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ABSTRACT: Silk-based matrix was produced for delivery of a
model anticancer drug, methotrexate (MTX). The calculation
of net charge of silk fibroin and MTX was performed to better
understand the electrostatic interactions during matrix
formation upon casting. Silk fibroin films were cast at pH
7.2 and pH 3.5. Protein kinase A was used to prepare
phosphorylated silk fibroin. The phosphorylation content of
matrix was controlled by mixing at specific ratios the
phosphorylated and unphosphorylated solutions. In vitro
release profiling data suggest that the observed interactions
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are mainly structural and not electrostatical. The release of MTX is facilitated by use of proteolytic enzymes and higher pHs. The
elevated f-sheet content and crystallinity of the acidified-cast fibroin solution seem not to favor drug retention. All the acquired
data underline the prevalence of structural interactions over electrostatical interactions between methotrexate and silk fibroin.
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1. INTRODUCTION

In the past decades considerable attention has been drawn
toward the production of biocompatible and bioinspired
materials based on silk fibroins." Silk possesses remarkable
properties such as high mechanical strength, low degradability,
and immunogenicity." Silk is a material of choice for many
applications, because it is easily isolated from source cocoons
and can be processed to obtain a variety of morphologically
different devices.” Examples include silk-based materials for
tissue regeneration,’ drug delivery systems,* and modulation of
host immune responses” among others.

As a tool of material engineering, phosphorylation remains
largely unexplored. Yet, in nature, phosphorylation plays a
fundamental role in protein stabilization and allosteric control.®
Thus, phosphorylation can be used as a tool to develop new
materials. In a previous work,” modulation of hydrophobicity
and crystalline content of silk fibroin based materials was done
through in vitro phosphorylation of regenerated silk using the
protein kinase A (PKA). It is known that, under physiological
conditions, the phospho-Ser residues of a protein bear a double
negative charge® which considerably influences their micro-
environment.” A correlation between phospho-Ser amount and
the physicochemical properties of the produced films was
observed, due to increased negative charge and loosened
structure of phosphorylated chains.

Methotrexate (MTX) is a known folate antagonist, applied in
chemotherapy for a broad range of human malignancies (those
overexpressing folate receptors on their surfaces'’). MTX
usage, however, may be restricted due to undesired side effects,
like the toxicity to hematopoietic and gastrointestinal tissues'"
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and nephrotoxicity."> Eventually, cancer cells may acquire
resistance to MTX by different mechanisms, mostly by a
defective transport of the drug,'® thus compromising its
therapeutic effect.

Hence, the emerged idea of controlled release of antitumor
agents poses attraction as it allows for a more uniform and
prolonged level of a circulating drug, accordingly lessening the
negative side effects. The efficiency of MTX and similar
compounds that require prolonged administration of the drug
for efficient cancer treatment is increased. Various strategies of
MTX-containing formulations for medical research are
currently being attempted. Among several, the injectable,
thermosensitive polymeric hydrogels for intra-articular deliv-
ery;'* combined magnetite—chitosan microspheres;'® and
gelatin-based'® and chitosan-based'” nanoparticles have been
prepared. Other carrier systems of MTX delivery are known: a
nanostructured lipid carrier'® and a sophisticated dextran—
peptide—MTX autocleaved conjugate construct.'” In this
context, materials for controlled delivery and/or release of
MTX, based on silk fibroin, are described by solely one report
of silk-albumin nanoparticles’ and two patents*"** dealing
with the same formulation type.

In this work we studied the effect of phosphorylation and the
casting conditions on a solid matrix for the delivery of MTX.
Casting was done at pH 3.5 and pH 7.2 when both MTX and
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phosphorylated fibroin have similar charges. Initially, theoretical
net charge of silk as a function of phosphorylation level and the
pH of resulting solution was estimated. For MTX the charge
was also estimated throughout the range of discrete pH values.
Later, by combining dynamic light scattering (DLS)** and
electrophoretic mobility measurements,” the empirical net
charges of both compounds were determined. Differential
scanning calorimetry (DSC) and release profiling of MTX from
the polymeric matrixes of silk fibroin were performed to
elucidate the nature of interactions between both molecules. A
hypothesis of prolonged release of MTX from films of different
hydrophobicity and varying incubation buffer conditions was
empirically examined. A trial was made to find, in terms of pH,
a favorable condition for polymer—drug interactions (whether
structural or electrostatic, or both) to be used in solution-cast
fibroin film production.

2. MATERIALS AND METHODS

2.1. Materials. Silk cocoons from Bombyx mori were
supplied from “Sezione Specializzata per la Bachicoltura”
(Padova, Italy). Kinase-GLO luminescent kinase assay kit
(Cat. No. V6712) and CellTiter 96 Aqueous One Solution
were obtained from Promega Corporation, USA. Tissue culture
test microplates were from TPP Techno Plastic Products AG,
Switzerland, and Whatman grade 2 filter paper (Cat. No. 1002-
070) was from Whatman, USA.

2.2. Preparation of Silk Fibroin Solution. Sericin content
was removed from the silk as described elsewhere.*® Fibroin
solution of final 2 wt % was prepared. The concentration of silk
fibroin was assessed via the dry weight method on Whatman
paper, in triplicate.

2.3. Preparation of Phospho-Silk Fibroin Films and
MTX Loading. Dialyzed raw silk fibroin solution was
phosphm?rlated using protein kinase A (EC 2.7.1.37) as
reported.” The phospho-silk solution (of pH ~7.25) was then
divided and the pH of one part adjusted to =3.5 using a 50%
aqueous HCI. Consequently, kinase reaction buffer was added
to the unreacted, raw fibroin solution, and the mixture pH was
adjusted to ~3.5 value, or left untreated. Finally, the desired
blends, containing various amounts of phospho-silk fibroin
content and of two pH values, were prepared by casting and
mixing the appropriate quantities of unmodified fibroin and
phospho-fibroin solutions in a 24-well plate. 60 yL of MTX
stock solution was added, so that the drug final concentration
of 0.2 mg mL™" was established. Control samples were cast
without MTX. Cast solutions of 3 mL volume were left for
drying under constant air flow in a laminar flow hood for 2 to 3
days at room temperature. Dry film thickness (at the bottom)
was measured using a caliper.

2.4. Quantitative Determination of Phosphate In-
corporated in Phospho-Silk Fibroin. Phosphate amounts
were determined according to the previously established
protocol.”

2.5. DLS and Electrophoretic Measurements of Silk
Fibroin and MTX. DLS was performed on a Zetasizer Nano
SZ instrument, run under Zetasizer Software v.7.02 (Malvern,
U.K.). Samples were equilibrated at 25 °C for 2 min prior to
measurements. For 0.5 g L™! MTX, the material definition was
“polystyrene latex in water solvent” (all predefined by
Malvern). For silk fibroin the material was chosen as “protein”
(predefined by Malvern), but the solvent was determined as
“silk fibroin solution” (a user-created, custom pattern). Two
constants were introduced for this “solution”: refractive index,
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Rigp, and solution viscosity, #gg. Rigp was measured for 2 wt %
proteinaceous solution using an ATAGO RX-9000X refrac-
tometer (ATAGO Co., USA), resulting in a value of 1.335. #g;
was theoretically estimated from the rearranged equation for
the intrinsic viscosity, [n]:*

In(ng./ 1)
CSF

]
(1)
where 7 is the viscosity of solvent, i.e., water, with the value of
0.8872 cP and Cg; is the fibroin solution concentration. The
value of [#] was previously given26 as 0.23 Cgz !, so that one
obtains #7sp = 1.4054 cP. For net charge estimations, involving
DLS, the results of forward scattering were exclusively used.

Electrophoretic mobility measurements were carried out on
the same equipment. Malvern disposable capillary cells of
DTS1070 type were used for both measurement kinds. All the
measurements were performed in triplicate.

2.6. Net Charge Estimations of Silk Fibroin and MTX.
Effective valence, or net charge, values were calculated via a
stepwise process. Initially, a hydrodynamic radius, Ry, of
material of interest was measured by DLS. Subsequently, D,,
was calculated from the rearranged Stokes—Einstein relation-
ship:

kT
671 Ry

D,
)
where kg is the Boltzmann constant, 7 is the solvent (and, for
the case of silk fibroin, the solution) viscosity, T is the
temperature, and D, is the diffusion coeflicient. Separately
measuring the electrophoretic mobility, 4, and substituting D,
and p values into the equation of apparent valence z,

pkgT
z =
Dye

(©)

where e is the elementary charge, gives the final result.”*

Theoretical estimation of net charge for both compounds
was performed by the calculation of individual acid/base-
derived charges, corresponding to specific pK, using the
Henderson—Hasselbalch equation.

2.7. Thermal Analysis of Silk Fibroin Derived
Materials. DSC measurements were performed with a
NETZSCH-DSC 200F3 instrument (Netzsch GmBH). The
experimental program consisted of sample pretreatment and
the measurement itself. Pretreatment included heating from
room temperature to 120 °C and holding the temperature for
10 min to induce sample dehydration. The temperature was
then lowered to 25 °C. From this point it was increased to 300
°C, and the measurement was performed. Constant energy flow
rate of 10 °C min~" was used in all steps. In the case of MTX
addition, its averaged weight was 0.431 + 0.077 mg. Average
total sample weight was 2.28 + 0.63 mg. During the analysis the
aluminum cell was swept with 50 mL min™" N, flow.

2.8. In Vitro Release. The release kinetics of MTX in two
different solutions (PBS, 0.1 M; ammonium bicarbonate,
NH,HCO;, 0.1 M) and two different pH values (6.25 and
8.0) was studied. Both pH values are applicable to PBS and
NH,HCO; solutions. The discrete pH values were chosen
according to the Sigma-Aldrich product datasheet (code
E0127), defining that pH 8.0—8.5 is optimal for the protease.
Hence a lesser enzymatic activity was anticipated for the lower
pH. Silk fibroin derived materials were incubated at 37 °C in
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the aforementioned solutions, of which only NH,HCO;
contained a protease, porcine pancreatic elastase (PPE, EC
3.4.21.36) at 1:100 elastase:substrate w/w ratio. At determined
time points, MTX release was quantified by absorbance
measurements at 403 nm against a standard absorbance
curve. To obtain kinetic values characterizing different
conditions and materials, incubation during 4 h with 20 min
sampling was done. The buffers were flashed each hour. The
release behavior of MTX from polymeric systems was
determined by fitting the experimental data as described.”
Ritger—Peppas- and Higuchi-derived constants were designated
as Kyp and Ky, accordingly. The fitting was performed in
OriginPro software, v8.5.0 (OriginLab Corporation, USA),
using “Linear fit” routine.

2.9. Cell Culture. The human intestinal Caco-2 cell line
(ATCC HTB37) was maintained under a humidified
atmosphere containing 5% CO, at 37 °C, in high glucose
Dulbecco’s modified Eagle medium (DMEM) with L-glutamine
and 1% nonessential amino acids, supplemented with 20% heat-
inactivated fetal bovine serum (FBS) and 1% antibiotic/
antimycotic solution (10000 units mL™" penicillin, 10 000 g
mL™! streptomycin, 25 ug mL™ amphotericin).

2.10. Cell Proliferation Assay. MTS compound, in the
presence of phenazine ethosulfate, is bioreduced by cells into a
soluble formazan product with an absorbance maximum at 490
nm, thus assaying active cell metabolism.”” CellTiter 96
Aqueous One Solution, containing MTS, was used to assess
cell viability. Triplicates for each individual assay were
considered.

2.10.1. Test by Indirect Contact. (Phospho-) silk fibroin
films were disinfected by triple washings with antibiotic/
antimycotic solution and preconditioned with culture medium
devoid of FBS for 6 h at 37 °C. The medium was later
harvested and supplemented with 10% serum. This precondi-
tioned medium was then applied to previously seeded (1 X 10°
cells mL™") and adhered Caco-2 cells. The cells were further
incubated for 48 h, and the proliferation was assessed with
MTS. The assay was performed in duplicate.

2.11. Statistical Analysis. All assumptions were met prior
to data analysis. To investigate the kinetic modeling of MTX
release among different pH cast silk fibroin films, the
dissolution constants of Higuchi (Ky) and Ritger—Peppas
(Kgp) mathematical models were considered. These kinetic
values were determined using different strategies (Ky, by fitting
software; Kyp, by fitting and subsequent calculation), therefore,
distinguished statistical methods were applied for drug release
profile comparisons. A factorial ANOVA [three factors: pH of
cast-film (two levels: pH 7.2 and pH 3.5); type of film matrix
(four levels: 0, 15, 30, 60% of serine residue modification), and
type of incubation solution (four levels: PBS pH 8.0, PBS pH
6.25, PPE pH 8.0, and PPE pH 6.25)] was conducted to
evaluate the influence of pH on release rate of MTX-loaded SF-
films, considering the Ritger—Peppas kinetic values. t test for
independent groups was applied to determine the influence of
pH on release rate of MTX-loaded SF-films, considering the
Higuchi kinetic values. Wilcoxon matched pairs test was
considered to compare the kinetic profile of MTX-loaded SF-
films among mathematical models.

ANOVA analysis [two factors: pH of cast-film (two levels:
pH 7.2 and pH 3.5) and type of film matrix (four levels: 0, 15,
30, 60% of serine residue modification)] was conducted to
investigate the influence of the MTX-loaded SF-film
modification degree (of serine residues) on cell proliferation.
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Post hoc comparisons were conducted using Student—
Newman—Keuls (SNK). A P value of 0.05 was used for
significance testing. Analyses were performed in STATISTICA

(v.7)

3. RESULTS

3.1. (Phospho-) Silk Fibroin Solutions: Production and
Net Charge Estimation. Phosphorylation of initial silk fibroin
solution was made using the developed protocol and resulted in
~60% of phosphorylation after 3—4 h. The phosphorylation %
is the percent of all sites, suitable for enzymatic phosphor-
ylation, that were successfully modified.” Phosphorylation of
Ser residues in fibroin was further analyzed by malachite green
for their % of released maximal phosphate (Table 1).

Table 1. Evaluation of the Phosphorylated Content
(Phospho-Ser) by Malachite Green Reaction for Different
Silk Fibroin Blends”

blends elaborated for the characterization/analysis of

type
phosphorylation MTX release cytotoxicity
degree, % DSC (batch 1) (batch 2) (batch 3)
60 61.0 + 1.11 59.95 + 4.96 56.94 + 2.52
30 29.9 + 1.54 30.67 + 2.4 32.61 +2.7
15 15.54 + 2.76 16.32 + 2.64 15.05 + 1.92

“The percentages denote phosphorylation extent of all possible sites.
The current quantification was based on one assay (for each separate
batch type) with double sampling. The calculated data represent the
percentage from the maximally estimated value of inorganic phosphate
(Pi), released during phospho-Ser hydrolysis.

In an attempt to enhance MTX—fibroin electrostatic
interactions and thus promote more prolonged drug release,
we initially theoretically estimated the charges of both
compounds as a function of pH, and specifically to fibroin,
also as a function of its phosphorylation. The rationale for
doing this was the inability of existing tools to accurately
calculate net charge (z) of the phosphorylated protein. It can be
seen that phosphorylation level inversely correlates with overall
positive charge of a protein (Figure S1 in the Supporting
Information). The pH range between 3.5 and 4.0 was of
particular interest, since the extensively modified protein (60%
phosphorylated) and MTX possess opposite charges in that
interval. With pH increment, both proteinaceous solution and
the drug acquire negative charges, rendering electrostatic
interactions less favorable. This trend of silk charge change is
in agreement with the results obtained by in silico tools,
available online (for example, Protein Calculator v3.4, http://
protcalc.sourceforge.net), applied on full protein sequence
(accession number AF226688). To test the polymer—drug
interactions, two discrete casting pH values were chosen: 3.5
and 7.2. Phosphorylated fibroin was produced, its pH value
adjusted, and net charge calculated, while MTX charge was
elucidated for two distinct pH values.

During the experimental estimation of net charges of both
compounds, they demonstrated a positive z values within acidic
pH range (Figures 1 and S2 in the Supporting Information).
This magnitude of charge is clearly seen for fibroin solution
and, to a lesser extent, for MTX.

3.2. Optimization of Production of MTX-Loaded
Films. Considering the desired effect of weaker electrostatic
repulsion between fibroin and MTX, at acidic pH, we cast

dx.doi.org/10.1021/mp5004338 | Mol. Pharmaceutics 2015, 12, 75-86
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Figure 1. Experimental estimation of silk fibroin and methotrexate (MTX) charges as a function of pH. (A) Full-scale representation. (B) Zoomed-
in representation. The increase of negative charge resulting from phosphorylation is observed. For better clarity, additional curves, corresponding to
material types 15% and 30% (appearing between 0% and 60% types), are provided as Supporting Information.
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Figure 2. Thermal analysis of silk fibroin films, without (“MTX—") methotrexate embedded. (A) Fibroin films cast at pH 7.2. In panel ( A), the
marked Tg applies to the material of 0% modification only. (B) Fibroin films cast at pH 3.5. Crystallization peaks are denoted by asterisks. Where

possible, the onset temperature glass transition (T,) is indicated.

proteinaceous solutions at two discrete pH values and added
the drug. The first casting was performed at nearly neutral pH
of 725 and the second at pH 3.5. During fibroin solution
titration with HCI, a protein loss of ~3% from its soluble
amount was detected. This happened due to the hydrophobic
self-aggregation of silk, where the local pH drop (in the
immediate environment of HCI) was the most signiﬁcant.28 To
avoid the possible gelation of acidified silk solution during the
drying process, considerable air flow is needed. In the current
work, thicker films obtained by solvent casting in tissue culture
test plates (3 mL of solution in a 3.29 mL well, of 7.45 cm*
bottom square) rendered methanol treatment (insolubility
induction of dried materials) dispensable. “Thicker films” in
this context have increased thickness, related to the previously
employed approach,” where S mL of solution was cast in a 10
mL Petri dish of 32.17 cm® bottom square. The currently
obtained films were of 0.08—0.12 mm or 0.12—0.16 + 0.03 mm
thickness, originating from casting pH values of 3.5 and 7.2,
respectively.
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3.3. Thermal Analysis of Silk Fibroin Derived Films.
The thermal analysis of silk fibroin derived films pursued two
goals: to demonstrate structural differences of dried materials
imposed by pH and phosphorylation, and to monitor existing
interaction between fibroin and MTX. As seen in Figures 2 and
3, in comparison to neutral pH-cast films, acidic pH derived
materials exhibit increased amount of f-sheet structures,
resulting in the smoothening of thermogram curves.” Silk
fibroin glass transition temperature ( Tg) characterizes a
structural shift, preceding the formation of f-sheet arrange-
ments. For the material cast at neutral pH with the following
phosphorylation degree of 0%, 15%, and 30%, T, onset was
~135—145 °C; a similar result was observed solely for the
unmodified material (0%), cast at acidic pH (Figures 2A and S3
in the Supporting Information). Thermodynamically, acidic pH
favors silk self—alggregation,28 therefore T, is not observed for
pH 3.5-cast films. A crystallization peak is only clearly evident
for 0% phosphorylation for the pH 7.2-cast film (%217 °C;
Figure 2A). Fainter crystallization events could still be observed

dx.doi.org/10.1021/mp5004338 | Mol. Pharmaceutics 2015, 12, 75-86
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Figure 3. Thermal analysis of silk fibroin films, with (“MTX+”) methotrexate embedded. (A) Fibroin films cast at pH 7.2. (B) Fibroin films cast at
pH 3.5. Several, though not all, methotrexate-related peaks are denoted with arrows. Each arrow type (}, pseudomelting, or [>, recrystallization
coupled to partial decomposition) corresponds to a distinct thermal event, resulting from the incorporated MTX.

for 0 and 15% phosphorylated matrices, cast at acidic and
neutral pH, respectively (Figures 2B and S3C in the Supporting
Information). For all the materials at different phosphorylation
degrees the decomposition occurs at 275 °C. Some films
presented a bimodal decomposition endotherm,® as can be
seen on Figures 2B and 3B. This fact may be due to the
nonuniformity of the material that causes stepwise energy
absorption.

The DSC curve of MTX powder presents several distinct
peaks (Figure 4). The first peak, at 175 °C, can be attributed

0.0+
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-0.5 1
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— IIMTX'

300

30 T
() 50

T J L)
150 200 250
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Figure 4. Representation of the DSC curve of methotrexate (MTX)
powder. The three main thermal events are indicated: first (p»),
pseudomelting; second (without special designation), solid—solid
transition; third ([>), recrystallization coupled to partial decom-
position. Due to the specificity of the used procedure (section 2.7), the
MTX dehydration endotherm is not shown in the current
presentation.

to pseudomelting or dissolution,®" while the second peak, at
~224 °C, is mainly due to solid—solid transition®> or partial
melting of the drug crystalline form.>" Finally, MTX has a short
recrystallization peak at x238—247 °C, which precedes its
thermal decomposition at 252 °C. In general, the MTX
thermogram displays gradual, ongoing crystallization, through-
out the entire observation. Thus, the positive enthalpy, or
absorbed heat, is constantly decreasing,
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The addition of the drug to the cast silk solution suggests
variable interactions between MTX and fibroin upon film
drying. When comparing the DSC curves for silk-based films
with and without the MTX, independently of the phosphor-
ylation degree of the material, a similar trend of emerging
MTX-derived thermal peaks was observed. The three main
events, developed as only MTX powder had been heated, are
depicted in Figure 4. Consequently, addition of the drug to the
nonphosphorylated material induced the formation of a
pseudomelting peak at 150 °C with a partial decomposition
at 240—250 °C (designated by filled (p») and empty ([>)
arrows, respectively, in Figures 3 and S4 in the Supporting
Information). MTX incorporation also shifted the main
decomposition endotherm. This shift was significant for the
0% phosphorylation material cast at pH 7.2 (280 — ~249 °C),
but less pronounced for the other materials (Figures S3D and
S4D in the Supporting Information). Moreover, a clear
decrease in the energy absorption (E,,) was evident for all,
except 60% modified and near neutral pH-cast matrixes
(compare Figures 2, 3, and S3 and S4 in the Supporting
Information). Acidic pH cast materials of 0% and 15%
phosphorylation demonstrated slight and more pronounced
increase of E,; upon MTX addition, respectively. 30% and 60%
material types had mainly and highly decreased E,,
respectively, with MTX incorporated. However, it cannot be
concluded that the stronger drug—polymer interaction is
evident for 7.2 pH derived materials, based solely on the
presented DSC findings.

3.4. In Vitro Release Profiling of Incorporated MTX.
The structure of the material influences the incorporated MTX
release profile. Prepared phospho-fibroin films were incubated
in PBS with or without protease (porcine pancreatic elastase,
termed as PPE solution). It is important to mention that no
methanol treatment was performed prior to incubation. From
our previous work, it is known that the pretreatment of the
material with methanol can lead to a significant loss of
incorporated drug (up to 55% of its initial content’). Thus, it is
important to carefully choose protocols that preserve the drug
prior to its actual release.

Since preliminary tests with MTX indicated rapid drug
dissolution (data not shown), a short-term profiling with
frequent sampling was conducted. The release profiles, depicted

dx.doi.org/10.1021/mp5004338 | Mol. Pharmaceutics 2015, 12, 75-86
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Figure 5. Release profiling of silk fibroin films with incorporated MTX. (A) Fibroin films cast at pH 7.2. (B) Fibroin films cast at pH 3.5. Each curve
is an averaged value of the four discrete profiles, corresponding to 0..60% phosphorylated material. Examples of individual release profiles are

presented in Figure S6 in the Supporting Information.

in Figure S, reveal several important conclusions about the drug
dissipation from the films. For all incubation conditions, the
release of 80% of MTX was achieved within 2 h and there is no
significant difference between PBS- or PPE-mediated release for
neutral pH-cast films. A different profile was seen for the acidic
pH derived materials, where protease facilitated drug
dissolution (Figure 4B). In the latter case, it is possible to
denote the burst phase during the first hour of incubation,
resulting in nearly complete drug release (>90%). It is worth
mentioning that each individual curve in Figure 4 results from
the average of four independent profiling experiments,
corresponding to 0%, 15%, 30%, and 60% of phosphorylation
content. Such representation was chosen because of the
existence of considerable similarity between discrete release
profiles for each matrix type (Figure S6 in the Supporting
Information). Thus, for simplicity of the display, only averaged
profiling curves for two major matrix types (neutral versus
acidic pH cast) were presented, which nevertheless does not
mean that the later reported kinetic values resulted from the
calculation, involving cross-averaging of materials with varying
phosphorylation.

Two theoretical approaches were implemented in order to
better understand the release profiling of MTX from the
phosphorylated materials, namely, Ritger—Peppas semiempir-
ical and Higuchi models.** > For Ritger—Peppas, the constant
Kgp and diffusion (or release exponent) n values were
estimated, similarly to the Ky diffusion value for Higuchi
method.

The release mechanism and characteristics of both macro-
molecular network system and the drug can be deduced from n
and Kgp values by applying the Ritger—Peppas (RP) model to
release profiles. Software-given n values suggest super Case-II
transport®® for all the films incubated at pH 8.0 (Figure 6A).
Near-neutral pH-cast matrixes, incubated in PBS at pH 6.2, also
demonstrate super Case-II transport values. Nevertheless these
are very similar in between and close to the values
characterizing a Case-Il mechanism (for which 1 = 1;>” average
of the presented four amounts is 1.184 + 0.036; Figure 6B).
Other materials, cast at pH 7.2 and pH 3.5 and immersed in
PPE and PBS, respectively, have an anomalous release
mechanism (for which the inequality 0.5 < n < 1.0 holds).
Finally, pH 3.5-cast and pH 6.2 PPE immersed films again
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demonstrate a super Case-II release process. Importantly, n
values were not available for all the conditions examined. For all
the materials in both casting groups, pH 8.0 PPE-assisted MTX
release resulted in an initial burst phase that was so great that it
rendered it impossible to apply RP modeling. Accordingly,
MTX release from 15% and 30% modified matrixes, acidic pH
cast, in pH 6.2 PPE-assisted incubation generated drug burst,
noncompliable with RP conditions.>” Anomalous transport
points to a complex release process, resulting from coupling of
solvent diffusion into the material and its subsequent
relaxation. Case-II and super Case-Il mechanisms relate to
the state of rapid solvent mobility due to increased polymer
relaxation,®”** provoking massive release of entrapped
compound. The only difference between the latter two
situations is that, in a super Case-II system type, saturation of
the release curve is reached faster.

MTX diftusion values from the RP model, Kyp, are presented
in Figure 6C,D. In the RP model, pH 8.0, PBS-immersed
matrixes of both casting groups seem to release the drug more
easily upon lesser phosphorylation, although for neutral pH-
cast this tendency is more prominent (Figure 6C). For
incubation at pH 6.2, both PBS- and PPE-immersed matrixes
of the 7.2-casting group showed the aforementioned trend
(Figure 6D). Surprisingly, the PPE-mediated diffusion sub-
group manifested decreased Kyp values. The 3.5-casting group
in PBS incubation did not display a considerable bias, and PPE-
incubated values were high (Figure 6D). It can be seen that Kgp
values for incubation pH 6.2 substantially repeat the tendency
of n values (compare panels B and D of Figure 6).

The Higuchi model derived diffusion parameter, Ky, is
depicted in Figure 7. Being a more simplified model, the
Higuchi model made it possible to fit the empirical data for all
of the conditions. Thus, Ky was obtained directly from the
fitting algorithm. From the incubation buffers of two discrete
pH values it can be concluded that, akin to Kgp, Ky values
undergo gradual increase as modification levels drop (Figure 7).
But the Ky increment within each group is more prominent
than that of Kyp. The clear exception is constituted by a pH 3.5-
cast group of materials, incubated with PBS, showing somewhat
decreased diffusion of MTX within a group, as a function of
phosphorylation. It can be also stated that pH 8.0 facilitates
drug release.
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Figure 6. Kinetic values, obtained from substitution of MTX release profiling data to the Ritger—Peppas (RP) model. The incubation of films in two
distinct media (PBS or PPE) was done. Two discrete pH values of 8.0 or 6.2 were used. (A, B) Release exponent n values for different
phosphorylated silk fibroin films, computed by model. Direct output of a fitting software. (C, D) For different matrixes, RP model-derived diffusion
significative, Kyp, was calculated substituting n values to the empirical equation, described previously.>* Data are reported with standard error and

based on one release experiment with double sampling.

Based on statistical analysis, performed for Kyp and Ky, it is
evident that for Kzp no significant differences were observed
among values of two major types of MTX-loaded films (7.2
versus 3.5-cast). The phosphorylation level does not influence
Kgp, yet the incubation solutions do. Specifically, pH 7.2-cast
matrixes of 60% modification, immersed in pH 6.2 PPE,
correspond to the lowest Kgp, and this value is different from all
other conditions, conversely to pH 3.5-cast, nonmodified
matrixes, incubated in pH 6.2 PPE, where 0% and 60%
correspond to the highest Kyp. Ky value analysis reveals that no
differences were observed among values of two major types of
MTX-loaded films, considering percentage of degree mod-
ification (0..60% phosphorylation), however, various incuba-
tion solutions were significantly different. Independently of pH
value (3.5 or 7.2) of the cast films, no differences among
modification degree were encountered, while all incubation
solutions observed were different among themselves.
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3.5. Indirect Contact Effect on Cell Proliferation.
According to the literature*®*' and our previous experience,7
elevated hydrophilicity disfavors cell attachment. Therefore, it
was decided to evaluate the bioactivity of the films on
mammalian cells by indirect contact. MTX-loaded films were
incubated with cell culture medium as described, allowing the
MTX to release into the medium. Cells were then cultivated in
contact with the preconditioned medium, and their prolifer-
ation was monitored. Based on Figure 8 it is evident that
neutral-cast materials possess higher MTX retention than their
acidic pH cast counterparts. As expected, MTX acted as a
nonproliferative agent. The proliferation rate was lower when
the MTX release was higher. Additionally, films with higher
extent of phosphorylation were able to retain the drug for
longer time. This conclusion is clear from both casting pH
values, however, in the neutral-derived films the trend falls
within statistical error, while in the acidic pH derived it does
not.
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4. DISCUSSION

The current research examined the aspects of MTX—silk fibroin
interactions in a changing environment of solution pH and silk
phosphorylation levels. Owing to the hydrophobic nature of
silk fibroin, it was our working hypothesis to examine whether a
prolonged, time-controlled release of an incorporated, relatively
nonhydrophilic drug,* MTX, could be accomplished. The
common practices are encapsulations of compounds into
environments of similar hydrophobicity or hydrophilicity. A
considerable amount of examples can be found in the literature
(ref 43 and references within), supporting this notion. From
this perspective, the compartment of the fibroin matrix was
assumed to be suitable for MTX incorporation. The basis for
sustained drug release was theoretically regarded to its low
solubility in aqueous solutions. Hence, by tailoring silk
hydrophobicity through its chemical alterations a trial was
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made to create the conditions of favored MTX retention within
a fibroin matrix.

The mechanism of fibroin self-association (whether during
natural spinning process or in the cast regenerated fibroin
solutions) was postulated to be a thermodynamically favored f3-
sheet hydrophobic aggregation.**** It was also established that
silk fibroin phosphorylation impedes fine f-sheet stacking in
the secondary protein conformation.”*® In this work, different
blends (or batches) of matrixes were used for all the studies
because the physical amount of the elaborated material makes it
very hard to use in all three tests. Moreover, we would like to
demonstrate the repeatability and consistency of the production
method. As can be seen, very similar materials are obtained (in
terms of phosphorylation, Table 1) for different batches. To
examine the nature of occurring interactions, two distinct pH
values were tested (3.5 versus 7.2). At low pH, actual net
charges of both protein and drug appear to be considerably
higher than their theoretical values. The measured z values
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were higher than could be expected, based on the theoretical
estimation (Figures S1 and S2 in the Supporting Information).
This may be attributed to increased Ry estimation by DLS,
resulting in decreased D, (see section 2.6), since the possible
augmentation of y is 1ncon51stent with the tendency, previously
reported for this variable.*” In partlcular, fibroin is known to
rapidly form aggregates below pH 459 ® These less soluble
structures decrease diffusion rate” and result in higher
estimation of a hydrodynamic radius, which leads to the
calculation of elevated net charge. The hydrophobic clustering
per se could however cause enhanced charge accumulation,*® in
this case, positive. Given the fact that at nearly neutral pH
electrostatic repulsion between both components should also
exist, it is necessary to clarify why MTX affinity to fibrous film
was significantly lower at acidic pH. It is possible that, while
forming a dense, f-sheet clustering, MTX is mainly excluded
from the resulting structure, since no favorable electrostatic
interaction is present, or it is not strong enough.

DSC analysis further enforces the observation of varying
polymer—drug interactions as a function of pH. For silk fibroin,
its self-assembly”® during the drying process is comparable to
that induced by methanol treatment of dried fibrous materials,
obtained by solvent casting.”***”** The incorporation of
phosphate groups causes T, to shlft slightly to lower values,
inducing a plasticization effect (Figures 2 and S3 in the
Supporting Information). Extensive phosphorylation (60%)
eliminates T, completely (Figure 2); moreover, T, cannot be
determined prec1sely (or possess a single value) in semlcrystal
line polymers like silk fibroin and similar ones.”>*> Broad glass
transition curves are ascribed to the composition heterogeneity
of the elaborated materials, composed of polymer blends. For
that reason only the onset of glass transition is marked in the
DSC curves. Addltlonally, the phosphorylation per se reduces f3-
structure formation,* thus decreasing crystallinity and masking
possible T, by broadening distribution of relaxation times in the
polymer.

Maximal MTX dehydration occurred at 91 °C, however this
step was a part of a pretreatment phase of DSC experiment (see
section 2.7) and, therefore, is not seen during the recorded
measurement. The thermal results and the characteristic peaks
indicate that the drug used was of its trihydrate form.*”> MTX-
derived pseudomelting peak and the decomposition peaks shift
to lower temperatures for pH 7.2-cast films. The shift of both
pseudomelting () and recrystallization coupled to decom-
position ([>) endotherms of MTX toward lower temperatures
(175 — 150 °C and 252 — 240—250 °C; Figures 3 and SS in
the Supporting Information) suggests strong drug—polymer
interaction.”® Of special magnitude is the MTX pseudomelting
endotherm observed in nonmodified, neutral-cast fibroin
(Figure SSA in the Supporting Information), traversing other
curves. The cause of such behavior is unknown and cannot be
explained on solely hydrophobicity basis, since the same film
type, corresponding to acidic casting and thus considered more
hydrophobic (Figure SSB in the Supporting Information),
shows no such profound peak. Much less evident is the thermal
event, encountered for 15%-phosphorylated silk. More
extensively modified matrixes of pH 7.2 show no MTX-derived
events. The drug pseudomelting peak, although weakly
pronounced for pH 3.5-cast films (0% and 15%), is also
shifted. This is the only peak type, clearly distinguishable for
the acidic pH cast materials (Figure SS in the Supporting
Information). MTX decomposition-derived peaks are present
for both discrete pH values at 0%-modified fibroin only. The
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described differences in DSC results, involved with various
materials, could be attributed to the different aggregate state of
both constituting protems and MTX in the samples.”'
Additional phenomena,®* such as film thickness, intermolecular
mobility of chains within the polymer, or its previous thermal
history, probably explain the example of out-of-trend DSC
curve for 30% modified fibroin, acidic-cast (Figures S4B and
SSB in the Supporting Information).

In vitro release profiling of MTX made it possible to affirm
that the release process is somewhat more facilitated from the
matrixes elaborated at acidic pH. The release exponent n values
were not always consistent with those expected for a specific
material type, for example, anomalous-type release for pH 7.2-
and 3.5-cast and pH 6.2 PPE- or PBS-incubated, respectively;
Figure 6B. In that situation one would expect to obtain higher
n, corresponding to (super) Case-II mechanism, especially in
PPE-assisted process. Yet, the actual inability to apply RP
modeling on the PPE-mediated profiles for pH 8.0 incubated
matrixes, both neutral- and acidic-cast, underlines a strong burst
release phase that surpasses 60% of total drug amount, initially
found in the fibroin. Thus, at optimum pH, PPE promotes the
drug release from both major groups of materials. Moreover,
for pH 3.5-cast films even at pH incubation of 6.2, in PPE-
mediated process, n values surpass those of pH 7.2-cast films.
Again, not all the n values were calculated, due to RP model
restriction (but only those corresponding to 60% and 0%
modifications, last two columns on the right in Figure 6B),
which signifies a sizable burst effect upon initial MTX release.
The burst is also seen at PBS incubation of pH 8.0 for 3.5-cast
films (Figure 6A). This phenomenon of elevated burst in
acidified fibroin-derived materials needs explanation. Similarly
to the reported findings,>*° increased migration of MTX
during the drying of cast films may result in a nonhomogeneous
distribution of drug in the formed matrix and provoke a burst
release. Another plausible cause for lesser MTX retention inside
the acidified-cast silk matrixes is their increased (in comparison
with neutral pH-cast matrixes) heterogeneity. Heterogeneity
may result from formation of cracks or perforations during the
device fabrication. Indeed, pH 3.5-cast materials were more
brittle than their pH 7.2-cast counterparts. Examples are known
of phenomena when formulations have been made by solvent
evaporation and an increased removal of the solvent causes
elevated porosity.>”*® All of the above considerations make the
statement regarding super Case-Il release (bearing release
exponent n >1) of MTX from the currently fabricated materials
quite expected. Besides, super Case-II-controlled release was
already observed for caffeine-loaded karaya gum hydroph1l1c
matrixes,” alprenolol incorporated cellulose-derived tablets;>’
cross-linked chitosan membranes in aqueous media swelled in a
super Case-II manner.*’

As for diffusion-related constants, both models show
significant difference of the derived values for neutral
solution-cast films, but not for acidic one. The two kinetic
models used can be compared through their Kyp and Kj; values,
as neither Kypp nor Ky has obvious definition (although
describing similar concepts). Kyp alternatively can be seen as an
interaction parameter between a drug and the material
harboring it.*> Within each model, RP did not demonstrate
differences among Kgp values of the films, yet statistical
differences among Ky values of films, obtained by the Higuchi
model, seem to be more discriminative. This may stem from
the nature of calculations involved in both approaches. Ky
parameter is given by fitting software directly, while Kgp is
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derived from n. Moreover, RP approach implies that only the
profile data, obtained from 60% release of the initial content,
may be included in calculations,™>* which does not hold for
the Higuchi model, where the full range of release values can be
used.

Wilcoxon’s matched pairs test showed that, for neutral-cast
materials, Kpp- and Ky-derived values are significantly different.
Based on t-test, the Ritger—Peppas model reports no
differences in Kyp values among films, yet Higuchi shows
statistical differences among Ky; values of films.

Finally, the indirect contact assay results support the
observations that acidified solution-cast materials release the
drug intensively, whereas neutral solution-derived do not.
Importantly, a negative correlation between phosphorylated
content and MTX release is evident for the acidified
formulations. This underlines the importance of phosphor-
ylation in disrupting pJ-sheet structures, as reported previ-
ously,7’46 by creating a more favorable environment for MTX
retention.

In summary, it can be concluded that our initial assumption
for the enhanced MTX retention within a dense, acidified
hydrophobic matrix of silk fibroin was not proved. We were not
able to establish time-controlled release of the drug, although
the term “time-controlled” itself is not precisely defined, and
there exists a distinction between burst release and short-term
controlled release, observed for several systems.’" In our case
the statement that a prolonged time-controlled release was not
established will be more correct. According to the Biopharma-
ceutics Classification System (BCS), MTX falls in more than
one category of compounds’ solubility:** it can be highly or less
soluble, depending on the experimental conditions. Indeed,
MTX solubility mainly depends on the ionization of its a- and
y-carboxylic groups62 (pK, ~ 3.22 and pK, =~ 4.53,
respectively)®® and slightly on the state of a basic pteridine
moiety (pK; ~ 5.62).°° Hence, during casting solution
preparation, the partial aggregation of the added solubilized
MTX to acidified silk fibroin solution occurred, corroborating
previous observations of MTX precipitation as a function of
pH.%* Likely drug migration to the superficial layers of forming
materials during their drying caused nonuniformity of its
distribution. Thus, despite the increase of protein self-
aggregation at acidic pH, it does not enhance the drug
retention inside the film matrix. Actually, a lesser polymer—
drug association was obtained, though not because of decreased
affinity of MTX to the fibroin, but resulting from heterogeneity
of its final distribution in the films. Kinetic parameters, obtained
throughout the current study, points to basic pH and PPE
enzyme as factors, facilitating the drug release. It is no surprise
that increased ionization or matrix degradation promotes MTX
solubilization or the release from the films. However, with
respect to PPE, the option to drive the MTX release under
proteolysis is of questionable value, so far as significant burst
effect occurred. If the designed material would possess a
prolonged time-controlled release per se, PPE contribution to
the process would probably be considered as beneficial. Future
perspectives on enhancing phosphorylated silk-based films may
include physical manipulations on the cast material, using lesser
molecular weight fibroin as a source for downstream
processing, or adding plasticizers like glycerol. The treatments
mentioned above were found to increase dried films’
plasticity,** flexibility and water retention, or alter release
rate of the incorporated compound from a film and the rate of
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film degradation.66 Later, if the drug is to be added, it may
experience different (desirably prolonged) release kinetics.

On the contrary, nearly neutral solution-casting produced
materials with slower drug release. The explanation for
decreased density of those fabricated films and the following
more uniform MTX incorporation, resulting in its slower
dissipation, is quite reasonable. Several works reported a
connection between elevated content of fS-sheet crystals and
the formation of high packing density in silk fibroin.””~"°
Crystallinity is directly related to -sheet hydrophobic stacking,
and in the silk solution it is favored at dehydration,®® shear
stress,”" heating,”® and pH drop,”® among other modes. The
conclusion for decreased density of pH 7.2-cast films stems
from previous observations of decreased fB-sheet amounts in
phosphorylated fibroin by circular dicroism*® and deconvolved
FTIR spectra, reflecting on secondary structure analysis.”
Moreover, being that none of the above treatments for
crystallinity induction was done on neutral pH-cast films,
they are considered to possess a less tight structure. Since the
electrostatic interactions are considered to be mainly repulsive
in both cases (Figures 1 and S1 and S2 in the Supporting
Information), the matrix structure has a determinative effect on
the drug retention.
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