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Abstract—This work addresses a numerical study of static
equilibrium states of finite dimensional systems with frictional
contact and its application to the particular problem of fri ction
between two geological layers with different viscosity. Its formu-
lation as a complementarity eigenproblem requires the building
up of massM and stiffnessK matrices to solve the eigenvalue
equations for the relative deformation of two contacting materials.
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I. I NTRODUCTION

The classical Eigenvalue Problem finds important applica-
tions in different areas of economics, science and engineering
[1]. In Physics its applications are beyond mention for so wide
and important. Particularly, in the typical models employed
in condensed matter physics which are based in the oscillator
paradigm, vibrations are everywhere and so are the eigenvalues
associated with them [2]. In fact, it is in the dynamic behavior
of a physical system that the eigenvalue problems are best
known.

The study of instabilities and bifurcations in systems with
friction has been motivated by many experimental observations
related to technological problems or industrial processes. In
[3] and [4] propose a mixed explicit complementarity eigen-
problem, equivalent to a mixed complementarity-inclusion
eigenproblem, and also to a set of classical generalized linear
eigenproblems.

This work is presented according to: Section I, which
contains the mathematical definitions for the complementary
eigenproblem; Section II where the formulation of finite di-
mensional frictional contact problem for different material
nodes is studied and the crucial stiffness matrix for this
situation is established; Section III includes the procedure
to formulate the frictional contact issue as a Complementary
Eigenvalue Problem.

A. Eigenproblem

The classical Eigenvalue Problem (EP) consists of finding
a scalarλ (eigenvalue) and a non–zero vectorx (eigenvector
associated to the eigenvalueλ) such that

Ax = λx, (1)

whereA is a square, complex or real, matrix.

In some circumstances, consideringA symmetric, it is
advantageous to use an optimization approach to the Rayleigh
quotient,RA(x), [3]

RA(x) :=
xTAx

xTx

In fact, sincex 6= 0, the gradient of the Rayleigh quotient is
given by

∇RA(x) :=
2

xTx
(A−RA(x)I) x,

and the (non–zero) critical points ofRA(x) are precisely the
eigenvectors ofA, and hence the critical points corresponding
to a given eigenvalues form a space whose dimension is
equal to the dimension of this eigenvalue. The critical points
corresponding to the largest (respectively smallest) eigenvalue
are global maxima (respectively minima) ofRA(x).

Given two matricesA,B ∈ R
n×n, the problem of finding

a scalarλ ∈ R and a non-vectorx ∈ R
n such that

Ax = λBx.

is often referred as the Generalized Eigenvalue Problem (GEP).

B. The Complementary Eigenproblem

The Eigenvalue Complementary Problem (EiCP) is an
extension of EP, first defined in [3], [5]. For a given matrix
A ∈ R

n×n and a positive matrixB ∈ R
n×n (i.e. xTBx >
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0, ∀x 6= 0), the EiCP consists on findingλ ∈ R
+, and the two

vectorsx ∈ R
n andw ∈ R

n such that










w = (λB −A)x
w ≥ 0, x ≥ 0
xTw = 0
eTx = 1

(2)

where e ∈ R
n is a vector of ones. The last constraint

guarantees that the null vectorx is not a solution to the
problem.

The EiCP differs from the classical Eigenvalue Prob-
lem (EP) on the existence of nonnegative constraints on its
variables and complementarity constraints between pairs of
variables.

The EiCP can be formulated as a Variational Inequality
Problem (VI) on the simplex

Ω = {x ∈ R
n : eTx = 1, x ≥ 0}

and, since the VI on the simplex has a solution, the same is
true for the EiCP [6].

EiCP is called symmetric if the matricesA andB are both
symmetries, andB is positive definite, and in this case EiCP
is equivalent to the problem of finding a stationary point of
the Rayleigh function on the simplex [3].

Different algorithms have been developed in order to find a
complementary eigenvalue and the associated eigenvector [7],
[8], [9], [10] or, more recently, to find all the complementary
eigenvalues [11].

C. The Mixed Complementary Eigenvalue Problem

The EiCP is a particular case of the so-called Mixed
Complementary Eigenvalue Problem (MEiCP) that consistes
on findingλ ∈ R

+, and the non-zero vectorx ∈ R
n and the

vectorw ∈ R
n such that











w = (λB −A)x
wJ ≥ 0, xJ ≥ 0
xT
JwJ = 0

eTx = 1

(3)

wheree ∈ R
n is a vector of ones,xJ ≡ (xj , j ∈ J), wJ ≡

(wj , j ∈ J), J ⊆ {1, . . . , n} andJ ⊆ {1, . . . , n} \ J. Observe
that the EiCP is forJ = {1, . . . , n}.

II. SYSTEMS WITH FRICTIONAL CONTACT: THE
STIFFNESSMATRIX

In the present work we build up the stiffness matrix K
at the frictional contact between two materials with different
visco-elastic properties [12].

In geological processes (e.g. layering, folding and boudi-
nage), materials with contrasting physical properties areoften
in contact. The comprehension of the contact dynamics of such
two layers is the first step to solve relevant and more complex
geological problems.

The herein problem consists on two materials,A andB,
with different mechanical properties (namely, density, viscos-
ity, and stiffness) in direct contact. Each material is described
by a two-dimensional mesh whose nodes are separated by

distancea and to which is assigned a fraction of the total
mass (density×a3). Bonding between every two point masses
is characterized by stiffnessk (which includes the relevant
properties to the problem).

Actually, the net forceF acting on the individual point
masses relate to their respective displacementsu by

F = k u (4)

In Figure 1, two layers of point masses are shown: round
dots for materialA and squares for materialB. Dashed lines
depict the interactions amid them. The particular connections
between neighbouring point masses belonging to either one or
the other material are coloured in black.

Fig. 1. A model of materialsA andB in contact.

A 4−mass cell consisting of two point masses of the lower
level A and two other of the upper materialB is outlined in
Figure 2 with its nodal forces and displacements.

Fig. 2. Applied forces and displacement at each node.

A stiffness matrix is to be built up for those4 point masses
and interactions. For bonding between adjoining points belong-
ing to the same layer, we take the known properties of that
material to definek. In every likelihood, these materials are
isotropic and homogeneous and so we assumek to be constant
- kA for materialA andkB for materialB. When addressing
interactions between point masses of different materials,one
must take either the average ofkA and kB , or evaluate the



kAB suitable for the situation, possibly by using empirical data,
when available.
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(5)

For the subset of point masses 1, 2, 3 and 4 we define the
anglesα, β, γ andθ, as shown in Figure 3.

Fig. 3. Deformation at the contact of the two materials.

The K matrix that encompass all the nodes in the structure
results from rightfully adding the four individual stiffness
matrices

Ai =

(

c2i csi
csi s2i

)

,

of each point mass. The elements of these matrices represent
the projection of the force and respective displacement along
the directionsX andY, according to the anglesα, β, γ andθ
(see Figure 3). (We use the short notationci = cos i, si = sin i,
csi = cos i sin i.)

Thus, the global stiffness matrix writes

K = kAB





















P kA

kAB
Aα | Aγ Aβ

kA

kAB
Aα Q | Aβ Aθ

−− −− −− −− −−
Aγ Aβ | R kB

kAB
Aα

Aβ Aθ | kB

kAB
Aα S





















Each blockP , Q, R and S traduces the global stiffness
related to each node with contributions, as appropriate, byeach
neighbour node.

P =





kA

kAB
c2α + c2β + c2γ

kA

kAB
csα + csβ + csγ

kA

kAB
csα + csβ + csγ

kA

kAB
s2α + s2β + s2γ





Q =





kA

kAB
c2α + c2β + c2θ

kA

kAB
csα + csβ + csθ

kA

kAB
csα + csβ + csθ

kA

kAB
s2α + s2β + s2θ





R =





kB

kAB
c2α + c2β + c2γ

kB

kAB
csα + csβ + csγ

kB

kAB
csα + csβ + csγ

kB

kAB
s2α + s2β + s2γ





S =





kB

kAB
c2α + c2β + c2γ

kB

kAB
csα + csβ + csγ

kB

kAB
csα + csβ + csγ

kB

kAB
s2α + s2β + s2γ





The four blocks placed in the upper-left position relate to
theA-material and the connections between the two materials,
since they only contemplate1−2−type bonds andA-B (1−4,
2− 3, 1− 3, 2− 4) bonds. Else, the four blocks placed in the
down-right position relate to the sole B and A-B bonds. For
such reason, in the former case onlykA andkAB parameters
are contemplated while in the latterkB and kAB parameters
appear.

III. C OMPLEMENTARY EIGENVALUE PROBLEMS

Under constant applied forcesF 0 the dynamics of the
whole mass system is governed by momentum balance equa-
tions

Mü(t) +Ku(t) = F 0 +R(t) (6)

whereM is the mass matrix (symmetric and positive definite)
and K is the stiffness matrix (positive definite) andR(t)
denotes the reaction forces at timet (t ≥ 0),

Under the same applied forcesF 0 for a constant displace-
ment rate (̈u = 0), equation (6) assumes the form

Ku0 = F 0 +R0. (7)

In [13] it is shown that for somet there are dynamic
solutions of the form

u(t) = u0 + α(t)v (8)
R(t) = R0 + β(t)w (9)

if and only if there exists a numberλ ≥ 0, and two vectorsv
andw (v 6= 0), are such that

(λ2M +K)v = w (10)
wj = 0 (11)
vd = 0 (12)

Note thatv andw define constant directions in the sets of right
admissible displacement and reaction rates at the equilibrium
state (u0, R0), the function of timeα is twice continuously
differentiable,α andα̇ are non-negative and non–decreasing in
[τ, τ+△τ [, the functionβ is continuous, non-negative and non-
decreasing in the same interval, and the initial valuesα(τ) ≥ 0,
α̇(τ) ≥ 0 are arbitrarily small.

The problem is subsequently transformed into a non-
monotone mixed complementarity problem (MEiCP), in which



the unknown eigenvalue is treated as a non-negative variable
that is complementary with an additional variable involvedin a
normalising constraint that prevents the trivial solution, stated
as it is in equation (3).

IV. FUTURE WORK

The method of MEiCP is to be applied to extensive layers
of different materials in contact and under intense strain in
order to study the deformation at the contact surface.

Latter on we aim to build up the stiffness matrix of an high
viscosity layer embedded in a low viscosity one, which leads
to deformation.
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