DEPARTAMENTO DE QUÍMICA ESCOLA DE CIÊNCIAS E TECNOLOGIA UNIVERSIDADE DE ÉVORA

JORNADAS 2010 DO DEPARTAMENTO DE QUÍMICA

25 e 26 de Março de 2010

Título: Jornadas 2010 do Departamento de Química.

Editores: Júlio Cruz Morais, João Valente Nabais, António Candeias, António Teixeira,

Cristina Galacho e Jorge Teixeira.

Impressão: FLM, Fundação Luís de Molina. **Local, Ano de Publicação:** Évora, 2010.

Tiragem: 50 exemplares.

A Espectrometria de Massa pela Técnica de MALDI-TOF ICMS na Identificação Microbiana

C Santos, N Lima

Micoteca da Universidade do Minho, IBB/Centro de Engenharia Biológica, Braga cledir.santos@deb.uminho.pt

Matrix-Assisted Laser Desorption/Ionisation Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) é uma técnica de massa de alta resolução largamente utilizada para analisar as massas moleculares dos compostos orgânicos. A análise das moléculas ocorre através de uma ionização suave. No processo de ionização, um feixe de laser de azoto (337 nm) incide sobre o analito recoberto por uma solução matriz, resultando numa fragmentação mínima das moléculas analisadas (Tanaka et al., 1988). A técnica de MALDI-TOF MS tem contribuído para um crescente aumento do conhecimento na identificação/caracterização microbiana. O MALDI-TOF IC (Intact Cell) MS gera espectros de massas de células intactas de microrganismos numa faixa de 2000-20000 Da. Os espectros gerados são obtidos como "impressões digitais" de um taxon específico (Santos et al., 2010). As vantagens desta nova abordagem, como um método de identificação e autenticação de estirpes microbianas, são: 1) curto período de tempo (minutos) utilizado no processo de preparação das amostras para análise; 2) a fiabilidade dos resultados obtidos e 3) os baixos custos das análises (basicamente esforço humano) (Santos et al., 2010). Neste trabalho pretende-se apresentar os últimos avanços da espectrometria de massa pela técnica de MALDI-TOF ICMS na identificação microbiana.

Referências

Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., Yoshida, T. (1998). Protein and polymer analyses up to mlz 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Sp 2, 151-153.

Santos, C., Paterson, R.M.R., Venâncio, A., Lima, N. (2010). Filamentous fungal characterisations by matrix-assisted laser desorption/ionisation time of flight mass spectrometry. J Appl Microbiol 108, 375–385.

