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ABSTRACT 

The most widely used equation in thermal diffusi9n 

is discussed in what concerns its range of validity. 

It is shown that when the separation curves are non­

-symmetrical with respect to the initial composition 

the error involved in the Hoffman and Emery equation 

when using a value of t=0.3 tr for the lower limit 

of the time, may be significantly larger than those 

predicted by their original authors. 

Experimental cases described in the literature are 

discussed on the light of previous analysis. 

INTRODUCTION 

Thermal diffusion techniques have been increasingly 

used not only to separate difficult mixtures but 

also as a means of testing kinetic theories of the 

liquid state(l). In many instances, though, discre­

pancies have been observed between the experimental 

results and the established phenomenological thee­

ries of the columns, leading sometimes to the intr£ 

duction of "correction factors" into the phenomeno­

logical equations involved. Of these, one of the 

most widely used is the so-called Hoffman and Eme­

ry equation which relates the degree of separation 

between the two ends of the column to the physical 

variables affecting the process, including the time. 

Hoffman and Emery(Z) claim that the usual simpli­

fied form of their equation may be used with an 

error less than 1% for separation tim~s greater 

than 0.3 tr' where tr is a relaxation time that 

measures the rate of approach of equilibrium, or, 

roughly, the time required for the degree of separ~ 

tion to attain 70% of its steady-state value. This 
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lower limit of the time - 0.3 tr - has, however, 

been questioned by Pinheiro(3)who showed that 

the criteria to estimate this lower limit should 

also take into account the value of the parameter 

:\ - the "separation potential" of the system. 

Otherwise, the error introduced in the simplified 

form of the Hoffman and Emery equation for t=0.3. 

tr could 'be much larger than 1%. Pinheiro dis­

cussed only symmetrical separations of equimolar 

mixtures. Yet, the vast majority of separations 

are non-symmetrical and non-equimolar, i.e., the 

value of is different from c - c 
o B 

and c I 0.5 (the subscripts mean, respectively: 
0 

- T top, B = bottom O= feed compositions)which 

would apparently reinforce Pinheiro's comments. 

The present paper is, then, an attempt to shed 

further light into the subject by considering 

firstlydifferent kinds of theoretical cases and 

discussing, finally, experimental situations re­

ported in the literature. 

THE HOFFMAN AND EMERY EQUATION 

Derivation 

In a batch thermogravitational column, the con­

centration profile along the column length as a 

function of the time is given by the following 

equation(4 ) 
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Equation (l) was linearized by Hajundar(S)who firs 

tly introdured the dimensionless variables 

z • H z 
-K-

0 • H2
t 

;-K 

so that equation (l) becomes 

ac ac a2 c Ta" • - (l - 2c) -;;--z + --
o a z2 

and afterwards used the transformation 

(z e) • ! + ! all c , 2 p 3Z 

where 

tp • tp (Z, 0) 
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to obtain the following equation linearized in tp : 

1L. ii_ 
a 0 ~ (12) 

Hajundar integrated equation (10) uaing the Laplace 

Transform to get: 
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where >. 11 the adl .. nalonal lenath of the colUllll 

(for Z • t.) and 

- c 
0 
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Now, to determine the degree of separation A , 

i.e., the difference between the concentration 

at the top (cT) and bottom (c8) of the column, 

one evaluates a p /az from equation (13) substi­

tutes this value into equation (10) and obtains 

c
8 

for z-e and cT for Z•>.. 

In doing so, the degree of separation is obtai­

ned in terms of a sum of two terms, one of which 

involves a infinite series, as :-

where 
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i1 the relaxation time. 



Hoffman and Emery claim that for times greater 

than 0.3 t all the terms of the infinite series 
r 

in equation (15) can be neglected with an error 

less than 1%. This rapid convergence enables the 

simplification of equation (15) to 

-tit 
e r) (17) 

where 6
00 

is the steady-state degree of separation: 

COA A c A 
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) 
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and k
3 

is a coefficient given by 
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Equation (17) is the so-called Hoffman and Emery 

equation. 

Validity 

In obtaining equation (17), Hoffman and Emery in­

troduced the limitation of t > 0.3 tr so that,and 

with an error less than 1% as claimed, a simplifEd 

form for the degree of separation could be ~ttained 

Hoffman and Emery have based their criterium on 

the analysis of the two most important factors 

concerning the convergence of the infinite series 

in equation (15) :- n and t/tr. The other param!:_ 

ters involved, b
0 

and A were neglected in the 

analysis. 

In what concerns b , it may be easily seen that, 
0 

in fact, its value is of no importance for the 

series convergence. Yet, for \ the same is not 

true since it affects remarkably the relative ma­

gnitude of the terms of the series. 

To define new criteria for the lower limit of vali 

dity of the Hoffman and Emery equation it is nece~ 

sary to analyse further the infinite series invol­

ved in equation (15). In doing so it may be noti-
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ced that 

- Regardless of the value of c
0

, the even terms 

are positive and the odd terms are negative. 

Thus, the series may be thought as composed of 

two sub-series, one being positive (n even) 

and the other negative (n odd). 

- Both sub-series are rapidly convergent with n 

- The absolute values of the negative sub-series 

are much larger than those involved in the po­

sitive sub-series and therefore the convergen­

ce of the series may be studied with relation 

solely to the odd terms 

In neglecting all the terms beyond the first, an 

error is implicitly introduced, which may be 

defined as 

£ (%) 
'f f ( ) n=2 n 

------- x 100 (20) 
'f 
nr-1 f (n) 

where f (n) goes for the argument of the infini­

te series. 

Rejlresenting the ith_term of the series as fi(n) 

and noting that for n-even and n >3 the terms 

become negligible as compared to the first term. 

equation (20) becomes 

t: (%) 
f
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f
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But, since f
1 

(n) » f
3 

(n) one may si:'.1ply write 

f
3 

(n) 
E (%) X 100 (22) 

f 
1 

(n) 

is therefore a measure of the error involved 

in neglecting all the terms of the series beyond 

the first. From equation (15) it is seen that 

its value will depend strongly on t/tr and \. 

Now, the influence of A may be analysed in two 

different ways, either 

a) Making E = 1% and evaluating t/tr vs. A 

or 

b) Making t/tr 0.3 and evaluating E vs. \ 



In this work an attempt is made to tackle both 

approaches since both are of interest:- Case b) to 

give an idea of the errors possibly committed in 

the past and case a) to provide some guide-lines 

for the future. 

SYMMETRICAL SEPARATIONS 

Symmetrical separations ocurr when the separation 

attained in the upper half of the thermogravitati~ 

nal column equals the separation in the lower halt, 

i.e.' 

(21) 
c - c 

T ·O 

Symmetrical separations have been reported for se­

veral hydrocarbon mixtures( 6)for which the depen­

dence of 6 on the composition is a parabola. 

For symmetrical separations the value of \ associ~ 

ted with a certain degree of separation may be 

obtained theoretically either through equation(l8l 

or more accurately using its definition(4) 

ln 
(24) 

wh~re the subscript w indicates a steady-state 

condition, i . e. , 600 = c - c 
T B 00 

The results obtained using equation (24) are shown 

in Fig 1 for several values of the initial composi_ 

tion c • 
0 

(Note that the curves obtained for c
0 

are exactly 

tlw same as obtained for 1-c ) ,, 

l·--... 1 

•• 

FIGURE 1 - The relationship between 600 and,>. for 

various values of feed composition in 

symmetrical separations. 
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It is seen that regardless of the values of c
0 

or 600 involved the values of ;\ may vary from 

zero to infinite, although in pratice they re­

main relatively small. 

In fact, equation (24) clearly shows that;\ only 

reaches high values if one of the extreme compo­

sitions (cT or cB) approaches either zero or 

unity, 

u 
11., 

FIGURE 2 - ~vs. t/tr for different values of 

'· for c
0 

0.2 and symmetrical se-

paration 

Thus if, for instance, cB - 0, then cT - 2 c
0 

and equation (24) becomes 

2 c /(1-2 c ) 
>. = ln ~--'0'--~~~0~ 

CB 

(25) 

clearly showing that when cB approaches zero, \ 

approaches infinite. 

One may also conclude that when c
0 

(24) simplifies to 

2 ln 

0.5 equation 

(26) 

It is now possible for different values of the 

initial composition c
0

, to evaluate 

a) E vs. \ for t/tr = 0.3 

and 

b) t/tr vs.;\ for E 1% 
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FIGURE 3 - E vs. t/tr for different values of A 

for c = 0.3 and symmetrical separation 
0 

Tbe results obtained are presented graphically in 

Figs.2 to 4 where it may be seen that in the vast 

majority of cases (for which A is not large, i. e. 

A< 5 say),the error E although larger than 1%, is 

comparatively small and most probably smaller than 

the usual experimental error. 

One may then conclude, that the Hoffman and Emery 

equation represents fairly accurately the symmetri 

cal separatiuns. 

" t/tr 

FlGuRE 4 - , vs. t/t fur Jiffc·r ... nt values of ), 
r 

for c
0 

= 0.4 and symmetrical separation 

NON - SYMMETRICAL SEPARATIONS 

Non-symmetrical separations, i.e., when 
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are, by far, the most common case in practice, 

though in many instances the "degree of assyme­

try" (7) is smal 1. 

Theoretical discussion 

For non-symmetrical separations it is virtually 

impossible to use equation (24) to evaluate the 

value of ), associated with a given value of 6
00 

mainly because there are several pairs of values 

(cT, cB) that may satisfy the contition 6
00 

= cT-

1 ... ____ , 

• -----
~ . ., • •• $ •• . ,, 

FIGURE 5 - Ihe relationship between 6
00 

and A for 

various values of feed composition in 

non-symmetrical separations 

To overcome this difficulty one may use equation 

(18) to determine the dependence of A on 6
00 

for 

various values of c • The consequent results are 
0 

shown in Fig. S, where it may be noticed that 

(contrary to what happened with the symmetrical 

situation) the values of A may reach relatively 

high values, even though the end compositious 

may be far from zero or unity, 



FIGURE 6 - E vs, t/t for different values of \ 
r 

for c
0

= 0.1 and non-synunetrical separa-

tion 

Not surprisingly the curves of c vs. t/t for 
r 

different values of \ and c
0 

(Figs. 6 to 10) 

show a quite distinct behavior. In fact, for 

t/tr 0.3 the corresponding values of c are 

larger than 1% even for moderate values of \ 

(or, which is the same, E = 1% only for t/t 
r 

CD .. 
CD .. 
CD " I) " CD " c II 

1/;r 
FIGURE 7 - £ vs. t/t for different values of A 

r 
for c

0 
= 0.2 and non-synunetrical sepa-

ration 

Experimental cases 

It is interesting to analyse the range of values 

of \ and c that have been involved in experimen­
o 

tal separations reported in the literature in 

order to estimate (with the help of Figs. 5 to 
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10) the implicit values of E involved in such 

cases, 

FIGURE 8 - E vs, t/t for different values of A 
r 

for c
0 

= 0.3 and non-synunetrical sep!!_ 

ration 

A summary of this analysis is presented in 

Table 1 where one may clearly note that the va­

lues of E for t/tr = 0.3 is, in some instances, 

of the order of 10% or more. This may explain 

some of the discrepancies that have been repor­

ted when attempting to the experimental results 

to the Hoffman and Emery equation. 

" lltr 

11 .. 
" " " II 

flGURE 9 - £ vs, t/t for different value~ uf \ 
r 

for c
0 

= 0,4 and non-synunetrical 

separation 
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FIGURE 10 - E vs. t/t for different values of \ 
r 

for c
0 

= 0.5 and non-symmetrical sepa-

ration 

CONCLUSIONS 

The use of the Hoffman and Emery equation to corre 

late the experimental separation vs. time curve in 

volves an error of the order of 1% for t/t = 0.3 
r 

when the separation is symmetrical. For non-sy-

mmetrical separations, the error involved for t/ 

/tr = 0.3 is generally quater than 1%, its value 

increasing with the value of \ and with the 

"degree of assymetry" of the curve relating the 

evolution of cT and cB with the time. It is 

therefore strongly recomended that for values of 

A greater than about 4-5 an inspection of the lower 

limit of time is carried out before using the 

Hoffman and Emery equation to correlate the 

experimental data, 

NOTATION 

b = 1/2 - c 
0 0 

B column dimension in the horizontal non-

-thermogravitational direction 

c molar fraction of the reference component 

c
0 

feed composition 

CT top composition 

cB botton composition 

D ordinary diffusion coefficient 

g accelaration of gravity 
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H thermogravitational transport coefficient 

k
3 

coefficient defined by eq. (19) 

K transport coefficient associated with the 

parasitic remixing 

K 
c 

transport coefficient associated with the 

convective remixing 

Kd transport coefficient associated with the 

ordinary back-diffusion 

L column length 

t time 

t 
r 

T 

~T 

relaxation time 

absolute temperature 

temperature difference between the column 

walls 

<T> average absolute temperature 

Greek Letters 

a thermal diffusion factor 

E 

\l 

w 

temperature coefficient of density 

degree of separation = 

equilibrium degree of separation 

truncation error deiined by eq. ( 20 ) 

dimensionless length = 504 x DU/8g~TG1w) 4 

number of moles per unit of column length 

viscosity 

one-half of the distance between the hot 

and cold walls 

molar concentration of the solution 



T A B L E I 

c: < 1% t/t = 0.3 
Mixture Ref-ce r c t/t c: % 0 r 

n-dodecane/ 
carbon tetrachloride (8) 0.4846 7.65 0.98 9.02 

n-heptane/cetane (9) 0.6659 2.31 0.36 1.52 

n-octane/decane (9) 0.5459 1.37 0,32 1.17 

iso-octane/n-octane (9) 0.4961 0.73 0.31 1.05 

n-heptane/triptane (9) 0,4977 5.14 0.59 4.10 

n-hexane/carbon 

tetrachloride (8) 0.6599 13.74 2.95 39.14 

n-heptane/carbon 

tetrachloride (8) 0.6346 12.28 2.31 28.30 

n-octane/carbon 

tetrachloride (8) 0.6133 8,25 1.13 11.34 

cumene/cetene (10) 0.324 0.63 0.31 1.04 

cumene/cetene (10) 0.324 0.89 0.31 1.08 

cumene/cetene (10) 0.324 1.09 0.31 1.11 

cumene/cetene (10) 0.324 1.17 0.32 1.13 

cumene/cetene (10) 0.324 1.20 0.32 1.14 

cumene/cetene (10) 0,317 0.77 0.31 1.06 

cumene/cetene (10) 0.317 1.11 0.31 1.12 

cumene/cetene (10) 0.317 1.85 0.34 1.33 

cumene/cetene (10) 0.317 2.32 0,36 1.53 

cumene/cetene (10) 0.317 2.41 0.37 1.58 

cumene/cetene (10) 0.317 3.14 0.41 2.04 

cumene/cetene (10) 0.317 3.30 0.42 2.17 

benzene/n-heptane (8) 0.484 5.71 0.67 5.01 

toluene/n-hexane (8) 0.5268 4,60 0.53 3.38 

o-Xylene/n-hexane (8) 0.5816 5.33 0.62 4.45 

benzene/ carbon tetrachloride (8) 0.6638 9.36 1.43 16.44 

benzene/ carbon tetrachloride (9) 0,5211 6.09 0.72 5.67 

benzyl alcohol/ethylenodiol (9) o. 7035 1.20 0.32 1.14 

cumene/methyl-naphtalene (9) 0.5028 1.46 0,32 1.19 

Folvene/chlorobenzene (9) 0.4974 l.ll 0.31 l.ll 

S-methylnaphtalene/a-methyl-

naplitalene (9) 0.4936 0.52 0.30 1.03 

cetane/benzene (9) o. 7670 1.48 0.33 1.22 

cetane/toluene (9) 0.7332 0.61 0.31 1.04 

34.8 



T A B L E I (Cont.) 

Mixture Ref-ce 

cetanelm-xylene (9) 

n-heptanelbenzene (9) 

n-heptanelmethylcyclohexane (9) 

cyclohexanelcarbon tetrachlo 

ride (9) 

cyclohexaneln-hexane (8) 
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c 
0 

0. 7043 

0.6228 

0.5349 

0.6471 

0.4759 

34.9 

E < 17, tit = 0.3 r 
tit r £ % 

0.73 0.31 1.06 

6.42 0.78 6.64 

5.16 0.59 4 .14 

7 .96 1.08 10.95 

7.95 1.04 9.78 
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