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Abstract The description of the dynamics of particles undergoing diffusion in gen-

eral relativity has been an object of interest in the last years. Most recently a new

cosmological model with diffusion has been studied in which the evolution of the

particle system is described by a Fokker-Planck equation. This equation is then cou-

pled to a modified system of Einstein equations, in order to satisfy the energy con-

servation condition. Continuing with this work, we study in the present paper a spa-

tially homogeneous and isotropic spacetime model with diffusion velocity. We write

the system of ordinary differential equations of this particular model and obtain the

solutions for which the scale factor in the Robertson Walker metric is linear in time.

We analyse the asymptotic behavior of the subclass of spatially flat solutions. The

system representing the homogeneous and isotropic model with diffusion is rewrit-

ten using dynamical variables. For the subclass of spatially flat solutions we were

able to determine all equilibrium points and analyse their local stability properties.

1 Introduction

A new model to describe the dynamics of particles undergoing diffusion in general

relativity is given in [3]. In this model the evolution of the particle system is de-

scribed by a Fokker-Planck equation without friction on the tangent bundle of the

spacetime (M,g). In general relativity, the matter field is specified by the energy-

momentum tensor Tµν and the geometry of the spacetime is given by the Einstein

field equations,
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Rµν −
1

2
gµνR = Tµν , (1)

where Rµν and R are the Ricci tensor and Ricci scalar respectively. In kinetic theory,

the matter field is described by the one-particle distribution function f in the phase

space and the energy momentum tensor is given by a suitable integral of f over the

velocity (or momentum) variable. When considering the existence of diffusion, f

is the solution of the Fokker-Planck equation. On the other hand, a matter source

with diffusion cannot be the only contributor to the Einstein equations (1), because

the kinetic energy of the particles is not preserved when undergoing diffusion. Con-

sequently, the energy-momentum tensor will not satisfy the energy conservation

condition ∇µ Tµν = 0 (∇µ denoting the Levi Civita covariant derivative), which is

a requirement of the Bianchi identity and Einstein equations (1). In order to over-

come this difficulty, a cosmological scalar field term φ is added on the left hand side

of (1) and the corresponding energy-momentum tensor Tµν satisfies the modified

Einstein’s equations

Rµν −
1

2
gµνR+φgµν = Tµν , (2)

The scalar field φ is not an ordinary matter field but rather a background field inter-

acting with the fluid particles and therefore causing their diffusion. It is determined

by the one particle distribution function f , via the equation ∇νφ = ∇µTµν . In doing

so, the coupling of Fokker-Planck equation to the Einstein’s equations respects the

Bianchi identity ∇µ(Rµν − 1
2
gµνR) = 0 and the energy momentum tensor satisfies

the energy conservation condition ∇µT µν = 0.

It is shown in [4] that the evolution of the particle system described by a Fokker-

Planck equation without friction leads to an energy-momentum tensor satisfying

T µν = ρuµuν + p(gµν + uµuν), Jµ = nuµ , (3)

∇µT µν = σnuν , ∇µ(nuµ) = 0. (4)

The scalar functions ρ , p, n, σ represent respectively the rest-frame energy den-

sity, the pressure, the number density of the fluid and the diffusion constant, while

the vector uµ satisfying the condition uµuµ = −1 is the four-velocity of the fluid.

Equations in (3) are projected along the direction of uµ and onto a hypersurface

orthogonal to the direction of uµ , giving

∇µ(ρuµ)+ p∇µuµ = σn, (5)

(ρ + p)uµ∇µuν + uνuµ∇µ p+∇ν p = 0, (6)

∇µ(nuµ) = 0. (7)

The Euler equation (6) is the same as in the diffusion-free case. The continuity

equation (5) is affected by the presence of diffusion, due to the fact that the diffusion

force σnuµ acts on the direction of the matter flow.

In the model studied in [4], the pressure and the energy density satisfy the following

linear relation,
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p = (γ − 1)ρ , (8)

where 2
3
≤ γ < 2 . In order to transform the system (5)-(6) into a complete system

we introduce the following equation of state,

ρ = nγS, (9)

where the entropy S satisfies the condition

uµ∇µS = σn1−γ . (10)

Equations (5), (6), (8), (9) and (10) constitute a complete system for describing the

evolution of the matter field variables (n, S, uµ). These equations coupled to the

modified Einstein equations (1) are the equations of the cosmological model with

fluid matter undergoing velocity diffusion given in [4].

In this work we study the solutions to the cosmological model described above

that represent a spatially homogeneous and isotropic spacetime. Continuing with

the work done in [4], in section 2 we write the ODE system that describes these

solutions and we solve this system explicitly for the case where the scale factor a(t)
in the metric is linear in time, for all values of the spatial curvature and all values

of γ . In section 3 we study the asymptotic behavior of the subclass of spatially flat

solutions of the model, we find conditions on the initial data for which singularities

may or may not occur. A dynamical system formulation for the model is given in

section 4. In particular we write the dynamical system representing the spatially

flat solutions of this model in this section. The dynamical system in question has

two ordinary differential equations. We determine all the fixed points of this system

and show that the interior point is associated to the self similar solution given in

section 2. We obtain the phase portrait of the two dimensional system and study the

local stability of the fixed points on the boundary. Finally, in section 5 we state the

conclusions and make some closing remarks. For sake of completeness, we include

an appendix with some tools from dynamical systems theory that are used in the

analysis developed in section 4 of the present paper.

2 Spatially homogeneous and isotropic solutions

In this section we present the model equations and we solve them explicitly when

the scale factor is linear in time. We consider the Robertson-Walker metric [6], [8],

ds2 =−dt2 + a(t)2

[

dr2

1− kr2
+ r2dΩ 2

]

, (11)

where k= 0 corresponds to spatially flat solutions, k=−1 corresponds to a space

with negative spatial curvature, and k=1 corresponds to a space with positive spatial

curvature. In the case k = 0, we may introduce a cartesian system of coordinates
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such that

ds2 =−dt2 + a(t)2(dx2 + dy2 + dz2), and a0 := a(0) = 1.

For any k = 0,±1, the equations for the scale factor a(t), the entropy S(t) of the

fluid and the cosmological scalar field φ(t) are

ȧ = Ha, (12a)

Ṡ = σn
1−γ
0

(

a0

a(t)

)3−3γ

, (12b)

φ̇ =−σn0

(

a0

a(t)

)3

, (12c)

Ḣ =
1

3

[

φ −
(

3

2
γ − 1

)

ρ

]

−H2, (12d)

where

H2 =
1

3
(ρ +φ)− k

a(t)2
(12e)

is the Hubble function, and

ρ(t) =

(

n0a3
0

a(t)3

)γ

S(t) (12f)

is the rest energy density of the fluid. Moreover, γ is the parameter of the equation of

state, σ > 0 is the diffusion constant, and n0 > 0 is the initial (at time t = 0) particle

density. The initial data set consists of (a0,H0,S0,φ0), where a0 = 1 for k = 0, and

H0, S0, φ0 are positive numbers such that (12e) is satisfied at time t = 0, i.e.,

H2
0 =

1

3
(n

γ
0S0 +φ0)−

k

a2
0

. (13)

Using (12e) we may rewrite (12d) in the following two forms

Ḣ =− γ

2
ρ +

k

a2
, (14)

Ḣ =
γ

2
φ − 3γ

2
H2 − 3γ − 2

2a2
k. (15)

Equations (12) constitute the model equations studied in the present paper. In gen-

eral, such equations can not be solved explicitly. However, in the particular case that

the scale factor a(t) is linear in time, we find the following explicit solution
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a(t) = a0 +αkt, (16a)

φ(t) =
σn0a3

0

2αk

a(t)−2, (16b)

S(t) =

(

σn
1−γ
0 a

3−3γ
0

αk(3γ − 2)

)

a(t)3γ−2, (16c)

where αk is the real solution of the polynomial equation

α3 + kα − γσn0a3
0

2(3γ − 2)
= 0.

Note that αk > 0, for all k = 0,±1. In particular, for k = 0 the solution (16) becomes

a(t) = 1+

(

γσn0

2(3γ − 2)

)1/3

t, (17a)

φ(t) =

(
√

3γ − 2

γ

σn0

2

)2/3

a(t)−2, (17b)

S(t) =

(

2σ2n
2−3γ
0

γ(3γ − 2)2

)1/3

a(t)3γ−2. (17c)

3 Asymptotic behavior of spatially flat solutions

In this section we consider the model equations (12) written in the previous section,

and we analyse the asymptotic behavior of the subclass of spatially flat solutions,

corresponding to the case k = 0. Since a(0) = 1, the scale factor is positive in some

maximal interval [0,T ) and, by (14), H is strictly decreasing on [0,T ) (which im-

plies that a(t) cannot blow up in finite time). If T = +∞, the solution is singularity

free in the future; if T < ∞, i.e., a(T ) = 0, the solution is singular at the time t = T .

In this section we look for sufficient conditions on the initial data for which one of

the two possibilities (existence or absence of a future singularity) may occur.

First, we observe that φ is strictly decreasing on [0,T ). If φ(t) is positive on

[0,T ), then by (12e) H cannot vanish in this interval. Whence H is positive, i.e.,

a(t) is increasing, on [0,T ) and therefore a(T ) > 0. Therefore a singularity cannot

form in the interval of time in which φ remains positive. In contrast, if φ vanishes at

some time, then a singularity will form. In fact, by (15) we infer that if there exists

t̄ such that φ(t̄)< 0, then Ḣ ≤ γ/2φ(t̄)−3γH2/2, whence there exists t̄ < t∗ <+∞
such that H →−∞ as t → t∗ (which implies limt→t∗ a(t) = 0).

Let t̄ be the maximal time such that φ(t)> 0 for t ∈ [0, t̄). If t̄ <+∞, then φ(t̄)= 0

must hold. By (15), Ḣ ≥ −3γH2/2, for all t ∈ [0, t̄). Since H > 0 in this interval,
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we obtain

H(t)≥ H0

1+ 3
2
γH0t

, t ∈ [0, t̄),

whence, for t ∈ [0, t̄),

a(t)≥ (1+
3

2
γH0t)

2
3γ . (18)

On the other hand, since H(t)≤ H0, we have

a(t)≤ exp(H0t). (19)

By the previous discussion, in order to see whether or not a singularity is formed in

the future, we may equivalently check whether φ vanishes or not in finite time.

Proposition 1. For

φ0 ≥
2σn0

3H0(2− γ)
, (20)

there is no future singularity. On the other hand, for

φ0 <
σn0

3H0

(21)

a singularity forms in finite time in the future.

Proof. Considering (18) then by (12c) we obtain

φ(t) = φ0 −σn0

∫ t

0

ds

a(s)3
≥ φ0 −σn0

∫ t

0

ds

(1+ 3
2
γH0s)

2
γ

= φ0 +
2σn0

3H0(2− γ)

[

(1+
3

2
γH0t)1− 2

γ − 1

]

≥ φ0 +
2σn0

3H0(2− γ)

[

(1+
3

4
γH0t̄)1− 2

γ − 1

]

, t ∈
(

t̄

2
, t̄

)

.

It follows that when φ0 satisfies (20), φ(t) is uniformly strictly positive on [0, t̄)
and therefore it cannot vanish at t = t̄. Thus t̄ cannot be finite, therefore no future

singularity is formed. Suppose now that φ(t) ≥ 0 for all t ≥ 0. Then, by (19), we

find that

φ(t)≤ φ0 −σn0

∫ t

0
e−3H0sds = φ0 +

σn0

3H0

(exp(−3H0t)− 1).

If (21) holds, then φ(t) → φ∞ < 0 as t → +∞, which is a contradicion. Whence a

singularity must form in finite time. ⊓⊔

Note that by using (13), we may rewrite (20) as

S0 ≥
4σ2n

2−γ
0

3(2− γ)2
φ−2

0 − φ0

n
γ
0

(22)



Dynamical properties of a cosmological model with diffusion 7

which is always satisfied for

φ0 ≥
(

4σ2n2
0

3(2− γ)2

)1/3

. (23)

Thus we have the following result.

Corollary 1. If the initial datum for the cosmological scalar field verifies (23), there

is no singularity in the future.

Note that the arguments used so far do not consider the equation (12b) for the en-

tropy S. In order to improve our singularity analysis, it is crucial to use (12b).

The qualitative dynamics of the cosmological model in the past depends on which

of the following two mutually exclusive behaviours the solution verifies.

Case 1. The entropy S(t)vanishes at some negative time t0, while a(t0) is still positive.

Case 2. The factor a(t)vanishes at some negative time t0, while S(t0) is still positive.

Observe that in case 1, the solution is unphysical for t < t0, even if the metric of

spacetime remains smooth, because ρ becomes negative. This unphysical region of

spacetime can be avoided by matching the metric at the time t0 with the de Sitter

solution aDS(t) = C exp(
√

φ(t0)/3t), where the constant C is such that aDS(t0) =
a(t0). The resulting cosmological model has no big-bang singularity and is vacuum

up to the time t0 (since ρ = 0 and a(t) = aDS(t) for t ≤ t0), at which time the vacuum

energy φ(t0) starts to be converted into matter energy ρ . On the other hand, in case

2, a big-bang singularity forms in the past.

We give sufficient conditions for the occurrence of each of the two possible scenar-

ios described in cases 1 and 2. Let us introduce the times ta and tS defined by

ta = inf{t < 0 : a(τ)> 0, for all t < τ < 0},
tS = inf{t < 0 : S(τ)> 0, for all t < τ < 0},

with ta, tS < 0. Note that, from (18) and (19) we have

(

1+
3

2
γH0t

)
2
3γ

≤ a(t)≤ eH0t , for all t ∈ (max{ta, tS},0) (24)

In particular, the lower bound in (24) implies that

ta >− 2

3γH0

. (25)

In the following proposition, we state the qualitative dynamics of the cosmological

model when the solution behaves as in case 1.

Proposition 2. If ta ≤ tS (case 1 above) then one of the following conditions holds

(1a) When γ > 1, we have S0 <
σn

1−γ
0

3H0(γ − 1)

[

1− exp
(

2(1− γ)/γ
)

]

;
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(1b) When γ ≤ 1, we have S0 <
2σn

1−γ
0

3(3γ − 2)H0

.

Proof. If we consider ta ≤ tS, then S(ta) ≤ 0. For γ > 1, using the upper bound of

(24) in (12b) we have

S(t)≥ S0 −
σn

1−γ
0

3H0(γ − 1)

(

1− exp(3H0(γ − 1)t)
)

.

On the other hand, if we consider (25), this last inequality leads to

S(ta)> S0 −
σn

1−γ
0

3H0(γ − 1)

(

1− exp(2(1− γ)/γ)
)

,

which then gives (1a). The proof when γ ≤ 1 is similar. In this case we use the lower

bound of (24) in (12b) to get

S(t)≥ S0 −
σn

1−γ
0

3(3γ − 2)H0

(

1− (1+ 3γ/2H0t)
3−2/γ

)

,

so that, by (25), this last condition implies that

S(ta)> S0 −
σn

1−γ
0

3(3γ − 2)H0

which in turn gives (1b). ⊓⊔

4 Qualitative dynamics of solutions

In this section we introduce dynamical variables, that will be used to transform

the system (12) into an autonomous dynamical system. Then, for k = 0, we de-

velop a qualitative analysis of the resulting system in order to study the dynamics

of spatially flat solutions of (12). The fixed points of the dynamical system repre-

sent solutions of (12) and the stability properties of the fixed points give qualitative

information about the evolution of the solutions of the cosmological system (12).

4.1 The dynamical system

For each k =−1,0,1 we define the variable by D =
√

ρ , that is

D =

√

3H2 −φ +
3k

a2(t)
, (26)
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and introduce the dimensionless expansion-normalized variables

χρ =arctan
( ρ

D2

)

, χH =arctan

(

H

D

)

, χψ =arctan

(

φ̇

D3

)

, χa=arctan

(

k

D2a2

)

. (27)

The constraint equation (12e) implies that tan χρ = 1, that is χρ = π/4. Let us also

define a new time variable τ , defined in terms of the cosmological time t by

τ =
Dt

cos χH cos χψ cos χa
.

The new time derivative is therefore given by

d

dτ
(·) = 1

D
cos χH cos χψ cosχa

d

dt
(·)

and we use the simple notation (·)′ = d
dτ (·). The system (12), in terms of the new

variables χH , χψ and χa, transforms to

χ ′
H =

1

2
√

2
cos χH

[

sin χH sin χψ cos χH cos χa + 2sinχa cos2 χH cos χψ , (28a)

+ γ cos χψ cos χa(3sin2 χH − cos2 χH)
]

,

χ ′
ψ =

3

2
√

2
sin χψ cos χψ

[

sin χψ cos χH cos χa +(3γ − 2)sin χH cosχψ cos χa

]

,

(28b)

χ ′
a =

√
2

2
sin χa cos2 χa

(

(3γ − 2)sin χH cos χψ + sin χψ cos χH

)

. (28c)

Finally we introduce the state space X , for the dynamical system (28), defined by

X =
{

(

χH ,χψ ,χa

)

∈
(

−π

2
,

π

2

)

×
(

−π

2
,0
)

×
(

−π

2
,

π

2

)}

. (29)

The dynamical system (28) admits a smooth extension to the closure X of the state

space. From (28c) we see that the 2-dimensional plane χa = 0 is an invariant plane.

The flow induced on this plane describes the dynamics of spatially flat solutions

(k = 0). In the next subsection, we study this flow in some detail.

4.2 Dynamics of spatially flat solutions

The flow induced on the “roof” of X is described by the reduced dynamical system

obtained by setting χa = 0 in (28), that is
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P− F− F+

χψ

P+

χH

R+SR−

Uγ

Fig. 1 Phase portrait of the dynamical system (30). Full lines represent typical orbits and dashed

lines represent isolated orbits.

χ ′
H =

1

2
√

2
cos χH

(

sin χH cos χH sin χψ + γ cos χψ(3sin2 χH − cos2 χH)
)

, (30a)

χ ′
ψ =

3

2
√

2
sin χψ cos χψ

[

sin χψ cos χH +(3γ − 2)sin χH cos χψ

]

. (30b)

The state space for this dynamical system is Xup, where

Xup =
{

(χH ,χψ ) ∈
(

−π

2
,

π

2

)

×
(

−π

2
,0
)}

.

The dynamical system (30) describes the flow of the spatially flat solutions of (12)

which we will study in what follows. We shall say that an orbit Γ of the dynamical

system (30) is typical if there exists a one parameter family of orbits having the same

α- and ω-limit set of Γ . If no orbit other than Γ admits the same limit sets of Γ , we

shall say that Γ is isolated. The qualitative behavior of the orbits of the dynamical

system (30) is depicted in Figure 1. Our next goal is to prove the principal features

of this behavior as well as to analyse the physical interpretation of the flow depicted

in Figure 1 (in terms of solutions of the Einstein equations).

Fixed points. The dynamical system (30) possesses eight fixed points, seven of

which are located on the boundary and one in the interior. They are represented in

Figure 1 and listed in Table 1. The interior fixed point Uγ is associated to the self-

similar solution (17) which has been characterized in section 2, with a(t) being a

linear function on time. Since the other fixed points are located at the boundary of

the state space, they no longer correspond to exact solutions of (12), but to limiting

states when one or more variables take an extreme value.
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Fixed point χH χψ

P− − π
2

0

F− − π
6

0

F+
π
6

0

P+
π
2

0

R+
π
2

− π
2

S 0 − π
2

R− − π
2

− π
2

Uγ arctan

√

γ
2
−arctan

√

γ
2
(3γ −2)

Table 1 Fixed points of the dynamical system (30) in the state space Xup. Uγ is the unique interior

fixed point.

We state the following conclusions about the fixed points Uγ , F± and P± of the

dynamical system (30) and the corresponding solutions of the cosmological sys-

tem (12).

• Uγ : At this fixed point we have χψ =−arctan

√

γ
2
(3γ − 2) and χH =arctan

√

γ
2
.

Hence, H/D=
√

γ
2

and φ̇/D3 =−
√

γ
2
(3γ − 2). Substituting these relations, to-

gether with (26), into equations (12a), (12b) and (12c), we obtain a differential

system whose solution is given by (17).

• F±: Since H/D =±1/
√

3 at these fixed points, the cosmological scalar field φ is

identically zero. Thus the orbits that converge to (resp. emanate from) the fixed

point F− (resp. F+) identify the diffusion-free perfect fluid solutions with zero

cosmological constant, i.e., the Friedmann-Lemaı̂tre solutions

aH0
(t) =

(

1+
3

2
γH0t

)
2

3γ
. (31)

In particular, the fixed point F+ is associated to the one-parameter family of

expanding solutions {aH0
(t)}H0>0, while F− is associated to the one-parameter

family of contracting solutions {aH0
(t)}H0<0.

• P±: At these fixed points we have χψ = 0 and χH =± π
2

. Hence, φ = const = Λ
and H/D →±∞ as the point P± is approached, which implies that D → 0.

Thus H2 → Λ/3 and we obtain that P+ is associated to the expanding de Sitter

vacuum solution

a+Λ (t) = exp

(

√

Λ

3
t

)

, (32)

while P− is associated to the contracting de Sitter vacuum solution
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1.4

0.2

0.4

0.8

-0.2

-0.4

-0.6

1.21.0 1.81.6 2.0

0.6

λ

γ

Fig. 2 Eigenvalues λ associated to the fixed point Uγ , versus different values of γ . Full line for the

positive eigenvalue and dashed line for the negative eigenvalue.

a−Λ (t) = exp

(

−
√

Λ

3
t

)

. (33)

The identification of the solutions corresponding to the fixed points R± is not as

straightforward. Unfortunately we were unable to identify the orbits that emanate

and converge to the fixed points R± and S with solutions of system (12). Posteriorly,

this has led us to reformulate the dynamical variables in order to overcome this

difficulty. However, at the time of the presentation of this work at the conference

Particle Systems and PDEs II, the dynamical variables used to study the model

under investigation here were in fact the ones we describe in this section. A new

version of the dynamical treatment of the system (12) can be found in [2].

The flow on the boundary of Xup. The analysis of flow induced on the one-

dimensional boundary of Xup is straightforward. The left (right) side χH = −π/2

(χH = π/2) consists of an orbit starting at R− (P+) and ending at P− (R+); the bot-

tom side χψ = −π/2 consists of two orbits, connecting the points R± to S; finally

the top side χψ = 0 consists of three orbits, one connecting P− to F−, one con-

necting F+ to F− and one connecting F+ to P+. Next we discuss the local stability

properties of the fixed points. This analysis is straightforward, except for the fixed

points R±, which are not hyperbolic.

The interior fixed point Uγ . Point Uγ is a saddle: the matrix of the linearized dyna-

mical system around this fixed point has real eigenvalues of opposite sign, see Fig-

ure 2. Hence there exist exactly two interior orbits that have Uγ as ω-limit point and

exactly two orbits that have Uγ as α-limit point. This implies, in particular, that the

solution (17) is unstable in the class of spatially flat Robertson-Walker solutions.
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4.3 Stability properties of spatially flat solutions

Next we analyze the local stability properties of some of the fixed points on the

boundary. To this purpose it is convenient to consider the dynamical system (30) in

the extended state space Xε defined by

Xε =
{

(χH ,χψ) : −π

2
− ε < χH <

π

2
+ ε, −π

2
− ε < χψ < ε

}

, with X ⊂ Xε ,

where ε > 0 is small. This extension allows us to perform the linearization procedure

to study the local stability of the fixed points at the boundary of X . A straightfor-

ward calculation shows that the fixed points P± and S are hyperbolic saddles in the

extended state space, while F− and F+ are respectively a hyperbolic sink and a hy-

perbolic source in the extended state space. Combining this information with the

structure of the flow on the boundary we obtain the following result.

Lemma 1. The fixed point F− (resp. F+) is the ω-limit (resp. α-limit) of a one pa-

rameter family of interior orbits, while S is the α-limit of exactly one interior orbit.

There exists no interior orbit whose α or ω-limit set contain the points P±.

The fixed points R− and R+ are not hyperbolic. In fact, the matrix of the linearized

system around these two fixed points vanishes. In general this feature is the signal of

a possible complicated behavior of the dynamical system near the fixed point. This

is not so however for the fixed point R−, which we will prove to be the source of a

one parameter set of interior orbits. The latter statement is part of claim (iii) in the

following theorem.

Theorem 1. The following holds:

(i) χ ′
H < 0 for χH = 0, and −π/2< χψ ≤ 0. In particular interior orbits can cross

the line χH = 0 only from the right to the left. Moreover, the ω-limit of each

interior orbit which intersects the region χH < 0 is the fixed point F−;

(ii) There exists exactly one orbit S → F− whose α-limit is S and whose ω-limit is

F−;

(iii) If an orbit Γ intersects the region L on the left of S → F−, then the whole

orbit Γ is contained in this region. Moreover, the ω-limit of Γ is F−, while the

α-limit is R−. There exist a one parameter family of orbits having the same

properties as Γ ;

(iv) If an orbit Γ intersects the region R on the right of S → F−, then the whole

orbit Γ is contained in this region. The α-limit of Γ is contained in the region

χH > 0. There exists a one parameter family of orbits having the same behavior

as Γ .

Proof. We have χ ′
H |χH=0

= − γ
2

cos χψ , by which the first part of the claim (i) fol-

lows. To prove the second part, we observe that χ ′
ψ > 0, for (χH ,χψ) ∈

(

− π
2
,0
)

×
(

− π
2
,0
)

. It follows that for any 0 < ε < π/2, the set

Sε =
{

(χH ,χψ) ∈
[

− π

2
,0
]

×
[

− π

2
+ ε,0

]}
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is future invariant. Since any interior orbit that crosses the line χH = 0 must intersect

Sε , for some ε , it follows by LaSalle invariance principle [7, Th. 4.11] that the ω-

limit set of any such orbit must be contained in the set {x ∈ Sε : χ ′
ψ = 0}, by which it

follows immediately that it must coincide with the point F−. Next we prove (ii). We

have shown in Lemma 1 that there is exactly one interior orbit that has S as α-limit.

To show that its ω-limit is the point F−, we use that the eigenvector corresponding

to the positive eigenvalue of the linearized system around S in the extended state

space is given by

v =
(

− γ

4
,1
)

.

Since v1 = − γ
4
< 0, the unstable manifold of S intersects the region χH < 0 and

hence, since this region is future invariant, the whole orbit starting from S must

be contained in it. Thus by (i) its ω-limit set must coincide with F−. As to (iii),

we notice that the region to the left (as well as the region on the right) of the orbit

S→ F− is an invariant set. Since −χψ is strictly monotone decreasing on this region,

the Monotonicity Principle [7, Th. 4.12] gives that the ω-limit set of orbits in L is

contained in the set
{

x ∈ L\L : lim
y→x

χψ 6=−π/2
}

,

while the α-limit set is contained in the set
{

x ∈ L\L : lim
y→x

χψ 6= 0
}

.

The claim (iii) follows immediately from the structure of the flow on the boundary of

R. Finally, (iv) follows by the fact that R is an invariant set and that χH is monotone

decreasing on χH < 0. ⊓⊔
In preparation for the global analysis of orbits that intersect the region χH > 0, we

describe the behavior of the flow near the point R+. We define a corner neighbor-

hood of R+ to be the intersection of a neighborhood of R+ in the extended state

space with the interior of Xup.

Proposition 3. There exists a corner neighborhood U of the fixed point R+ where

the qualitative behavior of the flow is as depicted in Figure 3. In particular, for each

x ∈ U , the orbit Γx passing through x verifies one (and only one) of the following

statements:

1. the α- and ω-limit set of Γx consist of the point R+;

2. the α-limit set of Γx consists of the point R+, and U contains no ω-limit points

of Γx;

3. the ω-limit set of Γx consists of the point R+, and U contains no α-limit points

of Γx.

Proof. Let us first shift the fixed point R+ to the origin by introducing the new

variables χH = χH −π/2 and χψ = χψ +π/2. The state space becomes

X up =
{

(χH ,χψ) ∈ (−π ,0)×
(

0,
π

2

)}
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U

R+

U

R+

θ∗

Fig. 3 Phase portrait of the dynamical system (30) in a corner neighborhood U of R+ for 2/3 <
γ ≤ 1 (left) and 1 < γ < 2 (right). Each orbit is typical.

while the dynamical system becomes

χ ′
H =− 1

2
√

2
sin χH

(

sin χH cos χH cos χψ + γ sin χψ(3cos2 χH − sin2 χH)
)

:= P(χH ,χψ),

χ ′
ψ =− 3

2
√

2
sin χψ cos χψ

[

sin χH cos χψ +(3γ − 2)cosχH sin χψ

]

:= Q(χH ,χψ).

We study the previous dynamical system in a neighborhood of (χH ,χψ)= (0,0).
Let

P(2)(χH ,χψ) :=
1

2

[

∂ 2P

∂ χ2
H

(0,0)χ2
H +

∂ 2P

∂ χ2
ψ

(0,0)χ2
ψ + 2

∂ 2P

∂ χH∂ χψ

(0,0)χH χψ

]

=− 1

2
√

2
χH

(

χH + 3γχψ

)

,

Q(2)(χH ,χψ) :=
1

2

[

∂ 2Q

∂ χ2
H

(0,0)χ2
H +

∂ 2Q

∂ χ2
ψ

(0,0)χ2
ψ + 2

∂ 2Q

∂ χH∂ χψ

(0,0)χH χψ

]

=− 1√
2

χH χψ

(

χH + 3(γ − 1)χψ

)

,

S(θ ) :=
[

xQ(2)(x,y)− yP(2)(x,y)
]

x=cosθ
y=sinθ

=− 1√
2

sinθ cosθ
[

cosθ + 3sinθ (γ − 1)
]

Since S(θ ) is not identically null, it follows by [5, Th. 2, pag. 140] that the solutions

of S(θ ) = 0 identify the directions along which an orbit may converge to or emanate
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I

II

III

IV

V

VI
p

p

p
p

θ∗
I

II III

IV

V
VI p

pp

p

θ∗

Fig. 4 The six sectors in a neighborhood of R+ in the extended state space for 2/3 < γ < 1 (left)

and 1 < γ < 2 (right). For γ = 1 there exist only four sectors, separated by the axes. The sectors

labelled by “p” are parabolic, while the sectors I and IV may be both hyperbolic or both elliptic.

Bendixson formula (34) entails that they are both elliptic.

from the fixed point R+ = (0,0). For γ = 1 the only such directions are the axes

χψ = 0, χH = 0. For γ 6= 1 we have the additional direction

θ∗ =−arctan

(

1

3(γ − 1)

)

.

Notice that for γ < 1, this direction does not intersect the state space X up, which is

the reason for the different behavior depicted in Figure 3. Let us assume γ 6= 1 (the

case γ = 1 can be analyzed similarly). The direction θ∗ and the axes χψ = 0, χH = 0

divide any neighborhood of (0,0) into six sectors, as shown in Figure 4. By the

direction of the flow on the separatrixes, the sectors II, III, V and VI are parabolic.

To identify the character of the sectors I and IV , we use that, by Theorem [5, Th. 7,

pag. 305], the number e of elliptic sectors and the number h of hyperbolic sectors in

the neighborhood of a fixed point satisfy the relation (proved by Bendixson in [1])

e− h = 2(i− 1), (34)

where i is the (Morse) index of the fixed point. For the fixed point R+ we have i = 2

(computed with Mathematica), by which it follows that e = 2 and h = 0. Hence the

sectors I and IV are elliptic and the qualitative behavior of the orbits is depicted in

Figure 4. ⊓⊔

5 Summary

In this work we studied a model developed within the Einstein theory of relativity

with a cosmological scalar field. This scalar field can be viewed as a background

medium in which diffusion takes place. In particular we considered the Robertson-

Walker spacetime, so that the model studied here is homogeneous and isotropic.

The matter field variables are solutions of a non linear system of ordinary differen-
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tial equations on the variable time. All solutions for which the scalar function of the

metric is linear in time were obtained explicitly. In order to further understand the

dynamical nature of other solutions the system was rewritten in terms of normal-

ized dynamical variables. We obtained all fixed points of the dynamical system, one

interior fixed point and seven fixed points on the boundary of the phase space. In

particular the only interior equilibrium point is associated to the solution in which

the scalar function of the metric is linear in time. The seven equilibrium points on

the boundary of the state space correspond to limiting states when one or more

variables take an extreme value, these limiting states being the Friedmann-Lemaı̂tre

metrics and the de Sitter vacuum metrics.
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nologia”, Project PEstOE/MAT/UI0013/2014.

Appendix – Tools from dynamical systems

In this appendix we include some concepts and tools from the theory of dynamical

systems that are used in the paper. The content of this appendix is mainly based on

the books [5] and [7].

We consider an autonomous dynamical system of the form

ẋ = f (x), (35)

where f : Rn −→R
n is a C 1 vector field and x : R+

0 −→R
n is a function, x = x(t). In

the particular case of a planar dynamical system (n = 2) we introduce the following

notation

x = (x,y)T, f1(x) = P(x,y), f2(x) = Q(x,y), (36)

and rewrite Eq. (35) in the form

ẋ = P(x,y), ẏ = Q(x,y). (37)

Theorem 2. Consider the planar dynamical system (37) with P(x,y) and Q(x,y)
being analytic functions of (x,y) in some open subset E ⊂R

2 containing the origin.

Assume that the Taylor expansions of P and Q about the origin begin with mth-

degree terms P(m)(x,y) and Q(m)(x,y) with m ≥ 1. Then any orbit of the planar

dynamical system (37) that approaches the origin as t →+∞ either spirals toward

the origin as t → +∞ or it tends toward the origin in a definite direction θ = θ0

as t →+∞. If the function g(x,y) = xQ(m)(x,y)− yP(m)(x,y) is not identically null,

then all directions of the approach θ = θ0 satisfy the relation

cosθ0Q(m)(cosθ0,sinθ0)− sinθ0P(m)(cosθ0,sinθ0) = 0. (38)
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(a) (b) (c)

Fig. 5 Sector in the neighborhood of the origin of hyperbolic type (a), parabolic type (b) and

elliptic type (c).

Moreover, if one orbit of the system (37) spirals toward the origin as t → +∞ then

all trajectories of (37) in a deleted neighborhood of the origin spiral toward the

origin as t →+∞.

For details on Theorem 2, see Ref. [5], page 140, Th. 2.

Now, we recall the definition of a sector, with reference to the planar dynamical

system (37), as well as the possible character of a sector. If the Taylor expansions

of P and Q about the origin begin with mth-degree terms P(m) and Q(m) and if the

function

g(θ ) = cosθQ(m)(cosθ ,sinθ )− sinθP(m)(cosθ ,sinθ )

is not identically null, from Theorem 2 it follows that there are at most 2(m+ 1)
directions, obtained as the solutions of the equation g(θ ) = 0, along which a orbit

of the system (37) may approach the origin. Thus, the solution curves of the system

(37) that approach the origin along these directions divide a neighborhood of the

origin into a finite number of open regions called sectors. Three types of sectors

can occur, namely either a hyperbolic, parabolic or an elliptic sector when it is

topologically equivalent to the sector represented in Figure 4, picture (a), (b) and (c),

respectively, where the directions of the flow need not to be preserved. Moreover, the

trajectories that lie on the boundary of a hyperbolic sector are called separatrixes.

Another important concept that is used in this paper is the Morse index of a fixed

point of the dynamical system (37). We begin with the definition of the index of a

Jordan curve. Let f = (P,Q)T be a C 1 vector field on an open subset E⊂R
2 and let

C be a Jordan curve contained in E , such that the system (37) has no fixed point on

C . The index of C relative to f is the integer i(C ) computed as

i(C ) =
1

2π

∮

C

PdQ−QdP

P2 +Q2
.

Let x0 be an isolated fixed point of system (37) and assume that the Jordan curve C

contains x0 and no other fixed points of (37) on its interior. The Morse index of x0

with respect to f is defined by

i(x0) = i(C ).



Dynamical properties of a cosmological model with diffusion 19

The following result is very convenient for the evaluation of the Morse index of

a fixed point. It is stated for a fixed point at the origin but it is also valid for an

arbitrary fixed point x0.

Theorem 3. Consider the planar dynamical system (37) with P(x,y) and Q(x,y)
being analytic functions of (x,y) in some open subset E ⊂R

2 containing the origin.

If the origin is an isolated fixed point of the system (37) then the Morse index of the

origin, say i, satisfies the relation

i = 1+
1

2
(e− h), (39)

where e and h indicate the number of elliptic and hyperbolic sectors, respectively,

in a neighborhood of the origin.

For details on Theorem 3, see Ref. [5], page 305, Th. 7.

As a consequence of Theorem 3, it follows that the number h of hyperbolic sectors

and the number e of elliptic sectors have the same parity.

Further concepts and properties that are used in the analysis developed in section

4 are those related to the α- and ω- limit sets of and orbit. We come back to

the dynamical system (35) and assume that, for each x0 ∈ R
n, the system has a

unique global solution x ∈ C 1(R) such that x(0) = x0. We say that an equilibrium

point x∗ is an ω-limit point of the solution x(t) if there exists a sequence tn → +∞
such that limn→+∞ x(tn) = x∗. The set of all ω-limit points of the solution x(t) is

called its ω-limit set. Analogously, by considering a sequence tn → −∞, such that

limn→−∞ x(tn) = x∗, we define the concepts of an α-limit point and the α-limit set

of a solution x(t). Since solutions with the same orbit have equal ω- and α-limit

sets, we will refer to ω- and α-limit sets of an orbit γ , and we will denote them by

ω(γ) and α(γ), respectively. The following two theorems state important results on

the limit sets ω(γ) and α(γ), that are used in section 4.

Theorem 4. (LaSalle Invariance Principle) Let S ⊂R
n be a compact and positively

invariant subset of the dynamical system (35), and Z : S −→ R a C
1 monotone

function along the flow of the dynamical system. Let γ be an orbit in S. Then

ω(γ)⊆
{

x ∈ S : Z′(x) = 0
}

,

where Z′ = ∆Z · f .

For details on Theorem 4, see Ref. [7], page 103, Th. 4.11.

Theorem 5. (Monotonicity Principle) Let S ⊂ R
n be an invariant subset of the dy-

namical system (35) and Z : S−→R a C 1 strictly monotonically decreasing function

along the flow of the dynamical system. Let a and b be defined by a = inf{Z(x) :

x ∈ S} and b = sup{Z(x) : x ∈ S}. Let γ be an orbit in S. Then

α(γ)⊆
{

s ∈ ∂S : lim
x→s

Z(x) 6= a
}

, ω(γ)⊆
{

s ∈ ∂S : lim
x→s

Z(x) 6= b
}

,
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For details on Theorem 5, see Ref. [7], page 103, Th. 4.12. Finally, the following

theorem states a crucial result about the limit sets ω(γ) and α(γ) in the particular

case of a dynamical system in R
2.

Theorem 6. (Generalized Poincaré-Bendixson) Consider the dynamical system (35)

on R
2, and suppose that the dynamical system has only a finite number of equilib-

rium points. Then, for any orbit γ of the dynamical system, each one of the limit sets

ω(γ) and α(γ) can only be one of the following: an equilibrium point; a periodic

orbit the union of equilibrium points and heteroclinic cycles.

For details on Theorem 6, see Ref. [5], page 101, Th. 4.10, or Ref. [7], page 245,

Th. 2.
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