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Abstract—This work addresses a numerical study of static ~A. Eigenproblem
equilibrium states of finite dimensional systems with frictonal . ] . o
contact and its application to the particular problem of fri ction The classical Eigenvalue Problem (EP) consists of finding
between two geological layers with different viscosity. & formu- & scalar\ (eigenvalue) and a non—zero vectoeigenvector
lation as a complementarity eigenproblem requires the buiing  associated to the eigenvalag such that
up of mass M and stiffness K matrices to solve the eigenvalue
equations for the relative deformation of two contacting maerials. Ax = Az, (1)

Keywords: Finite Element Method, frictional contact, stifi- Where A is a square, complex or real, matrix.

ness matrix, Complementary Eigenvalue Problem. In some circumstances, consideriny symmetric, it is

advantageous to use an optimization approach to the Rayleig
quotient, R4 (z), [3]

. INTRODUCTION

2T Ax

The classical Eigenvalue Problem finds important applica- Ra(z) := T

tions in different areas of economics, science and engimger . . . .

[1]. In Physics its applications are beyond mention for sdewi In fact, sincez # 0, the gradient of the Rayleigh quotient is

and important. Particularly, in the typical models emptbye 9Ven by

in condensed matter physics which are based in the oscillato

paradigm, vibrations are everywhere and so are the eigezwal
associated with them [2]. In fact, it is in the dynamic belavi

of a physical system that the eigenvalue problems are best . . .
knowrﬁ). y y g P and the (non—zero) critical points @4 (z) are precisely the

eigenvectors ofd, and hence the critical points corresponding

The study of instabilities and bifurcations in systems with!0 @ given eigenvalues form a space whose dimension is
friction has been motivated by many experimental obsesmati €dual to the dimension of this eigenvalue. The critical fin
related to technological problems or industrial procestes —corresponding to the largest (respectively smallest)rsigleie
[3] and [4] propose a mixed explicit complementarity eigen-are global maxima (respectively minima) &fs ().
p_roblem, equivalent to a mixed comp!ementarity-?nclusion Given two matricesd, B € R"*", the problem of finding
e!genproblem, and also to a set of classical generalizeddin 5 gcajar) € R and a non-vector € R” such that
eigenproblems.

VRy(x) := % (A—Ra(x)]) x,

Ax = \Bz.

This work is presented according to: Section I, which
contains the mathematical definitions for the complemgntaris often referred as the Generalized Eigenvalue ProblenP{GE
eigenproblem; Section Il where the formulation of finite di-
mensional frictional contact problem for different madéri :
nodes is studied and the crucial stiffness matrix for thisB' The Complementary Eigenproblem
situation is established; Section Il includes the procedu The Eigenvalue Complementary Problem (EiCP) is an
to formulate the frictional contact issue as a Complemegntarextension of EP, first defined in [3], [5]. For a given matrix
Eigenvalue Problem. A € R™*" and a positive matrix3 € R**" (i.e. 27 Bz >
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0,Vx # 0), the EiCP consists on finding € R™, and the two distancea and to which is assigned a fraction of the total

vectorsz € R™ andw € R™ such that mass @ensity x a?). Bonding between every two point masses
w=(\B - Az is characterized by stiffnesk (which includes the relevant
w>0. >0 properties to the problem).
zTw =0 2) Actually, the net forceF acting on the individual point
ez =1 masses relate to their respective displacemeriig

where e € R™ is a vector of ones. The last constraint F=ku 4)

guarantees that the null vectar is not a solution to the

problem. In Figure 1, two layers of point masses are shown: round

p-dots for materiald and squares for materidt. Dashed lines
epict the interactions amid them. The particular conpesti
etween neighbouring point masses belonging to either one o
the other material are coloured in black.

The EICP differs from the classical Eigenvalue Pro
lem (EP) on the existence of nonnegative constraints on iig
variables and complementarity constraints between pdirs
variables.

The EIiCP can be formulated as a Variational Inequality
Problem (VI) on the simplex

Q={zeR":ez =1, >0}

and, since the VI on the simplex has a solution, the same is
true for the EiCP [6].

EiCP is called symmetric if the matricesand B are both
symmetries, and3 is positive definite, and in this case EiCP
is equivalent to the problem of finding a stationary point of
the Rayleigh function on the simplex [3].
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Different algorithms have been developed in order to find &ig. 1. A model of materialsd and B in contact.
complementary eigenvalue and the associated eigenvégtor [
[8], [9], [10] or, more recently, to find all the complemengtar

eigenvalues [11]. A 4—mass cell consisting of two point masses of the lower

level A and two other of the upper materi#dl is outlined in
C. The Mixed Compl tary Eigervalue Problem Figure 2 with its nodal forces and displacements.

The EICP is a particular case of the so-called Mixed

Complementary Eigenvalue Problem (MEICP) that consistes Yy T T""‘“

on finding A\ € R*, and the non-zero vectar € R™ and the F F

vectorw € R™ such that 3"' Far  Usy o
w=(AB—A)x - Far K
wy 20,2520 3
:C:JFwJ =0 (3)
ele =1

wheree € R" is a vector of onesy; = (v;,j € J), wy =
(wj,jed),JCA{L,...,n}andJ C{1,...,n}\ J. Observe
that the EICP is forJ = {1,...,n}.

Uy T Ugy
II. SYSTEMS WITH FRICTIONAL CONTACT. THE
STIFFNESSMATRIX Fay F Fiy
2% u2x
In the present work we build up the stiffness matrix K - Fiy LI'

at the frictional contact between two materials with difier

visco-elastic properties [12]. _ _ _
) ) ) _Fig. 2. Applied forces and displacement at each node.
In geological processes (e.g. layering, folding and boudi-

nage), materials with contrasting physical propertiescdien

in contact. The comprehension of the contact dynamics df suc, _ dAinSttelferSE(fnrgalt:r(;); ;)Sotr? d?r? %uéhuezgogéh&ﬁﬁo'”éir;‘tzsmgs
two layers is the first step to solve relevant and more comple& 0 the samé laver. we ?ake the knO\ﬁvn rg perties of that
geological problems. 9 yer, prop

material to define:. In every likelihood, these materials are
The herein problem consists on two materiadsand B, isotropic and homogeneous and so we asskittebe constant
with different mechanical properties (namely, densitgcais- - k4 for material A and kp for material B. When addressing
ity, and stiffness) in direct contact. Each material is diéstl  interactions between point masses of different materais,
by a two-dimensional mesh whose nodes are separated lgust take either the average bfi and kg, or evaluate the



k 45 suitable for the situation, possibly by using empiricakgat BA 2+l A csatcsptcsg

- kap kap
when available. Q=
IQ—“Bcsa—i—cs/g—i—cse %si—i—s%—i—sg
F U
Flz - ke 24 024 02 kB s+ csg+cs
1y Uty kap Ca T BT Oy fap o B g
FZm U2g R =
kB kp G2 2 2
Fay | k| w2y 5) Pl csq tesg sy e sh sk +s)
F31 U3y
F3 us
Yy Y kp 2 2 2 kp
Fyy Ugg S kap Ca + s + &y kap Cc +csp + csy
F, U =
4 v kp ke (2 2 2
mcsa—l—c,ﬂ;—i—cs.y msa—i—sﬁ—i—sV

For the subset of point masses 1, 2, 3 and 4 we define the ) i
anglesa, B, v andé, as shown in Figure 3. The four blocks placed in the upper-left position relate to
the A-material and the connections between the two materials,
since they only contemplatie- 2—type bonds andl-B (1 —4,
X 2—3,1-3,2—4) bonds. Else, the four blocks placed in the
down-right position relate to the sole B and A-B bonds. For
such reason, in the former case otly and k45 parameters

are contemplated while in the lattéz and k45 parameters
appear.

e
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Ill. COMPLEMENTARY EIGENVALUE PROBLEMS

Under constant applied forceB® the dynamics of the
whole mass system is governed by momentum balance equa-

tions
Fig. 3. Deformation at the contact of the two materials. Mii(t) + Ku(t) = FO 4 R(t) (6)
) ) where M is the mass matrix (symmetric and positive definite)
The K matrix that encompass all the nodes in the structurgng g is the stiffness matrix (positive definite) an(t)
results from rightfully adding the four individual stiffs®  §enotes the reaction forces at timét > 0)
matrices -
2 s Under the same applied forcé¥ for a constant displace-
A = < C;i 52 ), ment rate ¢ = 0), equation (6) assumes the form
of each point mass. The elements of these matrices represent Ku® = FO 4+ RO @)
the projection of the force and respective displacementgalo '
the directionsX andY, according to the angles, 3,~v and @ i .
(see Figure 3). (We use the short notatipe= cosi, s; = sin, l";. [13] flttr|13 fshown that for some there are dynamic
¢s; — cosisini.) solutions of the form
_,,0
Thus, the global stiffness matrix writes u(t) = uo +alt)y (8)
R(t) =R’ + B(t)w 9
P ,f—AAa | A, Ag if and only if there exists a numbey > 0, and two vectors
AB
andw (v # 0), are such that
k
1 fapda @ A Ay (AN2M + K)o = w (10)
= kaB - - = == - L
A, Ag | R kk_BAa w; =0 (11)
AB vg =20 (12)
Ag Ayg | ,Q—B;Aa S Note thatv andw define constant directions in the sets of right

admissible displacement and reaction rates at the equitibr
. state (°, R°), the function of time« is twice continuously
Each blockP, @, R and 5 _tradyces the gIobaI_ stiffness differentiable « and¢ are non-negative and non—decreasing in
related to each node with contributions, as appropriatedm

‘ahb q [, T+ AT], the functions is continuous, non-negative and non-
neighbour noade. decreasing in the same interval, and the initial valugs > 0,
A2 1242 kA s, tesptoos, &(r) > 0 are arbitrarily small.
P = i i The problem is subsequently transformed into a non-
_rA A

CSq + CSp + CSy

s A L+ sh+ s monotone mixed complementarity problem (MEICP), in which



the unknown eigenvalue is treated as a non-negative variabj14]
that is complementary with an additional variable involired
normalising constraint that prevents the trivial solutistated

as it is in equation (3).

IV. FUTURE WORK

The method of MEICP is to be applied to extensive layers
of different materials in contact and under intense strain i
order to study the deformation at the contact surface.

Latter on we aim to build up the stiffness matrix of an high
viscosity layer embedded in a low viscosity one, which leads
to deformation.
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