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Staphylococcus epidermidis is the most commonly isolated aetiological agent of nosocomial

infections, mainly due to its ability to establish biofilms on indwelling medical devices. Detachment

of bacteria from S. epidermidis biofilms and subsequent growth in the planktonic form is a

hallmark of the pathogenesis of these infections leading to dissemination. Here we showed that S.

epidermidis cells collected from biofilms cultured in conditions that promote cell viability present

marked changes in their physiological status upon initiating a planktonic mode of growth. When

compared to cells growing in biofilms, they displayed an increased SYBR green I staining

intensity, increased transcription of the rpiA gene, decreased transcription of the icaA gene, as

well as higher susceptibility to vancomycin and penicillin. When bacteria collected from biofilms

with high proportions of dormant cells were subsequently cultured in the planktonic mode, a large

proportion of cells maintained a low SYBR green I staining intensity and increased resistance to

vancomycin and penicillin, a profile typical of dormant cells. This phenotype further associated

with a decreased ability of these biofilm-derived cells to induce the production of pro-inflammatory

cytokines by bone marrow-derived dendritic cells in vitro. These results demonstrated that cells

detached from the biofilm maintain a dormant cell-like phenotype, having a low pro-inflammatory

effect and decreased susceptibility to antibiotics, suggesting these cells may contribute to the

recalcitrant nature of biofilm infections.

INTRODUCTION

Staphylococcus epidermidis is a commensal bacterium that
colonizes the skin and mucous membranes, often being the
most prevalent staphylococcal species found on human skin
(Otto, 2009). The ability to colonize and establish biofilms on
indwelling medical devices makes this bacterium the most
commonly isolated aetiological agent of nosocomial infec-
tions (Uçkay et al., 2009). Moreover, due to the intrinsic
resistance of staphylococcal biofilms to antibiotics (Raad
et al., 1998), staphylococcal biofilm-originated infections are
associated with an increased duration of hospital stays and

use of medical resources and, consequently, increased
healthcare costs (Dimick et al., 2001; Rogers et al., 2009).
Critically ill immune-compromised patients (Bearman &
Wenzel, 2005) and premature neonates (Fallat et al., 1998)
are the individuals most vulnerable to this opportunistic
pathogen.

S. epidermidis biofilm formation involves initial cellular
adherence to a surface followed by intercellular aggregation
and accumulation in multilayer cell clusters (Otto, 2009).
This process is dependent on the synthesis of adhesive
extracellular molecules (Götz, 2002), such as the polysac-
charide intercellular adhesin (PIA), also known as poly-N-
acetylglucosamine (PNAG), a major constituent mediating
cell-to-cell adhesion in staphylococci (Mack et al., 1994,

Abbreviations: BMDC, bone marrow-derived dendritic cell; MFI, mean
fluorescence intensity; PI, propidium iodide; qPCR, quantitative PCR.
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1996). The final stage of the biofilm life cycle comprises cell
detachment and subsequent growth in the planktonic
form, a process that is crucial for S. epidermidis biofilm
pathogenesis by forming the basis for dissemination of
infection (Wang et al., 2011). Therefore, in this study we
evaluated physiological changes occurring in S. epidermidis
bacteria during the shift from the biofilm to the planktonic
mode of growth. We show that dormant bacteria within S.
epidermidis biofilms display a low inflammatory profile and
increased tolerance to vancomycin and penicillin upon
initiating a planktonic growth.

METHODS

Bacterial strains and growth conditions. S. epidermidis strain
9142 (Nedelmann et al., 1998) was used in this study. To establish a
48 h biofilm, a starter culture was grown overnight in tryptic soy
broth (TSB) (Merck) at 37 uC with agitation (80 r.p.m.). The optical
density of the starter culture at 640 nm was adjusted to 0.250 with
PBS and a 10 ml aliquot transferred to a 24-well polystyrene plate
(Nunc) containing 1 ml per well of TSB with 0.4 % (w/v) filtered
glucose (Merck), further supplemented with 10 mM MgCl2 (Merck).

The plates were then incubated for 48 h at 37 uC with agitation
(80 r.p.m.). At 24 h of growth, the culture medium was replaced by
fresh TSB supplemented with 1 % glucose and 10 mM MgCl2 (TSB
1 %G+Mg2+). Similar culture conditions were used to establish 48 h
biofilms with high proportions of dormant bacteria by using growth
medium without MgCl2 supplementation, as previously described
(Cerca et al., 2011a). The proportions of dormant bacteria within
biofilms were assessed by calculating the ratio of culturable bacteria

(quantified by tryptic soy agar plating) over the number of viable
bacteria (quantified by flow cytometry, using propidium iodide (PI)
to discriminate live and dead bacteria, as described below). The
proportions of dormant bacteria within the biofilms grown in excess
glucose without MgCl2 supplementation typically ranged between 85
and 90 % while MgCl2 supplemented biofilms typically presented less
than 5 % of dormant cells.

Preparation of biofilm and planktonic S. epidermidis cell

suspensions. To assess the bacterial physiological status during the
transition from the biofilm to the planktonic mode of growth, 48 h
biofilms grown in TSB 1 %G+Mg2+ were disaggregated as previously
described (Cerca et al., 2011b) and the resulting cell suspensions
(typically yielding 3–56109 cells ml21) were diluted in fresh TSB to a
concentration of 16108 cells ml21. These cell suspensions were allowed

to grow in the planktonic form for a period of 6 h (37 uC, 80 r.p.m.).
Simultaneously, the culture medium of 48 h biofilm cultures was
washed out and biofilms were allowed to grow for an additional 6 h
period in 1 ml of fresh TSB. At the time points 0 h, 1 h 30 min, 3 h and
6 h of growth, an aliquot of bacteria was recovered from each culture
(biofilm and planktonic) and used for flow cytometry analysis and gene
expression quantification, as described below.

Flow cytometry analysis of bacteria. At the indicated time points,
biofilms were washed twice with 1 ml of PBS, and bacteria were then
recovered in 1 ml PBS, as previously described (Cerca et al., 2011b).
After a 1 : 10 dilution in PBS, an aliquot of 30 ml was transferred to 270 ml
of PBS containing 3 ml of quantification microspheres (Invitrogen),

SYBR green I (Invitrogen) (1 : 5000 commercial stock) and 5 mg of PI
ml21 (Sigma). For the planktonic cultures, an aliquot of 30 ml of cells was
transferred from the culture to 270 ml of PBS containing 3 ml of
quantification microspheres, SYBR green I (1 : 5000 commercial stock)
and 5 mg of PI ml21. The SYBR and PI concentrations used were
optimized as previously described (Cerca et al., 2011b). Bacterial

fluorescence analysis was carried out by using a FACScan flow cytometer

(Becton Dickinson) containing a low-power air-cooled 15 mW blue

(488 nm) argon laser. Data were acquired using CellQuest software

(Becton Dickinson) and analysed using Flowjo 7.2.5 software (Tree Star).

SYBR fluorescence was detected on the FL1 channel (BP530/30), while PI

fluorescence was detected on the FL3 channel (LP650). For all detected

parameters, amplification was carried out using logarithmic scales. The

concentration of bacteria in the planktonic or biofilm cultures was

further determined by acquiring the counts for a specific number of

microspheres during flow cytometry analysis of the cell samples.

Quantitative PCR (qPCR). qPCR was used to assess the expression

of intercellular adhesin A (icaA) and ribose-5-phosphate isomerase A

(rpiA) encoding genes in S. epidermidis bacteria grown in biofilm or

planktonic cultures. The primers used were designed with Primer3

software (Rozen & Skaletsky, 2000) using the S. epidermidis RP62A

genome as a template (GenBank accession no. NC_002976.3). The

sequences of the primers used are listed in Table 1. Primer efficiency

was determined by the dilution method and by performing a

temperature gradient reaction from 54 to 64 uC. The set of primers

having the optimal and most similar efficiency values at 60 uC was

used. At each time point, total RNA from either biofilm or planktonic

cultures was extracted using a FastRNA Pro Blue kit (MP Biomedicals),

as described previously (França et al., 2011). Contaminating genomic

DNA was removed by treatment with DNase I (Fermentas) for 30 min

at 37 uC. The enzyme was then heat inactivated at 65 uC for 10 min in

the presence of EDTA. Total RNA was quantified using a Nanodrop

spectrophotometer (Thermo Scientific) and stored at 280 uC. Total

RNA samples were reverse transcribed in the presence of each reverse

primer and RevertAid M-MuLV reverse transcriptase (Fermentas).

Control reactions lacking the reverse transcriptase enzyme (no-RT)

were included. qPCRs contained 2 ml of 1 : 200 diluted cDNA or no-RT

control, 2 ml (containing 10 pmol) of each primer, 6 ml of nuclease-free

deionized H2O and 10 ml of Maxima SYBR green qPCR master mix

(Fermentas). The following thermocycler parameters were used: 94 uC
for 10 min; 40 cycles of 94 uC for 15 s, 60 uC for 20 s and finally 72 uC
for 25 s. To monitor the reaction specificity and primer dimer

formation, end products were analysed by melting curves. Relative fold

increase was calculated using the 2DCt method, a variation of the Livak

method, where DCt5Ct (housekeeping gene)2Ct (target gene). The

data analysis was based on at least two independent experiments.

Evaluation of the susceptibility to vancomycin and penicillin of

S. epidermidis biofilm bacteria after initiating planktonic

growth. S. epidermidis bacteria obtained from 48 h biofilms grown

in TSB 1 %G+Mg2+ were diluted in fresh TSB (16108 cells ml21) and

allowed to grow in the planktonic form for a 3 h period. Simultaneously,

cultures of 48 h S. epidermidis biofilms were allowed to grow for an

additional 3 h period in fresh TSB. At this time point, vancomycin

(40 mg ml21) (Sigma), penicillin (40 mg ml21) (Sigma) or TSB (negative

control) was added to the biofilm and planktonic cultures, which were

incubated for 30 min. The antibiotic concentrations used resulted in

comparable proportions of death in the planktonic cultures. Bacterial

death was determined through flow cytometry by assessing the bacterial

incorporation of PI, as described above. A similar procedure was carried

out using 48 h biofilms grown in TSB 1 %G without magnesium

supplementation as a starting point.

Mice. Male BALB/c mice of 6–8 weeks of age were purchased from

Charles River and kept at the animal facilities of the Institute Abel

Salazar (ICBAS; Portugal) during the experiments. Hiding and

nesting materials were provided for enrichment. Procedures involving

mice were performed according to the European Convention for the

Protection of Vertebrate Animals used for Experimental and Other

Scientific Purposes (ETS 123) and 86/609/EEC directive and Portuguese

rules (DL 129/92). Authorization to perform the experiments was issued
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by the competent national board (Direção Geral de Veterinária),

document number 0420/000/000/2008.

Bone marrow-derived dendritic cells (BMDCs) differentiation.
Bone marrow cells were collected from femurs and tibias of BALB/c

mice by flushing with cold RPMI 1640 (Sigma). Cells (16106 ml21)

were cultured in six-well plates in RPMI supplemented with 15 %

(v/v) J558-cell supernatant, 10 % fetal bovine serum (FBS) (PAA),

penicillin (100 I.U. ml21)/streptomycin (100 mg ml21) (Sigma) and

L-glutamine (2 mM) (Sigma), and incubated at 37 uC, 5 % CO2. Half

of the media was renewed every 2 days. On day 6, BMDCs were

detached, adjusted at a concentration of 16106 cells ml21, dis-

tributed in 96-well round-bottom plates (100 ml per well) and

incubated overnight in supplemented RPMI medium.

Stimulation of BMDCs with bacterial suspensions of S.

epidermidis obtained from different cultures. Bacterial suspen-

sions were obtained from 48 h biofilms grown in TSB 1 %G or TSB

1 %G+Mg2+ as described above. For planktonic cultures, a single

colony of S. epidermidis was inoculated into 35 ml of TSB and grown

overnight at 37 uC in a shaker rotator at 80 r.p.m. Then, cells were

recovered, centrifuged for 10 min at 13 000 r.p.m. at 4 uC (Heraeus

biofuge fresco; Thermo Scientific) and resuspended in 1 ml of PBS.

Before stimulation of BMDCs, all the bacterial inocula were

resuspended in RPMI supplemented with 10 % FBS and 2 mM L-

glutamine and adjusted to a concentration of 16106 cells ml21.

BMDCs were then stimulated with 100 ml bacterial suspensions

(16106 cells ml21) obtained from biofilms grown in TSB 1 %G or

in TSB 1 %G+Mg2+, or from original planktonic cultures. RPMI

supplemented media and LPS (1 mg ml21) (Sigma) were used as

negative and positive controls, respectively. After 6 h incubation

(37 uC, 5 % CO2), medium containing bacteria was collected and

replaced by fresh medium containing penicillin (200 I.U. ml21) and

streptomycin (200 mg ml21). At the 6 or 18 h time points, the culture

supernatants were removed and stored at 220 uC until use. For the

assessment of cell surface markers, BMDCs were collected from the

culture plates and washed twice in Hanks’s balanced salt solution

(Sigma). A subset of 56105 BMDCs were stained per sample. The

following mAbs, along with the respective isotype controls, were used

(at previously determined optimal dilutions) for immunofluorescence

cytometric data acquisition in a Coulter EPICS XL flow cytometer

(Beckman Coulter): FITC hamster anti-mouse CD11c (HL3), PE anti-

mouse CD80 PE (clone 16-10A1); PE anti-mouse CD86 (clone GL1);

PE anti-mouse I-Ad/I-Ed (clone 2G9); PE isotype-matched controls

(PE-rat IgG2a,k, clone R35-95; PE hamster IgG2, k clone B81-3); all

from BD Biosciences Pharmingen.

All the analysed cell samples were pre-incubated with anti-FccR (a

kind gift of Dr Jocelyne Demengeot, Gulbenkian Institute of Science,

Oeiras, Portugal) before the staining. Data were analysed by using
CELLQUEST software (Becton Dickinson).

Cytokine quantification. IL-6, IL-10, IL-12p70 and TNF-a

were quantified using commercially available quantification kits
(eBioscience) according to the manufacturer’s instructions. Results
were read in a Multiskan Ex spectrophotometer (Thermo Electron)
using Ascent software (Thermo Electron).

Statistical analysis. All graphs were generated using GraphPad
Prism software (GraphPad Software). Means and SDs were calculated.
Statistical analysis was carried out by two-way repeated-measures
ANOVA with Bonferroni post hoc tests or with one-way ANOVA
with Tukey’s multiple comparison test. Both tests were performed
using GraphPad software. A P value of less than 0.05 was considered
statistically significant.

RESULTS AND DISCUSSION

S. epidermidis cells that undergo a shift from
biofilm to planktonic growth present a high SYBR
staining intensity and rpiA gene expression

Detachment of bacteria from a biofilm and subsequent
growth in the planktonic form is considered a major event in
the pathophysiology of biofilm-related infections (Otto,
2013). In S. epidermidis this was previously shown to be
followed by a transition from a non-aggressive, non-growing
and fermentative state (biofilm stage of growth) into a growing,
aggressive/inflammatory and respiratory state (planktonic stage
of growth) (Yao et al., 2005). SYBR staining intensity was
previously found to correlate with S. epidermidis respiratory
activity, as demonstrated by co-staining studies using SYBR
and the redox dye 5-cyano-2,3-ditolyl tetrazolium chloride
(CTC) (Cerca et al., 2011c). Therefore, having shown this
correlation, we used SYBR as a fluorescent probe to evaluate
physiological changes of S. epidermidis bacteria during the
shift from the biofilm to the planktonic mode of growth. For
this purpose, 48 h biofilms grown in TSB media supple-
mented with glucose and magnesium (TSB 1 %G+Mg2+)
were prepared and used as the starting point of our study, as
these conditions maintain the majority of cells in a
culturable state (Cerca et al., 2011a). As shown in Fig. 1,
bacterial suspensions were prepared from the 48 h biofilms
and allowed to grow in the planktonic form for a further 6 h.

Table 1. Oligonucleotide primers used for qPCR

Target

gene

Orientation Sequence (5§A3§) TM (6C) Amplicon size (bp)

16S FW GGGCTACACACGTGCTACAA 59.8 176

RV GTACAAGACCCGGGAACGTA 59.9

icaA FW TGCACTCAATGAGGGAATCA 60.2 134

RV TAACTGCGCCTAATTTTGGATT 59.9

rpiA FW CAACAACGACAAATCGGTCA 60.5 114

RV CAATAGATGGCGCTGATGAA 59.8

FW, Forward; RV, reverse; TM, melting temperature.
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Simultaneously, parallel cultures of S. epidermidis biofilms
continued to be grown for an additional 6 h in fresh TSB
medium. Bacterial cells were then obtained at different time
points from either the planktonic or biofilm cultures, stained
with SYBR and PI, and analysed by flow cytometry. The
bacteria that entered into the planktonic growth phase
showed progressive increases in the mean fluorescence

intensity (MFI) due to SYBR staining, reaching a detected
maximum at the 3 h time point (Fig. 1). In contrast, bacteria
that remained growing in the biofilm mode presented a lower
and constant SYBR MFI over time (Fig. 1). Our results are in
agreement with a previous report showing that the shift from
the biofilm to the planktonic mode of growth is accompanied
by an increase in the S. epidermidis respiratory activity (Yao
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Fig. 1. Evaluation of SYBR staining intensity in S. epidermidis bacteria upon the shift from the biofilm to the planktonic mode of
growth. Bacteria obtained from low dormancy 48 h biofilms were diluted in fresh TSB (1�108 cells ml”1) and allowed to grow in
the planktonic form for 6 h. Simultaneously, parallel cultures of 48 h biofilms were allowed to grow for an additional 6 h in fresh
TSB. At the indicated time points, bacteria obtained from each culture were stained with SYBR and PI (5 mg ml”1) and the
bacterial fluorescence was determined by flow cytometry analysis. Values shown within the bi-parametric dot plots (SYBR vs PI)
represent the MFI of the SYBR or PI signal±SD from bacteria within the respective flow cytometry analysis region. Arrows within
the dot plots represent the direction of the shift in the bacterial MFI due to SYBR/PI staining between assessed time points.
Results are a representative example of two independent experiments that generated concordant results.
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Fig. 2. Evaluation of icaA and rpiA gene expression over time in S. epidermidis bacteria grown in the biofilm or planktonic
modes. Bacteria obtained from low dormancy 48 h S. epidermidis biofilms were diluted in fresh TSB (1�108 cells ml”1) and
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each culture and the expression of (a) icaA and (b) rpiA genes was evaluated by qPCR. Results shown are representative of two
independent experiments that generated concordant results. Statistical analysis was carried out by two-way repeated-measures
ANOVA with Bonferroni post hoc test.
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et al., 2005). Interestingly, an increase in PI staining intensity
was detected in the bacteria obtained from the planktonic
cultures at the 1 h 30 min time point that was not detected on
the two later assessed time points. According to previous
reports, this transient PI-incorporating state may correspond
to temporarily compromised cell membrane integrity due to a
fast increase in cell size (Lybarger & Maddock, 2001; Shi et al.,
2007). A previous study in which a comparative transcrip-
tome analysis in biofilm and planktonic Staphylococcus aureus
cells was carried out showed that planktonic bacteria
presented an increased respiratory activity and decreased
synthesis of poly-N-acetylglucosamine as compared with their
biofilm counterparts (Resch et al., 2005).

Therefore, in order to further characterize the physiological
alterations occurring in S. epidermidis bacteria during the

transition from the biofilm to the planktonic mode of

growth, we evaluated the transcription of icaA and rpiA

mRNA in bacteria obtained from the biofilm or planktonic

cultures at different time points. The icaA gene encodes a N-

acetylglucosamine transferase involved in the synthesis of

PIA (Heilmann et al., 1996), whereas rpiA encodes a ribose-

5-phosphate isomerase that participates in the NADPH-

generating pentose phosphate pathway (Jeppsson et al.,

2002). As shown in Fig. 2(a), and as could be expected,

bacteria that remained in the biofilm cultures expressed,

over time, significantly higher levels of icaA than bacteria

that initiated planktonic growth. In contrast, planktonic

bacteria expressed significantly higher levels of rpiA than

their biofilm counterparts (Fig. 2b). The later result, by
showing a correlation between SYBRhigh staining intensity
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Fig. 3. S. epidermidis biofilm bacteria acquire susceptibility to vancomycin and penicillin after initiating a planktonic growth.
Bacteria obtained from low dormancy 48 h S. epidermidis biofilms were diluted in fresh TSB (1�108 cells ml”1) and allowed to
grow in the planktonic form for a 3 h period. Simultaneously, parallel cultures of 48 h S. epidermidis biofilms were allowed to
grow for an additional 3 h period in fresh TSB. At this time point, vancomycin (40 mg ml”1), penicillin (40 mg ml”1) or TSB
(negative control) was added to the biofilm and planktonic cultures, which were grown for an additional 30 min. Bacterial death
was determined using flow cytometry by assessing the bacterial incorporation of PI. Results shown are representative of two
independent experiments that generated concordant results. Statistically significant differences in the proportions of dead PI+

bacteria (gate g2) between control, vancomycin and penicillin groups (P,0.01, ANOVA) are indicated by asterisks (**).
Statistical analysis was carried out by two-way repeated-measures ANOVA with Bonferroni post hoc test.
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and increased rpiA expression, provides additional evidence
for the suitability of using this fluorescent dye as a probe to
evaluate the respiratory status of S. epidermidis cells.

S. epidermidis biofilm bacteria display a higher
susceptibility to vancomycin and penicillin after
initiating planktonic growth

The physiological reversibility between biofilm and plank-
tonic bacteria has been identified as an important deter-
minant in their antibiotic tolerant or susceptible profile (Fux
et al., 2005). Since we showed that marked physiological
alterations occurred in S. epidermidis bacteria during the

shift from the biofilm to the planktonic mode of growth, we
evaluated whether this event was also accompanied by
alterations in the susceptibility to vancomycin and penicillin.
Since the major differences between biofilm and planktonic
cells regarding SYBR MFI and rpiA expression were detected
at 3 h (Figs 1 and 2), we selected this time point to assess the
susceptibility of biofilm and planktonic bacteria to the above-
mentioned antibiotics. For this purpose, vancomycin (40 mg
ml21), penicillin (40 mg ml21) or TSB (negative control) was
added to the biofilm and planktonic cultures, which were
incubated for a further 30 min. Bacterial death was then
quantified by PI incorporation and detected by flow
cytometry. As shown in Fig. 3, bacteria within the planktonic
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Fig. 4. Dormant bacteria within S. epidermidis biofilms maintain tolerance to vancomycin and penicillin after initiating planktonic
growth. (a) Cell suspensions obtained from biofilms with high proportions of dormant bacteria were diluted in fresh TSB
(1�108 cells ml”1) and allowed to grow for a further 6 h period in the planktonic form. At this time point, the bacterial SYBR
staining intensity was determined by FACS analysis. (b) Vancomycin (40 mg ml”1), penicillin (40 mg ml”1) or TSB was added to
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analysis assessing incorporation of PI. Results shown are representative of two independent experiments that generated
concordant results. Statistically significant differences in the proportions of SYBRhigh PI+ bacteria (gate g4) between control,
vancomycin and penicillin groups (P,0.01, ANOVA) are indicated by asterisks (**). No statistically significant differences were
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cultures were more susceptible to vancomycin or penicillin as
evaluated by the marked increase in the proportions of dead
bacteria. In contrast, bacteria that remained growing in the
biofilm cultures maintained tolerance to the tested antibiotics
as indicated by the lack of increased proportions of dead cells
in these cultures. This result is in agreement with previous
reports highlighting the role of the bacterial physiological
status in determining antibiotic tolerance/susceptibility (Fux
et al., 2005).

Dormant bacteria within S. epidermidis biofilms
maintain tolerance to vancomycin and penicillin
when cultured in planktonic conditions

It is well established that the majority of bacteria within
infectious biofilms may not grow under standard laboratory
culture conditions and are in an apparent dormant state
(Costerton et al., 2011; Oliver, 2010). Interestingly, the presence
of dormant S. epidermidis bacteria on explanted central venous
catheters was associated with fever in patients with biofilm-
related infections (Zandri et al., 2012). This finding high-
lights the relevance in characterizing physiological altera-
tions that dormant bacteria may undergo upon initiating a
planktonic growth. To evaluate this, we established 48 h
biofilms with high proportions of dormant bacteria by using
TSB+1 %G without magnesium supplementation (Cerca
et al., 2011a). As shown in Fig. 4(a), 6 h after disaggregation
of the biofilms and transfer of biofilm cells into planktonic
culture conditions, the majority of bacteria displayed a
SYBRhigh staining profile (gate g2), previously shown to
correspond to growing non-dormant bacteria (Cerca et al.,
2011c). However, a noticeable proportion of bacteria
maintained a SYBRlow staining intensity (gate g1), corres-
ponding to dormant bacteria. As dormant and non-dormant
bacteria could be discriminated by using flow cytometry, we
further characterized these bacterial populations regarding
susceptibility to vancomycin and penicillin. Thus, vancomycin
(40 mg ml21), penicillin (40 mg ml21) or TSB (negative
control) was added to the 6 h planktonic cultures for a 30 min
period, upon which bacterial death was similarly determined
by assessing PI incorporation. As shown in Fig. 4(b), no
significant increase in the proportions of SYBRlow PI+ cells
(gate g3) was detected upon addition of antibiotics as
compared with the control cultures. In contrast, bacteria that
underwent a physiological shift, presenting SYBRhigh staining
(gate g4) were more susceptible to these antibiotics, as
determined by the marked increase in the proportions of
SYBRhigh PI+ cells. Altogether these results indicate that
dormant bacteria within S. epidermidis biofilms do not
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Fig. 5. Increase in co-stimulatory molecules on the surface of
BMDCs stimulated with S. epidermidis bacteria. Flow cytometric
phenotypic characterization of BMDCs (gated as CD11chigh) at
the indicated time points after stimulation in vitro with cell
suspensions obtained from 48 h biofilms grown in TSB 1 %G
(dormant biofilms), 48 h biofilms grown in TSB 1 %G+Mg2+

(non-dormant biofilms), original planktonic cultures (planktonic),
LPS or medium alone (RPMI), as indicated. BMDCs were stained

with specific anti-CD80, anti-CD86 and anti-MHC class II mAbs
after previous FccR blocking. The bars represent MFI values for
these molecules corresponding to the mean plus one SD of three
samples per group. Results shown are of one out of two
independent experiments that generated concordant results.
Statistical analysis was carried out by one-way ANOVA with
Tukey’s multiple comparison test (*P,0.05).
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undergo a physiological shift upon being placed in planktonic
culture conditions, maintaining instead a low SYBR staining
intensity that was associated with tolerance to vancomycin and
penicillin.

S. epidermidis bacteria obtained from biofilms
with high proportions of dormant cells induce a
low activation of murine BMDCs in vitro

As we determined that dormant bacteria within S. epidermi-
dis biofilms presented a particular phenotype by maintaining
tolerance to vancomycin and penicillin after initiating a
planktonic growth, we further explored whether these cells

interacted differently with murine BMDCs compared to cells
obtained from biofilms with lower proportions of dormant
cells. Moreover, cells from both of these conditions have a
distinct transcriptomic profile (Carvalhais et al., 2014).
Bacterial suspensions were prepared with cells obtained from
high dormancy biofilms (TSB 1 %G), low dormancy biofilms
(TSB 1 %G+Mg2+) or planktonic cultures and used to
stimulate BMDCs in vitro. BMDC activation was assessed by
flow cytometry, measuring the MFI due to surface staining of
co-stimulatory (CD80 and CD86) and MHC class II mole-
cules, and by quantifying the proinflammatory cytokines
TNF-a, IL-12 and IL-6, and the anti-inflammatory cytokine
IL-10 in the culture supernatants. As shown in Fig. 5, all the

(a) (b)

(d)(c)

TNF-α
R

e
la

ti
ve

 v
a
lu

e

R
e
la

ti
ve

 v
a
lu

e
R

e
la

ti
ve

 v
a
lu

e

100

120 200

150

100

50

180

160

140

120

100

80

60

40

20

0

0

P<0.01

P<0.05

P<0.01

P<0.01

IL-12

IL-10IL-6

P<0.01

80

60

40

20

0

R
e
la

ti
ve

 v
a
lu

e

100

120

80

60

40

20

0

RPM
I

LP
S

Pla
nk

to
ni
c 

cu
ltu

re

D
or

m
an

t b
io
fil
m

N
on

-d
or

m
an

t b
io
fil
m

RPM
I

LP
S

Pla
nk

to
ni
c 

cu
ltu

re

D
or

m
an

t b
io
fil
m

N
on

-d
or

m
an

t b
io
fil
m

RPM
I

LP
S

Pla
nk

to
ni
c 

cu
ltu

re

D
or

m
an

t b
io
fil
m

N
on

-d
or

m
an

t b
io
fil
m

RPM
I

LP
S

Pla
nk

to
ni
c 

cu
ltu

re

D
or

m
an

t b
io
fil
m

N
on

-d
or

m
an

t b
io
fil
m

Fig. 6. S. epidermidis bacteria obtained from high dormancy biofilms induce a lower activation of murine BMDCs. Cell
suspensions obtained from 48 h biofilms grown in TSB 1 %G (dormant biofilms), 48 h biofilms grown in TSB 1 %G+Mg2+

(non-dormant biofilms) or original planktonic cultures (planktonic) were used to stimulate BMDCs in vitro. The concentration of
the proinflammatory cytokines (a) TNF-a, (b) IL-12 and (c) IL-6, and of anti-inflammatory cytokine (d) IL-10, was evaluated by
ELISA in the culture supernatants. Results shown for each cytokine are representative of two independent experiments that
generated concordant results. Statistical analysis was carried out by one-way ANOVA with Tukey’s multiple comparison test.
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bacterial suspensions induced increased expression of CD80
and CD86 molecules on the surface of BMDCs, as compared
with the negative control (medium alone). However, no
significant differences were observed among the groups
stimulated with the different bacterial suspensions. Also,
there was only a marginal effect on MHC class II expression.
Although no change in effect was observed for the BMDC
surface phenotype induced by the differently grown S.
epidermidis cells, bacteria obtained from biofilms with higher
proportions of dormant cells induced lower production of
TNF-a, IL-12 and IL-6 (Fig. 6). A disparate effect on cytokine
production by murine dendritic cells upon stimulation with
bacterial preparations that induced expression of CD80 and
CD86 to indistinguishable levels was also found elsewhere
(Xu et al., 2011). It is noteworthy that bacteria obtained from
low dormancy biofilms induced cytokine production by
BMDCs to the same extent as bacteria obtained from
planktonic cultures. These results are in agreement with our
previous report showing that S. epidermidis bacteria obtained
from biofilms enriched in dormant cells induced a low
activation of murine macrophages in vitro and in vivo (Cerca
et al., 2011a). Also in agreement, a previous study has shown
that staphylococcal biofilms could attenuate the inflammat-
ory response of murine macrophages, as compared to
planktonic cell counterparts, by promoting differentiation
of these host cells into an M2 phenotype (Thurlow et al.,
2011). As shown in Fig. 6, no significant differences were
found among any of the S. epidermidis cell-stimulated
BMDC groups in the production of IL-10. This might
indicate that immune evasion of S. epidermidis biofilm cells
may be mainly due to a lower inflammatory effect rather than
by promoting suppressive mechanisms such as the ones
dependent on IL-10. Nevertheless, as other innate immune
cells, such as myeloid suppressor cells, have been shown to
produce IL-10 in the context of S. aureus biofilm infections
(Heim et al., 2014), a significant role of this cytokine in S.
epidermidis biofilm infections cannot be ruled out. Further
studies would be necessary to better determine to what extent
dormant cells may contribute to the differential role of
biofilm cells on host mononuclear phagocytes.

Concluding remarks

The physiological shift that occurs in S. epidermidis bacteria
during the transition from the biofilm to the planktonic mode
of growth is considered a major event in the pathophysiology
of this bacterium (Yao et al., 2005). Here, we showed that
bacteria from biofilms grown in conditions that promoted cell
viability displayed increased SYBR staining intensity and rpiA
gene expression, as well as increased susceptibility to
vancomycin and penicillin. In contrast, we also showed that
a high proportion of bacteria obtained from biofilms grown in
high glucose, a condition promoting dormancy, maintained a
low SYBR staining intensity and tolerance to vancomycin and
penicillin upon initiating a planktonic growth. These data
highlight that biofilms, already intrinsically tolerant to
antibiotics (Høiby et al., 2010), may release cells to the
surrounding environment that maintain an antibiotic-tolerant

profile. This, in turn, may confer on these bacteria an
increased likelihood to persist within a host and cause disease.
As infectious biofilms may have a high frequency and
prevalence of unculturable bacteria (Oliver, 2010), further
studies addressing the role of dormant bacteria in the
pathophysiology of S. epidermidis biofilms would help
understand the clinical outcomes of biofilm-related infections.
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Götz, F. (2002). Staphylococcus and biofilms. Mol Microbiol 43, 1367–
1378.

Heilmann, C., Schweitzer, O., Gerke, C., Vanittanakom, N., Mack, D.
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