22 Corrected and enhanced Alloy specification of the simple genealogy.

package Genealogy

context Person::ancestry():Set(Person)

body: self->closure(v2 | Person.allInstances()->select(v3 |

((v3.oclIsKindOf(Man) and v2.father->includes(v3.oclAsType(Man))) or

(v3.oclIsKindOf(Woman) and v2.mother->includes(v3.oclAsType(Woman))))))

context Person

inv: (not self.ancestry()->includes(self))

context Person

inv: Nationality.allInstances()->forAll(n |

(((self.ancestry()->size() >= 1) and self.nationality->includes(n)) implies

Person.allInstances()->exists(p | (self.ancestry()->includes(p) implies p.nationality->includes(n)))))

context Woman

inv: (Man.allInstances()->forAll(v23 | (self.husband->includes(v23) implies v23.wife->includes(self))) and

Man.allInstances()->forAll(v28 | (v28.wife->includes(self) implies self.husband->includes(v28))))

context Person

inv: (Person.allInstances()->select(v33 |

((((self.oclIsKindOf(Man) and v33.oclIsKindOf(Woman)) and

self.oclAsType(Man).wife->includes(v33.oclAsType(Woman))) or

((self.oclIsKindOf(Woman) and v33.oclIsKindOf(Man)) and

self.oclAsType(Woman).husband->includes(v33.oclAsType(Man)))) and

self.ancestry()->includes(v33)))->size() = 0)

context Person::change(n:Nationality)

pre: Person.allInstances()->exists(p | (self.ancestry()->includes(p) implies p.nationality->includes(n)))

post: self.nationality->includes(n)

context Man::marry(w:Woman)

pre: (self.wife->size() = 0)

post: self.wife->includes(w)

post: Man.allInstances()->forAll(x | ((not (x = self)) implies

(Woman.allInstances()->forAll(v44 | (x.wife->includes(v44) implies x.wife@pre->includes(v44))) and

Woman.allInstances()->forAll(v49 | (x.wife@pre->includes(v49) implies x.wife->includes(v49))))))

endpackage

Fig. 23 OCL specification obtained from the corrected and enhanced Alloy specification of the simple genealogy.

Translating between Alloy Specifications and UML Class Diagrams Annotated with OCL 19

tributes and association ends in a CD to be readOnly,
and, unlike in our transformation, no state signature
is automatically inserted in the resulting specification.
In particular, operations do not receive the pre- and
post-state as parameters, and thus the pre- and post-
conditions used to specify operations in OCL are not
translated correctly to Alloy (they conflate in the sin-
gle implicit global state). To model dynamics correctly
one is forced to introduce the state explicitly as a class
in the CD, and to model dynamic properties explic-
itly as associations to that class, as suggested in [3].
Essentially, this mimics the local state idiom of Alloy
in UML+OCL, disregarding the standard semantics for
dynamics in the latter formalism. On the other hand,
we correctly translate OCL pre- and post-conditions to
Alloy specifications by resorting to the local state idiom.
We also support OCL queries, by translating them to
Alloy functions.

Concerning OCL logic, as discussed at the end of
Section 4, we mainly di↵er from [2,1] in the treatment
of OCL’s three-valued logic: to achieve a semantics pre-
serving transformation we restrict the supported OCL
syntax to a subset that avoids undefined expressions.
Another key di↵erence is that we support the closure
operation recently added to OCL. Note that for the
common subset of OCL logic supported both by our
tools and by [2,1], the result of applying the transla-
tion to Alloy is the precisely the same.

Massoni et al. also propose a UML+OCL to Alloy
translation in [25]. The approach to translate classes,
attributes and associations is the same as Anastaskis
et al. [2,1]. Although they consider the translation of
UML interfaces, they map only a small subset of UML
and OCL elements. This translation is only specified
and not implemented. Moreover, it translates OCL in-
variants but it does not handle pre- and post-conditions.

Maoz et al. [24] propose a formalization of UML
class diagrams using a deep embedding to Alloy, to
support UML features not directly expressible in Al-
loy, such as multiple inheritance or interfaces. This ap-
proach is well-suited to support automated analysis,
since it enables reasoning about several CDs at once,
making it possible to check, for example, that one class
diagram is a refinement of another. However, unlike
shallow embeddings, such as the one proposed in this
paper, it generates Alloy models that are di�cult to
read and understand and thus it is not well suited to
support our intended usage scenarios.

UML has been mapped to Alloy for model V&V of
particular case-studies. For example, Georg et al. use
the Alloy Analyzer for formal security evaluation in a
methodology called Aspect-Oriented Risk-Driven De-
velopment (AORDD) [16], Mostefaoui and Vachon de-

scribe a proposal for deriving Alloy specifications from
Aspect-UMLmodels (a UML Profile for extending UML
with Aspect-oriented concepts) [27], and Braga et al.
propose an approach to translate UML models speci-
fied with OntoUML to Alloy [4]. These examples, like
in [24], make evident Alloy potential for UML V&V,
but they do not consider the translation of OCL speci-
fications.

We first proposed the translation from Alloy local
state idiom to UML+OCL in [14]. The present work im-
proves that translation by allowing both mutable and
inmutable fields in signature definitions, enum signa-
tures, arbitrary closures of relational expressions, in-
teger expressions #� for relations � of arbitrary arity,
among other minor improvements. We also show how
the inverse translation from UML+OCL to Alloy can
be defined, by improving the translation first proposed
in [2,1] to handle dynamic issues and closures. This al-
lows us to support roundtrip scenarios such as the one
presented in the previous section. It also enabled us to
develop a translation of UML Protocol State Machines
(PSMs) to Alloy [15], that allows us to simulate and
verify the consistency between UML artifacts (PSM,
CD and OCL) and to perform other V&V activities,
such as detect unreachable states or invalid transitions.
In that work, we first use the translation described here
to map a UML+OCL model to the local state idiom in
Alloy, and then map a PSM (optionally, also enriched
with OCL) to a trace specification that captures the
allowed behavior of a component.

Appart from transitive closure, our translation from
Alloy to OCL is essentially an encoding of the seman-
tics of relational logic in terms of first-order logic. A
similar technique was used recently to develop a tool
for unbounded verification of Alloy models using SMT
solvers [17]. A key di↵erence to our work is the treat-
ment of Alloy type system: since SMT does not support
subtype declarations, these are encoded implicitly using
membership functions and axioms to ensure the correct
semantics. Another di↵erence is the encoding of closure:
since standard SMT first-order theories do not support
it, an inductive definition is used instead.

Shah et al. [32] proposed a model transformation
from Alloy to UML to convert model instances gener-
ated by the Alloy Analyzer to UML Object Diagrams.
This translation complements the UML2Alloy tool [2,
1], which must be used before to generate an Alloy spec-
ification, and can be used to map back to UML coun-
terexamples of UML+OCL specifications found using
the Alloy Analyzer. The combination of both tools al-
lows UML practitioners to perform V&V of UML+OCL
without knowledge of Alloy and direct interaction with
its Analyzer. This is very convenient for development

20 Alcino Cunha et al.

teams only interested in using UML in the modeling
phase. On the other hand, our proposed (bidirectional)
transformation enables more flexible scenarios: for ex-
ample, a team combining expertise in both modeling
languages can start by developing a rough specifica-
tion with CDs, then translate it to (the more syntax
and verification friendly) Alloy for refinement (adding
invariants and specification for operations), and then
translate back UML+OCL to explore code generation
tools.

Alloy has no specific syntactic features to model dy-
namic systems and to specify their properties. Dynam-
ics can be modeled implicitly using several idioms [22],
such as the local state idiom described in Section 3 (and
its close variant, the global state idiom), where opera-
tions are modeled using predicates relating pre- and
pos-states, or the event based idiom, where signatures
are used to model events with arguments being modeled
by fields. Specification and verification of invariants is
quite simple with these idioms, but specification of more
complex properties can be a bit cumbersome: in the lo-
cal state idiom one must first model execution traces
explicitly, by constraining any two consecutive states
to be the pre- and post-state of one of the modeled
operations, and then specify the desired property over
such traces. Recently, Vakili and Day [33] have shown
how branching time temporal logic can be used to sim-
plify the later step, by proposing a library of functions
that encode CTL (plus fairness conditions) temporal
connectives into Alloy’s relational logic. A similar ap-
proach can be followed for linear time temporal logic [6].

To allow the explicit modeling of dynamics, Frias
et al. [10] introduced DynAlloy, an extension of Alloy
based on dynamic logic that allows properties to be
specified using actions: atomic actions can be specified
using pre- and post-conditions, but can also be com-
posed into more complex actions by means of sequen-
cial composition, iteration, or non-deterministic choice.
This extension simplifies considerably the description of
operations and traces, and likewise to temporal logic,
also simplifies the specification of dynamic properties
over such traces. DynAlloy specifications can also be
analyzed e�ciently, as shown in [11]. The availability
of first-class and composable actions makes DynAlloy
a better target to encode the semantics (and perform
analysis) of imperative-like programming languages. For
example, it has been applied in the analysis of JML-
annotated Java sequential programs [12,13]. Given the
availability of tools to convert OCL to JML (such as [21])
it would be interesting to determine the feasibility of
translating UML+OCL to Alloy by composing such
tools. In particular, this would enable a proper com-
parison (namely, in terms of e�ciency of the analysis)

with the translation first proposed in [2,1] and extended
in this paper.

With a similar motivation to DynAlloy, Near et al.
introduced Imperative Alloy [28], an extension of the
Alloy language that simplifies the specification of dy-
namic systems using a mix of declarative and imper-
ative style (allowing actions to be specified with pre-
and post-conditions, assignments, sequential composi-
tion, or loops). The translations proposed in this pa-
per could trivially be adapted to target DynAlloy or
Imperative Alloy. However, since OCL is a declarative
specification language, where operations are specified
using only pre- and post-conditions, only a subset of
these languages with expressivity comparable to the lo-
cal state idiom could be considered (in particular, there
is no counterpart in OCL to the action composition
operators). Even so, due the convenience of these ex-
tensions to reason about dynamic systems, in the near
future we also intend to support them in our framework.

10 Concluding Remarks and Future Work

We have presented a bidirectional model transforma-
tion from Alloy to UML Class Diagrams annotated with
OCL. Bidirectionality is achieved by means of two uni-
directional transformations that are inverses of each
other. The transformation from Alloy to UML+OCL is
an extension of our work presented in [14], and the op-
posite transformation improves a previously developed
one [2,1] to handle dynamic issues and closures. We
have also formally characterized the Alloy local state
idiom accepted and generated by the transformations,
that allows us to model dynamic behavior in Alloy by
introducing an explicit state signature in all mutable
relations.

The model transformation from Alloy to UML+OCL
raised interesting new challenges, when compared to the
opposite transformation, namely: the translation of re-
lational expressions of arbitrary arity; dealing with the
idiosyncrasies of Alloy’s type-system; and the encod-
ing of closures. Both transformations are deployed as
open-source tools, and can be used to support various
modeling scenarios. In particular, they can be used to
introduce Alloy in existing MDE software development
cycles, by supporting round-trip scenarios where one
starts from a high-level UML specification, translate it
to Alloy for V&V, and then translate it back to UML
after model refinement and debugging.

In the future we intend to enlarge the subsets of the
supported Alloy and UML+OCL metamodels. The Al-
loy subset is already quite complete, but we still intend
to research the possibility of allowing generalized usage
of subset signatures to overcome the single-inheritance

Translating between Alloy Specifications and UML Class Diagrams Annotated with OCL 21

limitation, as discussed in [22]. The OCL subset can
be easily extended to support additional set operations.
We also intend to support more primitive types, namely
integers, and additional collection types, such as sequen-
ces. In order to improve the readability of the Alloy gen-
erated by the ocl2alloy tool, we are currently develop-
ing a simplification system similar to what we have im-
plemented for OCL. We also intend to extend our tools
to, optionally, target Alloy extensions more suitable to
model dynamics, namely DynAlloy [10] and Imperative
Alloy [28].

Acknowledgements Part of this work was done while the
first author was visiting the Software Design Group at CSAIL,
MIT, USA, funded by the portuguese Foundation for Science
and Technology (FCT) with a sabbatical grant with refer-
ence SFRH/BSAB/1187/2011. The second author was par-
tially supported the portuguese National Strategy Reference
Chart (QREN) project 1621 (Evolve) while visiting the High-
Assurance Software Laboratory at Universidade do Minho,
Portugal.

References

1. Anastasakis, K.: A model driven approach for the au-
tomated analysis of uml class diagrams. Ph.D. thesis,
University of Birmingham (2009)

2. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On chal-
lenges of model transformation from UML to Alloy. Soft-
ware and Systems Modeling 9(1), 69–86 (2008)

3. Bordbar, B., Anastasakis, K.: UML2ALLOY: A tool for
lightweight modelling of discrete event systems. In: Pro-
ceedings of the IADIS International Conference in Ap-
plied Computing, pp. 209–216. IADIS Press (2005)

4. Braga, B.F.B., Almeida, J.P.A., Guizzardi, G., Benev-
ides, A.B.: Transforming OntoUML into Alloy: towards
conceptual model validation using a lightweight formal
method. Innovations in Systems and Software Engineer-
ing 6(1-2), 55–63 (2010)

5. Brucker, A.D., Wol↵, B.: HOL-OCL: a formal proof envi-
ronment for UML/OCL. In: Proceedings of Fundamental
Approaches to Software Engineering, LNCS, vol. 4961,
pp. 97–100. Springer-Verlag (2008)

6. Cunha, A.: Bounded model checking of temporal formu-
las with Alloy. CoRR abs/1207.2746 (2012)

7. Demuth, B., Hussmann, H., Loecher, S.: OCL as a spec-
ification language for business rules in database applica-
tions. In: UML 2001 – The Unified Modeling Language.
Modeling Languages, Concepts, and Tools, LNCS, vol.
2185, pp. 104–117. Springer-Verlag (2001)

8. DresdenOCL website. http://www.dresden-ocl.org/

index.php/DresdenOCL

9. Edwards, J., Jackson, D., Torlak, E.: A type system for
object models. In: Proceedings of the 12th ACM SIG-
SOFT International Symposium on Foundations of Soft-
ware Engineering, pp. 189–199. ACM (2004)

10. Frias, M.F., Galeotti, J.P., Pombo, C.L., Aguirre, N.: Dy-
nAlloy: upgrading alloy with actions. In: Proceedings of
the 27th International Conference on Software Engineer-
ing, pp. 442–451. ACM (2005)

11. Frias, M.F., Pombo, C.L., Galeotti, J.P., Aguirre, N.: Ef-
ficient Analysis of DynAlloy Specifications. ACM Trans-
actions on Software Engineering and Methodology 17(1)
(2007)

12. Galeotti, J.P., Frias, M.F.: DynAlloy as a Formal Method
for the Analysis of Java Programs. In: Software Engi-
neering Techniques: Design for Quality, IFIP, vol. 227,
pp. 249–260. Springer-Verlag (2006)

13. Galeotti, J.P., Rosner, N., López Pombo, C.G., Frias,
M.F.: Analysis of invariants for e�cient bounded verifi-
cation. In: Proceedings of the 19th International Sympo-
sium on Software Testing and Analysis, pp. 25–36. ACM
(2010)

14. Garis, A.G., Cunha, A., Riesco, D.: Translating Alloy
specifications to UML class diagrams annotated with
OCL. In: Proceedings of the 9th International Conference
on Software Engineering and Formal Methods, LNCS,
vol. 7041, pp. 221–236. Springer-Verlag (2011)

15. Garis, A.G., Paiva, A.C.R., Cunha, A., Riesco, D.: Spec-
ifying UML Protocol State Machines in Alloy. In: Pro-
ceedings of the 9th International Conference on Inte-
grated Formal Methods, LNCS, vol. 7321, pp. 312–326.
Springer-Verlag (2012)

16. Georg, G., Anastasakis, K., Bordbar, B., Houmb, S.H.,
Toahchoodee, I.R.M.: Verification and trade-o↵ analysis
of security properties in UML system models. IEEE
Transactions on Software Engineering 36(3), 338–356
(2010)

17. Ghazi, A.A.E., Taghdiri, M.: Relational reasoning via
SMT solving. In: Proceedings of the 17th International
Symposium on Formal Methods, LNCS, vol. 6664, pp.
133–148. Springer-Verlag (2011)

18. Gheyi, R., Massoni, T., Borba, P.: Formally introducing
Alloy idioms. In: Proceedings of the Brazilian Symposium
on Formal Methods, pp. 22–37 (2007)

19. Giannakopoulos, T., J.Dougherty, D., Fisler, K., Krish-
namurthi, S.: Towards an operational semantics for Alloy.
In: Proceedings of the 16th International Symposium on
Formal Methods, LNCS, vol. 5850, pp. 483–498. Springer-
Verlag (2009)

20. Gogolla, M., Bohling, J., Richters, M.: Validating UML
and OCL models in USE by automatic snapshot gen-
eration. Software and Systems Modeling 4(4), 386–398
(2005)

21. Hamie, A.: Translating the Object Constraint Language
into the Java Modelling Language. In: Proceedings of
the 19th ACM Symposium on Applied Computing, pp.
1531–1535. ACM (2004)

22. Jackson, D.: Software Abstractions: Logic, Language, and
Analysis, revised edn. MIT Press (2012)

23. Kim, J.S., Garlan, D.: Analyzing architectural styles with
Alloy. In: Proceedings of the ISSTA 2006 Workshop on
Role of Software Architecture for Testing and Analysis,
pp. 70–80. ACM (2006)

24. Maoz, S., Ringert, J., Rumpe, B.: CD2Alloy: Class di-
agrams analysis using Alloy revisited. In: J. Whit-
tle, T. Clark, T. Khne (eds.) Model Driven Engineering
Languages and Systems, LNCS, vol. 6981, pp. 592–607.
Springer-Verlag (2011)

25. Massoni, T., Gheyi, R., Borba, P.: Formal refactoring
for UML Class Diagrams. In: Proceedings of the 19th
Brazilian Symposium on Software Engineering, pp. 152–
167 (2005)

26. Milicevic, A., Jackson, D.: Preventing arithmetic over-
flows in Alloy. In: Proceedings of the 3rd International
Conference on Abstract State Machines, Alloy, B, VDM,

22 Alcino Cunha et al.

and Z, LNCS, vol. 7316, pp. 108–121. Springer-Verlag
(2012)

27. Mostefaoui, F., Vachon, J.: Verification of Aspect-UML
models using Alloy. In: Proceedings of the 10th Interna-
tional Workshop on Aspect-Oriented Modeling, pp. 41–
48. ACM (2007)

28. Near, J.P., Jackson, D.: An imperative extension to Alloy.
In: Proceedings of the Second International Conference
on Abstract State Machines, Alloy, B and Z - ABZ, LNCS,
vol. 5977, pp. 118–131. Springer-Verlag (2010)

29. OMG: MDA Guide version 1.0.1 (2003)
30. OMG: UML Superstructure, Version 2.3 (2010)
31. OMG: Object Constraint Language, Version 2.3.1 (2012)
32. Shah, S.M.A., Anastasakis, K., Bordbar, B.: From UML

to Alloy and back again. In: Proceedings of the 6th Inter-
national Workshop on Model-Driven Engineering, Verifi-
cation and Validation. ACM (2009)

33. Vakili, A., Day, N.: Temporal logic model checking in
Alloy. In: Proceedings of the 3rd International Confer-
ence on Abstract State Machines, Alloy, B, VDM, and Z,
LNCS, vol. 7316, pp. 150–163. Springer-Verlag (2012)

34. Vaziri, M., Jackson, D.: Some shortcomings of OCL, the
Object Constraint Language of UML. In: Proceedings
of the 34th International Conference on Technology of
Object-Oriented Languages and Systems, pp. 555–562.
IEEE (2000)

