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We apply an idea originated in the theory of programming languages—monadic meta-language with
a distinction between values and computations—in the design of a calculus of cut-elimination for
classical logic. The cut-elimination calculus we obtain comprehends the call-by-name and call-by-
value fragments of Curien-Herbelin’sλ µµ̃-calculus without losing confluence, and is based on a
distinction of “modes” in the proof expressions and “mode” annotations in types. Modes resem-
ble colors and polarities, but are quite different: we give meaning to them in terms of a monadic
meta-language where the distinction between values and computations is fully explored. This meta-
language is a refinement of the classical monadic language previously introduced by the authors, and
is also developed in the paper.

1 Introduction

It is well-known that confluence fails for cut elimination inclassical logic in the worst way: proof identity
is trivialized [8]. Computationally, this trivializationis caused by the “superimposition” of call-by-name
(cbn) and call-by-value (cbv) in the proof reduction of classical sequent calculus [1, 10].

Several solutions have been proposed to this problem (e.g.,[7, 3, 1, 16, 13, 2]). Some solutions
consist in constraining the set of derivations (e.g., the sequent calculiLC [7] or LKT, LKQ [1]), others
constrain the reduction rules (e.g., the cbn and cbv fragments of λ µµ̃ [1]). A third kind relies on the
enrichment/refinement of the syntax of formulas, by means ofcolors or polarities [3, 16, 13, 2]. We
propose a new solution of the latter kind: a confluent variantof the systemλ µµ̃ [1] that comprehends
the cbn and cbv fragments ofλ µµ̃ , and that is based on a distinction of two “modes” in the proof
expressions and “mode” annotations in function spaces. Oursystem is calledλ µµ̃ with modesand
denotedλ µµ̃vn.

In a self-contained explanation ofλ µµ̃vn, one starts by splitting the set of variables in proof expres-
sions into two disjoint sets, by singling out a set of “value variables”. This allows a refinement of the
notions of value and co-value which immediately solves the cbn/cbv dilemma. However,λ µµ̃vn has
many design decisions that may look peculiar at first sight. For instance, atomic formulas do not get a
mode annotation, while composite formulas do; and while variables in proof expressions get a mode,
co-variables do not.

A full semantics for (the design of)λ µµ̃vn is given in terms of a monadic meta-language of the
kind introduced by Moggi [12]. This meta-language, called thecalculus of values and computationsand
denotedVCµM, is also developed in the present paper. It is a refinement of the monadic language previ-
ously introduced by the authors [5], and as such combines classical logic with a monad. The refinement
is guided by the idea of extending in a coherent way to proof expressions the distinction between value

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55632939?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4204/EPTCS.164.5
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


64 Confluence for classical logic through the distinction between values and computation

Figure 1: Overview
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types and computation types (so that, for instance, a typable expression is a value iff it is typable with a
value type). In such a system we can interpret the distinction between the two modes ofλ µµ̃vn in terms
of the distinction value/computation.

Confluence for typed expressions ofλ µµ̃vn is obtained (through Newman’s lemma) from strong
normalization. The latter, in turn, is obtained by proving that two translations produce strict simulation
by strongly normalizing targets: one is the map fromVCµM to the simply-typedλ -calculus induced by
instantiating the monad ofVCµM to the continuations monad; the other is the monadic semantics from
λ µµ̃vn to VCµM. As a side remark, we observe that the composition of the two translations produces a
CPS translation ofλ µµ̃vn which is therefore uniform for cbn and cbv, since the cbn and cbv fragments
of λ µµ̃ are included inλ µµ̃vn.

Structure of the paper. Section 2 recalls the monadic meta-languageλ µM [5] and develops the cal-
culus of values and computationsVCµM. Section 3 recallsλ µµ̃ and its main critical pair (the cbn/cbv
dilemma), and develops the proposed variant ofλ µµ̃ with modes. Section 4 concludes, and discusses
related and future work. See Fig. 1 for an overview.

2 Monadic meta-languages

We start this section by recalling theλ µM-calculus. Next we motivate and formally develop, as a sub-
calculus ofλ µM, a calculus of values and computations, denotedVCµM. We continue with a comparison
between the two monadic languages, and spell out the intuitionistic fragment ofVCµM. Finally, we study
the map fromVCµM into the simply-typedλ -calculus obtained by instantiating the monad ofVCµM to
the continuations monad.

2.1 Theλ µM-calculus

We recapitulate theλ µM-calculus that has been proposed by the present authors [5].
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Figure 2: Typing rules and reduction rules ofλ µM

Γ,x : A⊢ x : A | ∆ Ax
Γ,x : A⊢ t : B | ∆

Γ ⊢ λx.t : A⊃ B | ∆ Intro
Γ ⊢ t : A⊃ B | ∆ Γ ⊢ u : A | ∆

Γ ⊢ tu : B | ∆ Elim

Γ ⊢ t : MA | a : MA,∆
at : (Γ ⊢ a : MA,∆) Pass

c : (Γ ⊢ a : MA,∆)
Γ ⊢ µa.c : MA | ∆ Act

Γ ⊢ s : A | ∆
Γ ⊢ rets : MA | ∆

Γ ⊢ r : MA | ∆ c : (Γ,x : A⊢ ∆)
bind(r,x.c) : (Γ ⊢ ∆)

(β ) (λx.t)s → [s/x]t (ηµ) µa.at → t (a /∈ t)
(σ) bind(rets,x.c) → [s/x]c (ηbind) bind(t,x.a(retx)) → at
(π) L[µa.c] → [L/a]c

ExpressionsT are values, terms, and commands that are defined by the following grammar1:

V ::= x | λx.t r,s, t,u ::=V | tu | µa.c | ret t c ::= at | bind(t,x.c).

Variable occurrences ofx in t of λx.t andc of bind(t,x.c), anda in c of µa.c are bound. We introduce
base contextsL as commands with a “hole” for a term of the following two forms: a[ ] andbind([ ],x.c).
For a termt, L[t] is defined as “hole-filling”. Term substitution[s/x]T is defined in the obvious way
as for λ µµ̃ . Furthermore, structural substitutions[L/a]T are defined by recursively replacing every
subexpressionau of T, by L[u] (this may need renaming of bound variables). It correspondsto the
substitution of co-variables inλ µµ̃ .

Types are given byA,B ::= X | A ⊃ B | MA. Thus, besides the type variables and implication of
λ µµ̃ , we have a unary operationM on types. Types of the formMA are calledmonadic types. Sequents
are written as:Γ ⊢ t : A | ∆ andc : (Γ ⊢ ∆). In both cases,∆ is a consistent set of declarationsa : MA,
hence with monadic types. Typing rules and reduction rules are given in Fig. 2. Notice that the ruleπ
uses the derived syntactic class of base contexts and is therefore a scheme that stands for the following
two rules

(πbind) bind(µa.c,x.c′) → [bind([ ],x.c′)/a]c
(πcovar) b(µa.c) → [b/a]c.

It is easy to see thatλ µM satisfies subject reduction, for strong normalization see our previous paper [5].

2.2 Towards a calculus of values and computations

We identify a sub-language ofλ µM, calledVCµM, the calculus of values and computations. The cal-
culus can be motivated as a sharp implementation of the principles at the basis of Moggi’s semantics of
programming languages [12].

According to Moggi, each programming language typeA gives rise to the typesA (of “values of type
A”) and MA (of “computations of typeA”). In addition, a program of typeA → A

′ corresponds to an
expression of typeA⊃ MA′. In this rationale: (i) attention is paid only to a part of thefunction space,
and (ii) there is no role to typesM(MA), written M2A in the sequel.VCµM implements (i), extracting

1In the notation of our previous paper [5]ret t is written ηt, and in the notation of Moggi [12],bind(t,x.c) andret t are
written letx= t inc and[t], respectively.
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Figure 3: Expressions and types ofVCµM

(value vars) v,w, f (value types) B ::= X | A⊃C
(comp. vars) n, p,q (comp. types) C ::= MB
(variables) x,y,z ::= v | p (types) A ::= B |C

(values) V,W ::= v | λx.P
(computations) P,Q ::= p | retV |Vu | µa.c

(terms) t,u ::= V | P
(commands) c ::= aP | let(P,v.c) | {P/p}c

the full consequences at the level of expressions; (ii) is already realized in any monadic language, since
each expression of typeM2A may be coerced to one of typeMA by monad multiplication, butVCµM

goes farther by removingM2A from the syntax of types.
VCµM is thus obtained fromλ µM after three steps of simplification as follows.
Firstly, we restrict implications to the formA ⊃ MA′. This is already done, for instance, in the

presentation of the monadic meta-language by Hatcliff and Danvy [9]; however, we do the restriction in
a formal way, by separating a class of typesC ::= MA. If B denotes a non-monadic type, then types are
given byA ::= B | C, with B ::= X | A⊃C. Following op. cit., we call typesB (resp.C) “value types”
(resp. “computation types”).

Secondly, we pay attention to expressions. We now have two meanings for the word “value”: either
as a term with value type, or the “traditional” one of being a variable orλ -abstraction. So far, a term has
value type only if it is a “traditional value”. On the other hand, the separation into value and computation
types splits the term-formers intoλ -abstraction (with value type) andret t, tu andµa.c (with computation
type). The full split of terms into two categories,values Vandcomputations P, is obtained by separating
two sets of term variables,value variables vandcomputation variables p, with the intention of having
a well-modedtyping system, that is, one that assigns to the variables types with the right “mode” (value
or computation). This achieves coherence for the two meanings of “value”: a term has a value type iff it
is a traditional value (that is, avaluevariable orλ -abstraction). It follows that a term has a computation
type iff it is a computation. At this point, we are sure not to lose any typable terms, if we restricttu and
λx.t to Vu andλx.P, respectively.

Thirdly, we restrict computation types (hence the type of co-variables) toMB, thus forbiddingM2A,
and forcingretV instead ofret t.

The formal presentation ofVCµM follows.

2.3 The calculusVCµM

Expressions.The variables ofλ µM are divided into two disjoint name spaces, and denoted byx if any
of them is meant. Co-variables are ranged over bya, b, as forλ µµ̃ andλ µM. Expressions are given by
the grammar in Fig. 3.

Types.The motivation for these syntactic distinctions comes fromthe types that should be assigned.
The type system ofλ µM is also restricted and divided into two classes, see again Fig. 3. In particular, as
explained before, there is no type of the formM(MA) in VCµM.

The idea of the distinction into values and computations is that values receive value types and com-
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Figure 4: Typing rules ofVCµM

Γ,v : B⊢ v : B | ∆ Axv Γ, p : C ⊢ p : C | ∆ Axc

Γ,x : A⊢ P : C | ∆
Γ ⊢ λx.P : A⊃C | ∆ Intro

Γ ⊢V : A⊃C | ∆ Γ ⊢ u : A | ∆
Γ ⊢Vu : C | ∆ Elim

Γ ⊢ P : C | a : C,∆
aP : (Γ ⊢ a : C,∆) Pass

c : (Γ ⊢ a : C,∆)
Γ ⊢ µa.c : C | ∆ Act

Γ ⊢V : B | ∆
Γ ⊢ retV : MB | ∆

Γ ⊢ P : MB | ∆ c : (Γ,v : B⊢ ∆)
let(P,v.c) : (Γ ⊢ ∆)

Γ ⊢ P : C | ∆ c : (Γ, p : C ⊢ ∆)
{P/p}c : (Γ ⊢ ∆)

putations receive computation types in a context where value variables are assigned value types and
computation variables are assigned computation types. Such contexts will be calledwell-moded. It is
remarkable that the distinction can be done on the level of raw syntax (and that it will be preserved under
the reduction rules to be presented below). The new syntax element{P/p}c representsbind(retP, p.c)
in λ µM. This means that no argumentt to bind(t, p.c) other than of the formretP is considered, but this
is not seen as composed of abind and aret operation but atomic inVCµM. The expressionretP does
not even belong toVCµM. See Section 2.4 for more on the connection withλ µM.

Typing rules are inherited fromλ µM, with their full presentation in Fig. 4. Here, every contextΓ
in the judgements iswell-modedin the sense given above. As forλ µM, the contexts∆ consist only of
bindings of the forma : MA, which, forVCµM even requiresa : MB, hencea : C. Thus, more precisely,
co-variables might be called “computation co-variables”.

Clearly, the above-mentioned intuition can be made precisein that Γ ⊢ P : A | ∆ implies thatA is a
computation type and thatΓ ⊢V : A | ∆ implies thatA is a value type. This can be read off immediately
from Fig. 4.

Well-modedsubstitutions[u/x]t and [u/x]c, i. e., with x and u either value variable and value or
computation variable and computation, are inherited fromλ µM. Well-moded substitution[u/x]t respects
modes in that[u/x]V is a value and[u/x]P is a computation. Likewise,[u/x]c is a command. As inλ µM,
we use derived syntactic classes of contexts as follows:

(base contexts) L ::= a[ ] | let([ ],v.c) (cbn contexts) N ::= L | {[ ]/p}c.

The resultN[P] of filling the hole ofN by a computationP is inherited fromλ µM, and also the notion of
structural substitution[N/a]t, [N/a]c and[C/a]N′ and, finally, the definition of well-moded substitution
[u/x]N in cbn contexts that yields cbn contexts.

Reduction rules of VCµM are given in Fig. 5, where co-variableb is assumed to be fresh in both
β rules. The first thing to check is that the left-hand sides of the rules are well-formed expressions of
VCµM and that the respective right-hand sides belong to the same syntactic categories. The second step
consists in verifying subject reduction: this is immediatefor the rules other thanβ since they are just
restrictions of reduction rules ofλ µM, and it is fairly easy to see that the right-hand sides of theβ rules
receive the same type asP.

The rulesβ andσ are analogous to the respective rules ofλ µµ̃ (see further down in Section 3.1),
where any execution of term substitution in the reduction rules is delegated to an application of rule
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Figure 5: Reduction rules ofVCµM

(β ) (λv.P)V → µb.let(retV,v.bP)
(λq.P)Q → µb.{Q/q}(bP)

(σ) let(retV,v.c) → [V/v]c
{P/p}c → [P/p]c

(π) L[µa.c] → [L/a]c
(ηµ) µa.aP → P (a /∈ P)
(ηlet) let(P,v.a(retv)) → aP

σ and where therefore theβ -reduction rule ofλ µµ̃ has a right-hand side that is never a normal term.
They are “lazy” since they delay term substitution, but, by putting togetherβ , σ andηµ , we obtain the
following derivedeagerβ rules:

(βe) (λv.P)V → [V/v]P (λq.P)Q→ [Q/q]P.

For the first rule, the derivation is

(λv.P)V →β µb.let(retV,v.bP)→σ µb.[V/v](bP) = µb.b([V/v]P)→ηµ [V/v]P.

For the second rule, it is analogous. According to the form ofL, theπ-rule splits again intoπcovar and

(πlet) let(µa.c,v.c′) → [let([ ],v.c′)/a]c.

The calculusVCµM is confluent. There are five critical pairs, each of them corresponding to a critical
pair of λ µM. A confluence proof can be given using an abstract rewriting theorem [4] forβ , σ andπ
and strong commutation with theη-rules.

2.4 Bind, let, and substitution

In this section we formally relateVCµM with λ µM, explaining the decompositions and refinements that
the former brings relatively to the latter.

As said,VCµM is obtained fromλ µM by a three-fold restriction. In the first step, function spaces are
restricted to the formA⊃ MA. This already brings a novelty: theβ rule ofλ µM can be decomposed into
a new, finer-grainedβ -rule

(λx.t)u→ µa.bind(retu,x.at) (1)

plusσ , ηµ . Notice that inλ µM (1) would break subject reduction, becauset would not be forced to have
a monadic type.2

Let us callrestrictedλ µM this variant ofλ µM, with the restriction on function spaces and the variant
(1) of theβ -rule. Then,VCµM is clearly a subsystem of restrictedλ µM. Formally there is a forgetful
map| · | from the former to the latter that: (i) at the level of types, forgets the distinction between value
types and computation types; (ii) at the level of expressions, forgets the distinction between values and
computations, and blurs the distinction betweenlet and substitution:

|let(P,v.c)| = bind(|P|,v.|c|) |{P/p}c| = bind(ret |P|, p.|c|).

2One can marvel how in (1) the constructors related to the type⊃ in the l.h.s. of the rule are converted into an expression in
the r.h.s. using all of the constructors related to classical logic and the monad.
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Figure 6: Reduction rules for the intuitionistic subsystemof VCµM

(β ) (λv.P)V → let(retV,v.P)
(λq.P)Q → {Q/q}P

(σ) let(retV,v.Q) → [V/v]Q
{P/q}Q → [P/q]Q

(πlet) let(let(P,v.Q),w.Q′) → let(P,v.(Q;w.Q′))
let({P/p}Q,w.Q′) → {P/p}(Q;w.Q′)

(ηlet) let(P,v.retv) → P

where
(let(P,v.Q));w.Q′ = let(P,v.(Q;w.Q′))
({P/p}Q);w.Q′ = {P/p}(Q;w.Q′)

Q;w.Q′ = let(Q,w.Q′), otherwise

What is the difference betweenlet and substitution? This is perhaps clearer in the intuitionistic
subsystem ofVCµM, which we now spell out.

We follow the same steps as in our previous paper [5], where the intuitionistic subsystem ofλ µM

(essentially Moggi’s monadic meta-language [12]) was obtained. First we adopt a single co-variable∗ ,
say, which is never free in values or computations, and whichhas a single free occurrence in commands.
The constructionsµ ∗ .c and∗P are like coercions between the syntactic classes of computations and
commands, coercions which in the next step we decide not to write, causing the mutual inclusion of the
two classes, and the collapse ofπcovar and of one of the cases ofπlet. The final step is to merge the two
syntactic classes into a single class of computations.

The resulting intuitionistic subsystem ofVCµM has the following syntax:

V,W ::= v | λx.P P,Q ::= p | retV |Vu | let(P,v.Q) | {P/p}Q.

Again, t,u ::= V | P andx,y ::= v | p. The reduction rules are found in Fig. 6.
Back to the difference betweenlet and substitution: theσ rule for let only substitutes values, while

theσ rule for substitution substitutes any computation;let enjoysπ-rules, which are assoc-like rules for
sequencing the computation, and anη-rule, while substitution does not. These distinct behaviors are
amalgamated in thebind of λ µM.

2.5 Continuations-monad instantiation

The monad operationM can be instantiated to be double negation yielding the well-known continuations
monad. We define an instantiation that is capable of embedding VCµM into λ [β v], the latter denoting
simply-typedλ -calculus with the only reduction ruleβ v: (λx.t)V → [V/x]t for valuesV, i. e.,V is a
variable orλ -abstraction.

For our purposes, the main role of the continuations-monad instantiation is to provide a strict sim-
ulation, through which strong normalization is inherited from λ [β v]. We also avoidη-reduction in the
target, so the instantiation makes use of quite someη-expansions

↑t := λx.tx,
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Figure 7: Continuations-monad instantiation

v• = v (retV)• = (retV)⋆

(λx.P)• = λx.P• P 6= retV: P• = λk.P⋆(↑k)

p⋆ = p (aP)• = P⋆(↑a)
(retV)⋆ = DNeg(V•) (let(P,v.c))• = P⋆(λv.c•)
(µa.c)⋆ = λa.c• ({P/p}c)• = (λ p.c•)P•

(Vu)⋆ = λk.DNeg(u•)
(

λw.V•w(↑k)
)

Figure 8: Admissible typing rules for continuations-monadinstantiation

Γ ⊢ P : A | ∆
Γ•,∆•− ⊢ P⋆ : A•

Γ ⊢ t : A | ∆
Γ•,∆•− ⊢ t• : A•

c : (Γ ⊢ ∆)
Γ•,∆•− ⊢ c• : ⊥

with x /∈ t. Clearly, this can only be done with terms that will be typed by some implication later.VCµM

is rather handy as source of such mapping, because of its distinction between value variables that cannot
beη-expanded and computation variables that can.3. The details are as follows.

We define a typeA• of simply-typedλ -calculus for every typeA of VCµM (¬A is abbreviation for
A⊃ ⊥ for some fixed type variable⊥ that will never be instantiated and hence qualifies as a type con-
stant):

X• = X (A⊃C)• = A• ⊃C• (MB)• = ¬¬B•.

ExpressionsT of VCµM are translated into termsT• of λ -calculus, where an auxiliary definition of terms
P⋆ for computationsP of VCµM is used. The idea is thatP⋆ usesη-expansions more sparingly thanP•.
The definition is in Fig. 7, where we use an abbreviationDNeg(t) = λk.kt with a fresh variablek (the
type ofDNeg(t) is the double negation of the type of its argument), and we assume that the co-variables
a of VCµM are variables of the targetλ -calculus (as we did in previous work on the continuations-
monad instantiation ofλ µM [5, Section 5.1]). Obviously,t• andP⋆ are always values ofλ -calculus,
i. e., variables orλ -abstractions.P• is even always aλ -abstraction. (In the whole development, we will
never use thatP⋆ is a value.) We define the type operation(.)•− by (MB)•− := ¬B•, which extends to
co-contexts∆ by elementwise application. We can easily check that the rules in Fig. 8 are admissible. In
general, ifP gets typeA, thenA is of the formMB, henceA• = ¬¬B•. If we then already know thatP⋆

gets typeA•, alsoP• gets that same type.

Theorem 1(Strict simulation). If T → T ′ in VCµM, then T• →+
β v T ′• in λ [β v].

Corollary 2. VCµM is strongly normalizable and confluent on typable expressions.

Proof. Strong normalization is inherited fromλ [β v] through strict simulation. Confluence follows from
strong normalizability and local confluence.

3 Classical logic

In this section we start by recalling theλ µµ̃-calculus, its main critical pair, and its cbn and cbv fragments.
Next we motivate and develop a variant ofλ µµ̃ with “modes”, denotedλ µµ̃vn. Finally, a monadic

3One can define continuations-monad instantiations onλ µM that avoidη-reduction on the target, but not uniformly on cbn
and cbv [5]. See Section 4 for further discussion.
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Figure 9: Typing rules and reduction rules ofλ µµ̃

Γ,x : A⊢ x : A | ∆
Γ,x : A⊢ t : B | ∆

Γ ⊢ λx.t : A⊃ B | ∆
c : (Γ ⊢ a : A,∆)
Γ ⊢ µa.c : A | ∆

Γ | a : A⊢ a : A,∆
Γ ⊢ u : A | ∆ Γ | e : B⊢ ∆

Γ | u :: e : A⊃ B⊢ ∆
c : (Γ,x : A⊢ ∆)
Γ | µ̃x.c : A⊢ ∆

Γ ⊢ t : A | ∆ Γ | e : A⊢ ∆
〈t|e〉 : (Γ ⊢ ∆)

(β ) 〈λx.t|u :: e〉 → 〈u|µ̃x.〈t|e〉〉 (ηµ̃) µ̃x.〈x|e〉 → e, if x /∈ e
(π) 〈µa.c|e〉 → [e/a]c (ηµ) µa.〈t|a〉 → t, if a /∈ t
(σ) 〈t|µ̃x.c〉 → [t/x]c

translation ofλ µµ̃vn into VCµM gives to the source system a semantics parameterized by a monad, and
a proof of confluence, through strong normalization, for thetyped expressions.

3.1 Theλ µµ̃ -calculus

We recapitulateλ µµ̃ . Expressions are defined by the following grammar.

(values) V ::= x | λx.t (co-values) E ::= a | u :: e (commands) c ::= 〈t|e〉

(terms) t,u ::=V | µa.c (co-terms) e ::= E | µ̃x.c

Expressions are ranged over byT, T ′. Variables (resp. co-variables) are ranged over byv, w, x, y, z
(resp.a, b). We assume a countably infinite supply of them and denote anyof them by using decorations
of the base symbols. Variable occurrences ofx in λx.t and µ̃x.c, anda in µa.c are bound, and an
expression is identified with another one if the only difference between them is names of bound variables.

Types are given byA,B ::= X | A⊃ B with type variablesX. There is one kind of sequent per proper
syntactic classΓ ⊢ t : A | ∆ for terms,Γ | e : A⊢ ∆ for co-terms, andc : (Γ ⊢ ∆) for commands, whereΓ
ranges over consistent sets of variable declarationsx : A and∆ ranges over consistent sets of co-variable
declarationsa : A. Typing rules and reduction rules are given in Fig. 9, where we reuse the nameβ
of λ -calculus (rule names are considered relative to some term system), and the substitutions[e/a] and
[t/x] in expressions respecting the syntactic categories are defined as usual. These are the reductions
considered by Polonovski [14]; however, theβ -rule for the subtraction connective is not included.

Following Curien and Herbelin [1], we consider cbn and cbv fragmentsλ µµ̃n andλ µµ̃v, respec-
tively, where the critical pair rooted in〈µa.c|µ̃x.c′〉 between the rulesσ andπ is avoided. Inλ µµ̃n, we
restrict theπ rule toπn, and dually inλ µµ̃v, we restrict theσ rule toσ v as follows.

(πn) 〈µa.c|E〉 → [E/a]c (σ v) 〈V|µ̃x.c〉 → [V/x]c

In both fragments, the only critical pairs are trivial ones involving ηµ̃ andηµ , henceλ µµ̃n andλ µµ̃v

are confluent since weakly orthogonal higher-order rewriting systems are confluent as proved by van
Oostrom and van Raamsdonk [15].
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Figure 10: Expressions ofλ µµ̃vn

(value vars) v,w, f (comp. vars) n, p,q
(variables) x,y,z ::= v | p (commands) c ::= 〈t|e〉

(values) V,W ::= v | λx.t (co-values) E ::= a | µ̃v.c | u ::x e
(terms) t,u ::=V | n | µa.c (co-terms) e ::= E | µ̃n.c

3.2 Towards a variant ofλ µµ̃ with “modes”

Suppose we single out inλ µµ̃ a class of variables asvalue variables, ranged over byv. Let n (resp.x)
range over the non-value variables (resp. both kinds of variables). Variablesn are calledcomputa-
tion variables, but the terminology value/computation, like many decisions we will make, will get a
full justification only through the monadic semantics intoVCµM given below. We call the distinction
value/computation amodedistinction.

What syntactic consequences come from introducing a mode distinction in variables? Quite some.
Since the bound variable in aλ -abstraction is like a mode annotation, alsou :: eshould come in two

annotated versions, one for each mode. The same is true of thetypeA⊃ B. Since the variablen is not
a value variable, it should not count as a value. On the other hand, both versions ofu :: e are co-values,
but what about̃µx.c? In a kind of dual movement, sincen left the class of values,̃µv.c enters the class
of co-values (so the only co-term that is not a co-value isµ̃n.c).

Revisiting the critical pair〈µa.c|µ̃x.c′〉, it is quite natural that the mode ofx resolves the dilemma!
In particular, the casex= v gives aπ-redex, and it follows that we only needπ-redexes where the right
component of the command is a co-value. On the other hand, thecasex = n gives aσ -redex. In fact
all commands of the form〈t|µ̃n.c′〉 areσ -redexes, but they do not cover yet another form ofσ -redex:
〈V|µ̃v.c′〉. Do not forget the latter does not cover〈n|µ̃v.c′〉—this command is not a redex.

3.3 λ µµ̃ with modes

We now give the formal development ofλ µµ̃ with modes, denotedλ µµ̃vn.
The expressionsof λ µµ̃vn are inductively defined in Fig. 10. The names for value variables, compu-

tation variables and both kinds of variables are those ofVCµM. Variablex gets a second role for denoting
modes: x ∈ {v,n}. This allows to writeu ::x e and use variablex in rules governingu ::v e andu ::n e
uniformly. Note that this is rather a presentational device: there are only two modes, and they go by the
namesv andn. Then,x in its second role is used to denote any of these two modes. In its first role,x
stands for one of the countably many value variables, typically denoted byv, or one of the countably
many computation variables, typically denoted byn. In using the namex for both a variable and a mode,
rules can be written more succinctly because rule schemes comprising two rules get the appearance of
one single rule.

The separation between value and computation variables allows a mode distinction in the proof ex-
pressions ofλ µµ̃vn: values have value mode, terms have computation mode. This will be fully justified
by the monadic semantics intoVCµM below, as values (resp. terms) will be mapped to values (resp. com-
putations) of the latter calculus. Beware that neither the mode annotation inu ::x e nor the mode of
the bound variable in aλ -abstraction determines the mode of the expression. In particular, contrary to
the case ofVCµM, there is no need for a well-modedness constraint in the definition of substitution.
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Figure 11: Typing rules ofλ µµ̃vn for the implications

Γ,x : A⊢ t : B | ∆
Γ ⊢ λx.t : A⊃x B | ∆

R- ⊃x
Γ ⊢ u : A | ∆ Γ | e : B⊢ ∆

Γ | u ::x e : A⊃x B⊢ ∆
L- ⊃x

Figure 12: Reduction rules ofλ µµ̃vn

(βx) 〈λx.t|u ::x e〉 → 〈u|µ̃x.〈t|e〉〉
(σx) 〈t|µ̃x.c〉 → [t/x]c with: if x= v thent =V
(π) 〈µa.c|E〉 → [E/a]c

(ηµ̃,x) µ̃x.〈x|e〉 → e, if x /∈ eand: if x= v thene= E
(ηµ) µa.〈t|a〉 → t, if a /∈ t

For instance, there is nothing wrong with the operation[λn.t/v]T . A λ -abstraction has value mode,
independently of the mode of the bound variable.

Typesare formed from type variablesX by two implications:A⊃v B andA⊃n B. Generically, we
may write both implications asA⊃x B.

Although implications carry a mode annotation, we refrain from classifying them (let alone atomic
types) with a mode. As it will become clear from the monadic semantics to be introduced below, we
cannot determine from a type ofλ µµ̃vn alone whether its semantics is a value or computation type; in
fact, every typeA of λ µµ̃vn will determine a value typeA† and a computation typeA. In particular,
A⊃x B determines both a value type and a computation type, for bothmode annotationsx—even though,
of course, the annotationx guides what those types are. Hence, contrary to what happensin VCµM, we
cannot expect inλ µµ̃vn that a syntactic category is attached to a particular type mode, because inλ µµ̃vn

there is no such thing as type modes. This is why the sequents in λ µµ̃vn have the same forms as in
λ µµ̃ and carrynowell-modedness constraint. So, declarations likev : A⊃n B or n : A⊃v B are perfectly
normal.

The only typing rules ofλ µµ̃vn that differ fromλ µµ̃ are given in Fig. 11. Each of the two rules in
that figure stands for two rules that are uniformly written with x∈ {v,n}.

The reduction rulesof λ µµ̃vn given in Fig. 12 are copies of those ofλ µµ̃ , with amoding constraint
in the β rule and provisos in the rulesσv andηµ̃,v. The ruleπ is restricted to co-values in the spirit of
rule πn of λ µµ̃n. Note thatσn reduction〈µa.c′|µ̃n.c〉 → [µa.c′/n]c, andπ reduction〈µa.c|µ̃v.c′〉 →
[µ̃v.c′/a]c are both allowed inλ µµ̃vn. In the ruleηµ̃,x with x= v, the co-terme is restricted to a co-value.
If we drop the condition, the co-valuẽµv.〈v|µ̃n.c〉 is reduced tõµn.c which is not a co-value.

The non-confluent critical pair ofλ µµ̃ is avoided here for both modesx.

[µ̃x.c′/a]c 〈µa.c|µ̃x.c′〉
σx only for x= n

//
π only for x= v
oo [µa.c/x]c′

Thus, the reduction rules are weak enough to avoid the “dilemma” of λ µµ̃ . On the other hand, the
reduction rules may seem too weak since command〈n|µ̃v.c〉 is not a redex and not excluded by typing.

There is a forgetful map| · | : λ µµ̃vn → λ µµ̃ . It forgets the distinctions between: value variables and
computation variables; the reduction rulesβv andβn, and similarly for the reduction rulesσ andηµ̃ ; the
type constructors⊃v and⊃n; the typing rulesR-⊃v andR-⊃n, andL-⊃v andL-⊃n.
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Figure 13: Monadic translation ofλ µµ̃vn

V = retV† v† = v
n = n (λx.t)† = λx.t

µa.c = µa.c
a = a[ ] 〈t|e〉 = e[t]

µ̃v.c = let([ ],v.c) µ̃n.c = {[ ]/n}c
u ::v e = let([ ], f .let(u,w.e[ f w])) u ::n e = let([ ], f .{u/q}e[ f q])

3.4 Call-by-name and call-by-value

Both the cbn and the cbv fragmentsλ µµ̃n andλ µµ̃v of λ µµ̃ can be embedded intoλ µµ̃vn: variables are
mapped into computation variables and value variables, andA⊃ B is mapped toA⊃n B, and toA⊃v B,
respectively. Likewise,u :: e is mapped tou ::n e andu ::v e, respectively. Through these embeddings
λ µµ̃vn becomes a conservative extension: on the images of the translation, no new reductions arise
w. r. t. the source calculi. Besides the two fragments,λ µµ̃vn allows additionally interaction between the
cbv and cbn evaluation orders, without losing (as we will see) the confluence property enjoyed byλ µµ̃v

andλ µµ̃n, but not by fullλ µµ̃ .
We have seen thatσ v andπn are adopted as two possible solutions to the critical pair〈µa.c|µ̃x.c〉.

But now we can see how drastic these solutions are. We see that, in λ µµ̃vn, the command〈t|µ̃n.c〉
is always okay as aσ -redex (it never overlapsπ), but, in λ µµ̃ , that command is not considered as a
σ v-redex whent is not a value. Likewise, inλ µµ̃vn, the command〈µa.c|µ̃v.c′〉 is okay as aπ-redex (it
never overlapsσ ), but, inλ µµ̃ , that command does not count as aπn-redex.

3.5 Monadic translation

We now introduce a monadic translation of the system with modes intoVCµM. Since the system with
modes embeds bothλ µµ̃v andλ µµ̃n, the translation is uniform for cbn and cbv.

Using the abbreviationA= MA†, we recursively define the value typeA† of VCµM for each typeA
of λ µµ̃vn (and simultaneously obtain thatA is a computation type):

X† = X (A⊃v B)† = A† ⊃ B (A⊃n B)† = A⊃ B.

For one bindingx : A in a term contextΓ of λ µµ̃vn, we define one binding(x : A)
†

in a term context
of VCµM as follows (one of the two type operators(.)† or (.) is chosen, this is not a composition of

operations):(v : A)
†

:= v : A† and(n : A)
†

:= n : A. For an entire term contextΓ, the operation is then
done elementwise.∆ is naturally defined by replacing every typeA in ∆ by A.

The monadic translation ofλ µµ̃vn associates computationst with termst, valuesV† with valuesV,
cbn contextse with co-termse (which are even base contexts for co-valuese) and commandsc with
commandsc, and is given in Fig. 13. Its crucial admissible typing rulesare found in Fig. 14.

Observe how, through the monadic translation, the differences betweeñµv.c andµ̃n.c, and between
u ::v eandu ::n e, boil down to the difference betweenlet and substitution inVCµM.

Theorem 3(Strict simulation). 1. If T → T ′ in λ µµ̃vn, thenT →+ T ′ in VCµM, where T , T′ are either
two terms or two commands.

2. If e→ e′ in λ µµ̃vn, thene[P]→+ e′[P] in VCµM for any computation P inVCµM.
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Figure 14: Admissible typing rules for monadic translationof λ µµ̃vn

Γ ⊢ t : A | ∆

Γ†
⊢ t : A | ∆

Γ ⊢V : A | ∆

Γ†
⊢V† : A† | ∆

c : (Γ ⊢ ∆)

c : (Γ†
⊢ ∆)

Γ | e : A⊢ ∆

e[p] : (Γ†
, p : A⊢ ∆)

As a consequence,λ µµ̃vn is the promised confluent calculus of cut-elimination.

Corollary 4. λ µµ̃vn is strongly normalizable and confluent on typable expressions.

Proof. Strong normalization is inherited fromVCµM (Corollary 2) through strict simulation. Confluence
follows from strong normalizability and local confluence. The cornerstone of local confluence inλ µµ̃vn

is the absence of overlap betweenσ andπ, as explained before.

Through composition with the continuations-monad instantiation (·)• : VCµM → λ [β v], the monadic
semantics(·) : λ µµ̃vn → VCµM is instantiated to a CPS semantics〈[(·)]〉 : λ µµ̃vn → λ [β v].

Theorem 5 (CPS translation). If T → T ′ in λ µµ̃vn, then〈[T]〉 →+
β v 〈[T ′]〉 in simply-typedλ -calculus,

where T , T′ are either two terms or two commands.

Proof. By putting together Thm. 1 and Thm. 3.

So we are using the methodology of Hatcliff and Danvy [9] to synthesize a new CPS translation,
as done in [5]. The obtained CPS translation is easily produced, but its explicit typing behaviour and
recursive structure is rather complex (no space for details). Given that the monadic translation is uniform
for cbn and cbv, so is the CPS translation. Given that the monadic translation and the continuations-
monad instantiation produce strict simulations, the CPS translation embedsλ µµ̃vn into the simply-typed
λ -calculus.

4 Final remarks

Recovering confluence in classical logic.Let us return to Fig. 1 and ignore the monad instantiation. In
this paper twoconfluentsystems are proposed where the cbn and cbv fragments ofλ µµ̃ embed:λ µµ̃
with modes andVCµM. As usual (recall linear and polarized logics [3, 16]), confluence is regained
through refinement/decoration of the logical connectives of classical logic. In the case ofλ µµ̃ with
modes, the “amalgamation” of cbn and cbv is obtained throughmode distinctions and annotations; in the
case ofVCµM, the distinction between value and computation expressions and types is done on top of an
already refined system (λ µM), where classical logic is enriched with a monad. The forgetful map from
λ µµ̃ with modes to fullλ µµ̃ forgets about modes with loss of confluence [1], whereas the forgetful map
from VCµM to λ µM blurs the distinction value/computation without loss of confluence [5].

The many ways out of theσ/π-dilemma illustrate the general theme of the missing information in
classical cut-elimination. In the systemLKtq of [3], the extra information that drives the cut-elimination
procedure is the “color” of the cut formula. Inλ µµ̃ the syntax of formulas is not enriched, so the two
ways out of the dilemma make use of other means of expression (whether the termt in 〈t|µ̃x.c〉 (resp.
co-terme in 〈µa.c|e〉) is a value (resp. a co-value)). Inλ µµ̃vn the extra information is simply provided
by the mode of a variable.
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Figure 15: Cbx pictures from [5]

λ µµ̃ λ [βη ]

cbx λ µµ̃

OO

(.)x //

[[.]]x
++❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱

〈[.]〉x

44❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤
λ µM

(.)⋄x

##❍
❍❍

❍❍
❍❍

❍❍

(.)•

;;✇✇✇✇✇✇✇✇✇

λ [β v]

cbx cbn or cbv
λ µM monadicλ µ-calculus
(.)x cbx monadic translation
(.)• instantiation to continuations monad
〈[.]〉x cbx CPS translation
(.)⋄x optimized cbx inst. to conts. monad
[[.]]x optimized cbx CPS translation

Although we tried to give a self-contained presentation ofλ µµ̃vn, with a later justification through
the monadic semantics, the semantics appeared before the syntax: first we designedVCµM and then
we “pulled back” to the syntax ofλ µµ̃ an abstraction of the design ofVCµM. The resulting system
is striking for many reasons. By amazingly simple means,λ µµ̃vn resolves the cbn/cbv dilemma while
still comprehending the cbn and cbv fragments. Polarized systems achieve the same kind of goals, but
by rather more elaborate means: co-existence of positive and negative fragments, mediated by “shift”
operations (see [16], or the long version of [13], availablefrom the author’s web page). On the other
hand, the absence of type modes makesλ µµ̃vn rather less structured than colored or polarized systems.
As a conclusion,λ µµ̃vn proves that one does not need a very elaborate proof-theoretical analysis in order
to “fix” classical logic.

We now comment on two subjects to which we made lateral contributions.
Calculi of values and computations. In the literature there are otherintuitionistic calculi of val-

ues and computations, for instance Filinski’s multi-monadic meta-language (M3L) [6] and Levy’s call-
by-push-value (CBPV) [11]. These are very rich languages, whose typing systems include products
and sums; in addition, M3L lets monads be indexed by different “effects” and allows “sub-effecting”,
whereas CBPV decomposes the monad into two type operationsU andF. Notwithstanding this, the
main difference of these languages from the intuitionisticVCµM is that function spaces are computation
types, and thereforeλ -abstractions are computations. This classification has a denotational justification:
in M3L and CBPV a computation type is a type that denotes aT -algebra (forT some semantic monad);
it follows that A ⊃ C is a computation type, for ifC denotes one such algebra, so doesA⊃ C. On the
other hand, our classification of types into value types and computation types follows the suggestion by
Hatcliff and Danvy [9], and results in a system where “values” (=terms that receive a value type) are
simultaneously values (=fully evaluated expressions) in the traditional sense of operational semantics.

Generic account of CPS translations.The idea of factoring CPS translations into a monadic trans-
lation and a “generic” instantiation to the continuations monad is due to Hatcliff and Danvy [9]. The
extension of this idea to CPS translation of classical source systems is found in the authors’ previous
work [5], where the systemλ µM was introduced. The results fromop. cit. are illustrated in Fig. 15,
which in fact contains two pictures, one for each of the cbn and cbv fragments ofλ µµ̃ . Each fragment
required its own monadic translation and optimized instantiation in order to achieve strict simulation by
β v in theλ -calculus.

As a by-product of the present paper, we obtain an improvement in the generic account of CPS trans-
lations from classical source systems. Relatively to the results in our paper [5] one sees the following
improvements: (i) A single monadic translation treats uniformly cbn and cbv; its source grew and its tar-
get shrunk, relatively to the monadic translations for the cbn and cbv fragments [5]. (ii) The instantiation
with continuations monad works for both cbn and cbv without dedicated optimizations.
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