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Abstract. In this paper, we will use outer inverses and the Brown-McCoy shift to characterize

the existence of the inverse and group inverse of a 2× 2 block matrix.
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1. Introduction. A fundamental problem in matrix theory is the creation of a

unit 2 × 2 matrix M =

[

a c

b d

]

over an associative ring R with unity 1, where we

assume that either a or d is regular. Because M = aE11 + bE21 + cE12 + dE22 with

EijEpq = δjpEiq, (1.1)

we see that this “vertical” (i.e., the block-matrix case) unit problem is related to the

“horizontal” orthogonality problem:

when is xy = 0 = yx?

In general, the search for units is facilitated by existence of special elements. In

particular, regular elements can be used, and the corresponding theory of generalized

inverses may also be employed, leading to the search for group and Drazin inverses.

We say a is 2-regular if âaâ = â for some outer inverse (or 2-inverse) â of a.

An element a is regular if aa−a = a for some inner or 1-inverse a− of a.

A reflexive or 1-2 inverse a+ satisfies

aa+a = a, a+aa+ = a+.
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A reflexive inverse that commutes with a, if any, must be unique and is called the

group inverse of a. It is usually denoted by a#.

In order to get a handle on invertibility, we shall use the Brown-McCoy (BM)

shift ([1]) to derive a tractable expression for I−MM−. On the other hand, to tackle

the group inverse problem we shall employ a trick first used in [2].

Let us start by first making a short digression to address the story of outer or

2-inverses.

2. Outer inverses. Suppose that an element (or a matrix) m has an outer

inverse m̂ such that m̂mm̂ = m̂. Even though m need not be regular, there are

several elements associated with m that are regular, such as t = mm̂m. A more

interesting element associated with m is the BM-shift,

β(m) = n = m−mm̂m, (2.1)

which depends on the choice of m̂. We note that n may not be regular nor have an

outer inverse.

Let us now investigate some of the relationships between m and its BM-shift n.

In particular, we shall attempt to find other outer inverses of m. With no surprise

when studying generalized inverses, this will become a study of idempotents. We

begin by defining the idempotents

e = 1−mm̂ and f = 1− m̂m. (2.2)

It is clear that m̂n = 0 = nm̂ and n = mf = em = nf = en = emf = enf .

We now have

Lemma 2.1. Let m be regular and let n be defined as in (2.1). With the notation

(2.2), we have:

(a) If n has a 2-inverse n̂, then n̂e, fn̂, fn̂e and m̂+fn̂e are also outer inverses

of m.

(b) n is regular iff m is regular. In which case m− = m̂ + fn−e and both m−

and (1− m̂m)m−(1−mm̂) are inner inverses of n.

(c) If n+ is given, then

m+ = m̂+ (1− m̂m)n+(1−mm̂).

Proof. (a) n̂emn̂e = n̂nn̂e = n̂e. Also (m̂+ fn̂e)m(m̂+ fn̂e) = m̂m(m̂+ fn̂e) +

fn̂em(m̂+ fn̂e) = m̂+ fn̂e, because em = n = nf .
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(b) Observe that m(m̂ + fn−e)m = mm̂m + n = m [1, Lemma 1]. Next we have

nm−n = emm−mf = emf = n, i.e., any inner inverse of m is also an inner inverse

for n, for any choice of m̂.

(c) This is left as an easy exercise.

If n is 2-regular, we may repeat the shift process.

Indeed, set r = β(n) = n−nn̂n, then u = m−mm̂m−nn̂n. Moreover, if we take,

by Lemma 2.1, ˆ̂m = fn̂e then r = m−m ˆ̂mm, and we get a chain of outer inverses.

It follows at once that if m is regular, in which case n is also regular by Lemma

2.1 (c), then

mm− = mm̂+ nn−(1−mm̂) and m−m = m̂m+ (1 − m̂m)n−n

and hence that

1−mm− = (1− nn−)(1 −mm̂) and 1−m−m = (1− m̂m)(1− n−n).

We note that each term in brackets is an idempotent.

Moreover, we may further conclude that

m is a unit iff (1 − nn−)(1 −mm̂) = 0 = (1− m̂m)(1− n−n).

If we repeat this shift process and set r = n−nn̂n, then it follows that r is regular

by Lemma 2.1 (c), and we obtain the following after suitable substitution:

1. m̂r = 0 = rm̂ = n̂r = rn̂;

2. 1− nn− = (1 − rr−)(1 − nn̂) and 1− n−n = (1− n̂n)(1 − r−r);

3. n− = n̂+ (1− n̂n)r−(1− nn̂);

4. 1 −mm− = (1 − rr−)(1 − nn̂)(1 −mm̂) and (1 −m−m) = (1 − m̂m)(1 −

n̂n)(1− r−r);

5. m− = [m̂+ (1− m̂m)n̂(1−mm̂)] + [(1− m̂m)(1− n̂n)r−(1− nn̂)(1−mm̂)],

in which the first bracket is another outer inverse of m.

In some cases, we require a third iteration of the BM-shift, say s = r − rr̂r, for

which

1− rr− = (1 − ss−)(1− rr̂) and (1 − r−r) = (1− r̂r)(1 − s−s),

r− = r̂ + (1− r̂r)s−(1− rr̂).

If we substitute these into the expressions given by item 4, we arrive at:
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1. 1−mm− = (1− ss−)(1− rr̂)(1− nn̂)(1−mm̂);

2. 1−m−m = (1− m̂m)(1− n̂n)(1− r̂r)(1 − s−s).

It should be noted that these involve five idempotents.

We now obtain the following pyramid structure for m−.

Theorem 2.2. Given m, n, r and s as above with m regular, then m− = λ+ µ

is a 1-inverse of m, where

λ = m̂+ (1− m̂m)n̂(1−mm̂) + (1− m̂m)(1− n̂n)r̂(1− nn̂)(1 −mm̂)

and

µ = (1− m̂m)(1 − n̂n)(1− r̂r)s−(1− rr̂)(1− nn̂)(1−mm̂).

Using the facts that 0 = m̂n = m̂r = nm̂ = rm̂, it follows that λmλ = λ, i.e., λ

is another outer inverse of m.

The advantage of using the factored form with all these idempotents is that

(a) outer inverses are easy to calculate;

(b) finding an inner inverse of the final element s, is usually much easier than

finding an inner inverse at an earlier stage.

To emphasize that the inner inverse has been obtained via the BM-shift we shall often

refer to it as m−

BM .

3. Using the Brown-McCoy shift. Let M =

[

a c

b d

]

, and assume that d is

regular. To compute a suitable inner inverse of M we shall use a three fold iteration

of the Brown-McCoy shift by pivoting on the (2,2), (1,2) and (2,1) entries in M .

Step 1. Consider the outer inverse M̂ =

[

0 0

0 d+

]

. Then

I −MM̂ =

[

1 −cd+

0 1− dd+

]

and I − M̂M =

[

1 0

−d+b 1− d+d

]

. (3.1)

Next, assuming eb and cf are regular, we define a sextet of idempotents:

e = 1− dd+, f = 1− d+d,

g = 1− (eb)(eb)+, h = 1− (eb)+(eb),

p = 1− (cf)(cf)+, q = 1− (cf)+(cf).

(3.2)

Note that cfq = 0 = pcf = geb = ebh.
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We now form the BM-shift matrix

N = β(M) =M −MM̂M =

[

ζ cf

eb 0

]

,

where ζ = a− cd+b.

We could also use the matrix T =

[

cf ζ

0 eb

]

and observe that NN− = TT−,

see [6].

Step 2. Take N̂ =

[

0 0

(cf)+ 0

]

. Then we compute

I −NN̂ =

[

p 0

0 1

]

and I − N̂N =

[

1 0

−(cf)+ζ q

]

. (3.3)

We then set

R = N(I − N̂N) =

[

ζ cf

eb 0

] [

1 0

−(cf)+ζ q

]

=

[

pζ 0

eb 0

]

.

Step 3. Take R̂ =

[

0 (eb)+

0 0

]

and set S = R−RR̂R. Then

RR̂ =

[

pζ 0

eb 0

] [

0 (eb)+

0 0

]

=

[

0 pζ(eb)+

0 (eb)(eb)+

]

,

and likewise,

R̂R =

[

0 (eb)+

0 0

] [

pζ 0

eb 0

]

=

[

(eb)+(eb) 0

0 0

]

.

These give

I −RR̂ =

[

1 −pζ(eb)+

0 g

]

and I − R̂R =

[

h 0

0 1

]

. (3.4)

Lastly, we compute

S = R(I − R̂R) =

[

ζ cf

eb 0

] [

h 0

0 1

]

=

[

pζh 0

0 0

]

=

[

w 0

0 0

]

. (3.5)

We recall by Lemma 2.1 that M is regular if and only if S is regular.
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Because of the sparse character of the matrix S, we may conclude that S is regular

iff w = pζh is regular, in which case we can find an inner inverse S− =

[

w− 0

0 0

]

.

We now combine (3.1), (3.3), (3.4) and (3.5), to compute

I −MM− = (1− SS−)(1−RR̂)(1−NN̂)(1−MM̂)

=

[

1− ww− 0

0 1

] [

1 −pζ(eb)+

0 g

] [

p 0

0 1

] [

1 −cd+

0 e

]

.

If we now define α = (1− ww−)p, then this takes the form

I −MM− =

[

α −α[cd+ + ζ(eb)+e]

0 ge

]

. (3.6)

Correspondingly, we also have

I −M−M = (1− M̂M)(I − N̂N)(1− R̂R)(I − S−S)

=

[

1 0

−d+b f

] [

1 0

−(cf)+ζ q

] [

h 0

0 1

] [

1− w−w 0

0 1

]

,

which becomes

I −M−M =

[

h(1− w−w) 0

−d+bh(1− w−w) − f(cf)+ζh(1− w−w) fq

]

=

[

β 0

(−d+b− f(cf)+ζ)β fq

]

,

where β = h(1− w−w).

In conclusion, we can now give the parameters λ and µ, defined as in Theorem

2.2 , in product form

λ =

[

0 0

0 d+

]

+

[

1 0

−d+b f

] [

0 0

(cf)+ 0

] [

1 −cd+

0 e

]

+

[

1 0

−d+b f

] [

1 0

−(cf)+ζ q

] [

0 (eb)+

0 0

] [

p 0

0 1

] [

1 −cd+

0 e

]

and

µ =

[

1 0

−d+b f

] [

1 0

−(cf)+ζ q

] [

h 0

0 1

] [

w− 0

0 0

]

×

[

1 −pζ(eb)+

0 g

] [

p 0

0 1

] [

1 −cd+

0 e

]

.
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Thus,

M−

BM = λ+ µ, (3.7)

which comes from the repeated shift given by Theorem 2.2

M−

BM = M̂ +
(

I − M̂M
)

×

×

[

N̂ +
(

I − N̂N
){

R̂+
(

I − R̂R
)

S−

(

I −RR̂
)}(

I −NN̂
)](

I −MM̂
)

.

We may multiply out the products to obtain

M−

BM =

[

σ φ− σt

χ− sσ d+ − sφ− χt+ χζφ+ sσt

]

,

where

φ = (eb)+e, χ = f(cf)+, t = cd+ + ζφ, s = d+b+ χζ, w = pζh, and σ = hw−p.

In factored form, this becomes

M−

BM =

[

1 0

−s 1

] [

σ φ

χ d+ + χζφ

] [

1 −t

0 1

]

.

Remark. The factored form ofM−

BM seems to suggest that we should start with

the matrix

[

1 −t

0 1

]

M

[

1 0

−s 1

]

instead of M .

3.1. The triangular case. Consider the matrix T =

[

cf ζ

0 eb

]

. Then

TT− =

[

(cf)(cf)+ + ww−p (1 − ww−)pζ(eb)+

0 (eb)(eb)+

]

, (3.8)

and hence, I −NN− = I − TT− =

[

α −αζ(eb)+

0 g

]

, where α = (1− ww−)p.

On the other hand, using he expression of I −MM̂ given in equation (3.1), we

arrive at

I −MM− = (I −NN−)(I −MM̂) =

[

α Γ

0 ge

]

,

where Γ = −α[cd+ + ζ(eb)+e] = αΓ and Γ(ge) = 0. Clearly, this vanishes iff both α

and ge vanish.
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We likewise obtain

(I − M̂M)(I −N−N) =

[

β 0

(−d+b− f(cf)+ζ)β fq

]

, (3.9)

where β = h(1− w−w) . We thus see that M has a left inverse iff β = 0 and fq = 0.

We may now use this to derive our main theorem.

4. Main theorem.

Theorem 4.1. Let M =

[

a c

b d

]

with d regular. Suppose e = 1 − dd+ and

f = 1− d+d, and assume that eb and cf are regular. With the notation of (3.2) and

ζ = a− cd+b, if w = pζh is regular, then the following hold:

1. M has a right inverse iff

(i) eR = ebR (or ge = 0) and

(ii) pR = (pζh)R (α = 0 or ww−p = p).

In which case, M has a right inverse given by (3.8).

2. M has a left inverse iff

(iii) Rf = Rcf (or fq = 0) and

(iv) Rh = R(pζh) (β = 0 or hw−w = h)

In which case, M has a left inverse given by (3.8).

3. M is a unit iff all four conditions (i)–(iv) hold, in which case,

M−1 =

[

σ φ− σt

χ− sσ d+ − sφ− χt+ χζφ+ sσt

]

,

where φ = (eb)+e, χ = f(cf)+, t = cd+ + ζφ, s = d+b + χζ, w = pζh, and

σ = hw−p.

We note that a simplification only takes place after we multiply by M !

To simplify the conditions of Theorem 4.1, we shall need two standard results dating

back to von Neumann [11].

Lemma 4.2. Let a, b ∈ R with a regular. Then (a) abR = aR iff (1−a−a)R+bR =

R. (b) Rba = Ra iff R(1− aa−) +Rb = R.

Lemma 4.3. Let d, cf and eb be regular elements. With the notation of (3.2),

we have

(a) dR+ bR = δR, where δ = dd+ + eb(eb)+e = δ2;

(b) Rc+Rd = Rε where ε = d+d+ f(cf)+cf = ε2.

Proof. (a) Let k = dd+r+ bs ∈ dR+ bR, for some r, s ∈ R and set eb = m. Since

k = dd+k+(1− dd+)k, dd+k = dd+r+ dd+bs and (1− dd+)k = (1− dd+)bs = ms =
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mm+ms, it follows

k = dd+r + dd+bs+mm+(1− dd+)ms

=
(

dd+ +mm+(1− dd+)
)

(dd+r + dd+bs+ms) ∈
(

dd+ +mm+(1 − dd+)
)

R.

The proof of part (b) is left to the reader.

We now recall that an idempotent with a left (right) inverse must equal the unit

element, i.e.,

If g2 = g with gR = R (or Rg = R), then g = 1. (4.1)

This leads us to the following essential result:

Corollary 4.4. Let d, cf and eb be regular elements. Using the notation of

(3.2), we have:

(a) The following are equivalent:

(i) dR+ bR = R; (ii) δ = dd+ + eb(eb)+e = 1; (iii) ebR = eR.

(b) The following are equivalent:

(i) Rc+Rd = R; (ii) ε = d+d+ f(cf)+cf = 1; (iii) Rf = Rcf .

The condition dR + bR = R is a well known necessary condition for M to have

a right inverse. Indeed, if M =

[

a c

b d

]

has a right inverse X =

[

x r

y z

]

, then

br + dz = 1 and bR+ dR = R.

Likewise the condition Rc+Rd = R, which corresponds to xc+ yd = 1, for some

x and y, is necessary for M to have a left inverse.

Similarly, the condition α = 0 of our main theorem is equivalent to any of the

following

(i) (pζh)R = pR, (ii) cfR+ ζhR = R, (iii) δ2 = cf(cf)+ + pζh(pζh)+p= 1,

while the condition β = 0 can be replaced by any of the following

(i) Rpζh = Rh, (ii) R = R(pζ) +Reb, (iii) ε2 = (eb)+eb+ h(pζh)+pζh = 1. (4.2)

As such our main theorem can be written as

Corollary 4.5. Let M =

[

a c

b d

]

with d, eb and cf regular. Under the same

assumptions of Theorem (4.1), it follows that

(A) M has a right inverse iff
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1. any of the following holds

(α) eR = ebR,

(β) dR+ bR = R,

(γ) δ1 = dd+ + eb(eb)+e = 1;

2. plus any of the following holds

(α) pR = wR,

(β) cfR+ ζhR = R,

(γ) δ2 = cf(cf)+ + ww+p = 1.

(B) M has a left inverse iff

1. any of the following holds

(α) Rf = Rcf ,

(β) Rc+Rd = R,

(γ) ε1 = d+d+ f(cf)+cf = 1;

2. plus any of the following holds

(α) Rw = Rh,

(β) R = R(pζ) +Reb,

(γ) ε2 = (eb)+eb+ h(pζh)+pζh = 1.

We note in passing that

(i) if δ1 = 1, then e = ebx, where x = (eb)+e;

(ii) if δ2 = 1, then wy = p, where y = w+;

(iii) if ε1 = 1, then x′cf = f with x′ = f(cf)+;

(iv) if ε2 = 1, then y′w = h with y′ = hw+.

Conversely, if, for example, ebx = e and m = (1 − dd+)b = eb then dd+ +mx is

a right inverse of δ1.

Remarks.

1. In the above procedure, we select first a reflexive inverse d+ and then compute

(eb)+, (cf)+ and the associate parameters p, q, g, h and ζ. After which we

derive w = pζh.

2. The conditions ww−p = p and hw−w = h are exactly the conditions needed

for the invariance of σ = hw−p under (.)−, see [5].

3. The existence ofM−1 is guaranteed by the existence of four unit idempotents

(equal to 1). This looks like some kind of determinantal condition.

4. No simplification of the form of M−1, using the necessary condition of our

main theorem, seems possible.

5. It comes as no surprise that when d is a unit, we obtain the known necessary

and sufficient conditions on the Schur complement for M to be a unit. In

this case, e = f = 0 and p = q = g = h = 1. Condition (1) of Theorem 4.1

just says that ζ has a right inverse, while conditions (2) tells us that ζ has a
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left inverse, so that ζ = a− cd−1b is a unit.

6. When d = 0 then e = f = 1, p = 1 − cc+, q = 1 − c+c, g = 1 − bb+,

h = 1 − b+b, φ = b+ and ψ = c+. The condition ge = 0 becomes bb+ = 1 ,

while fq = 0 reduces to c+c = 1. It is now clear that w = (1− cc+)a(1− b+b)

and σ = (1− b+b)[(1− cc+)a(1− b+b)]−(1− cc+). In this case

[

a c

b 0

]−1

=

[

σ b+ − σab+

c+ − c+aσ −c+ab+ + (c+ab+)σ(ab+)

]

. (4.3)

The right invertibility follows from the facts that bσ = 0 and (1 − cc+)aσ =

1− cc+, while the left invertibility is a consequence of the conditions σc = 0

and σa(1 − b+b) = 1− b+b.

5. The group inverse case. For M to have a group inverse, it suffices to show

that U =M + I −MM− is invertible [10], in which case M# = U−2M . Now, using

(3.4), U takes the form of

U =

[

a+ α c+ Γ

b d+ ge

]

,

where α = (1− ww−)p and Γ = −α[cd+ + ζ(eb)+e] = αΓ.

We note that the entries in the bottom row do not contain a or c, but only b and

d. This suggests that it should be possible to use the second row to try and create

an improved element.

In order to apply the conditions of Theorem 4.1, we must create a regular entry,

preferably on the diagonal. In general, however, ge + d need not be regular, and we

shall have to make some extra assumptions. Rather than using U , we follow [2] in

creating a simpler (2,2) element d′. Indeed, consider

U ′ = UT =

[

a+ α c+ Γ

b d+ ge

] [

1 (eb)+e

0 1

]

=

[

a+ α x

b ρu

]

=

[

a′ c′

b′ d′

]

,

(5.1)

where

a′ = a+ α, c′ = c− αcd+ + [a+ α(1 − ζ)](eb)+e and d′ = ρu, (5.2)

together with

α = (1 − ww−)p, ρ = 1 + dd+b(eb)+e and u = d+ 1− dd+. (5.3)

We note in passing that ρ is a unit. We shall assume in addition to d, eb and cf being

regular, that u is regular, which holds exactly when d2 or d2d− is regular, see [6,

Lemma 3.1].
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It is clear that d′ = ρu, will also be regular. We next introduce the “prime”

idempotents

e′ = 1− d′d′+ = ρ(1− uu+)ρ−1 and f ′ = 1− d′+d′ = 1− u+u. (5.4)

and note that the regularity of u is equivalent to ef being regular, using [6, Lemma

3.3].

The expressions for u+, uu+ and u+u are given in [6, Corollary 3.4]. Indeed,

(i) u+ = d+ + f(ef)+e(1− d+),

(ii) uu+ = dd+ + ed+ + ef(ef)+e(1− d+), and

(iii) u+u = d+d+ f(ef)+ef .

We further shall assume that e′b and c′f ′ are regular.

We may apply Theorem 4.1 to characterize the invertibility of U ′ =

[

a′ c′

b d′

]

,

when we replace a by a′, c by c′ and d by d′, as given in (5.2) and (5.3).

Also we observe that e′ = ρ(1− uu+)ρ−1, (e′b)+ = [(1− uu+)ρ−1b]+ρ−1, d′d′+ =

ρuu+ρ−1, d′+d′ = u+u, and f ′ = 1− u+u.

Using the form for M−

BM , we may state M# = [T (U ′)−1]2M , where

T =

[

1 φ

0 1

]

and U ′−1
=

[

1 0

−s′ 1

] [

σ′ φ′

χ′ d′+ + χ′ζ′φ′

] [

1 −t′

0 1

]

. (5.5)

In this, we have:

(i) φ = (eb)+e, φ′ = (e′b)+e′, and χ′ = f ′(c′f ′)+;

(ii) ζ′ = a′ − c′d′+b = a+ α− c′u+b, where c′ is given as in equation (5.2);

(iii) p′ = 1 − (c′f ′)(c′f ′)+ and h′ = 1 − (e′b)+e′b, in which c′f ′ = c′(1 − u+u) and

e′b = ρ(1− uu+)ρ−1;

(iv) t′ = c′d′ + ζ′φ′ and s′ = d′+b+ χ′ζ′;

(v) w′ = p′ζ′h′ and σ′ = h′(w′)−p′ .

We can now apply Corollary 4.5 to U ′, to give

Theorem 5.1. With the notation of (3.1), (5.2) and (5.4), and the above items

(i) – (iv), if we assume that d, eb, cf , u, e′b, c′f and u′ are all regular, then M#

exists iff

(i) e′bR = e′R, i.e., d′R+ bR = R, or uR+ ρ−1bR = R,

(ii) Rf ′ = Rc′f ′, i.e., Ru+Rc′ = R,

(iii) p′ζ′h′R = p′R, i.e., c′f ′R+ (ζ′h′)R = R, and
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(iv) Rh′ = Rp′ζ′h′, i.e., R(1− uu+) +Rp′ζ′ρ−1 = R.
In which case,

M
# =

([

1 φ

0 1

][

1 0

−s′ 1

][

σ′ φ′

χ′ d′+ + χ′ζ′φ′

][

1 −t′

0 1

])2 [

a c

b d

]

. (5.6)

Remarks. Note that ef ′ = e(1− u+u) = 0, and thus, c′f ′ = (c− αcd+)f ′. Yet,

it is not clear how these equalities may be used to perform any simplification.

The four unit idempotents can be cleaned up somewhat. Indeed, we have:

1. 1 = d′d′+ + e′b′(e′b′)+e reduces to

1 = uu+ + (1− uu+)ρ−1b[(1− uu+)ρ−1b]+(1− uu+).

In other words, (1− uu+)ρ−1bR = (1− uu+)R.

2. Recalling that p′ = 1− c′(1− u+u)[c′(1− u+u)]+, (e′b)+ = [(1− uu+)ρ−1b]+ρ−1,

h′ = 1− (e′b)+(e′b) = 1− [(1− uu+)ρ−1b]+(1− uu+)ρ−1b, and ζ′ = a+ α−

c′u+ρ−1b, we see that condition (iii) of Theorem 5.1, reduces to

1 = c′(1− u+u)[c′(1− u+u)]+ + p′ζ′h′(p′ζ′h′)+p′.

3. Part (ii) of Theorem 5.1 reduces to the condition that

1 = u+u+ (1 − u+u)[c′(1 − u+u)]+c′(1− u+u).

4. Lastly, we also see that

1 = (e′b)+e′b+ h′(p′ζ′h′)+p′ζ′h′

= [(1− uu+)ρ−1b]+(1− uu+)ρ−1b+ h′(p′ζ′h′)+p′ζ′h′.

5.1. Special cases. As special cases we consider the cases where d = 0, d is a

unit and where d# exists. The latter is equivalent to u being a unit.

Case: d = 0. If d = 0, then d′ = 1, u = ρ = 1 and e′ = 0 = f ′. We then get

φ′ = 0, φ = b+ and χ′ = 0. Moreover, ζ = a, p′ = 1 = h′ = 1, w = (1− cc+)a(1− b+b)

and α = (1− ww−)(1 − cc+).

The necessary and sufficient conditions of Theorem 5.1 reduce to ζ′ being a unit.

Now c′ = c+ [a+ α(1 − a)]b+, and hence, ζ′ = a+ α− c′b reduces to

ζ′ = a(1− b+b)− cb+ α[1 − (1− a)b+b], (5.7)

which was given in [8].
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Case: d is a unit. If d is a unit then e = 0 = e′ = f ′, and u = d is a unit as

well. Also p = 1 = q and h = 1 = g. Hence, w = pζh = ζ = a− cd−1b. Next we have

α = 1− ζζ− and c′ = c− (1 − ζ′ζ′
−

)cd−1. Now ρ = 1 and

ζ′ = a+ α− c′(d′)−1b = a+ α− [c− (1− ζζ−)cd−1]d−1b. (5.8)

The conditions of Theorem 5.1 reduce to ζ′ being a unit, where

ζ′ = (a− cd−1b) + α+ (1− ζζ−)cd−2b.

Case: d# exists. In this case, u is a unit and d′d′+ = d′+d′ = p′ = h′ = 1 and

e′ = f ′ = 0. The conditions (i)–(iv) of Theorem 5.1 reduce to:

1. R = R,

2. R = R,

3. ζ′ζ′+ has a right inverse,

4. ζ′+ζ′ has a left inverse.

So, as a corollary, if d# exists, as in [2], then M has a group inverse iff ζ′ is a

unit, with

ζ′ = a+ α− c′u−1ρ−1b,

c′ = c− αcd+ + [a+ α(1 − ζ)](eb)+e,

ρ = 1 + dd+b(eb)+e,

α = (1− ww−)p.

6. Remarks and questions. We close with several remarks and open questions.

1. It is not clear why we get the related matrices

[

ζ cf

eb 0

]

and

[

ζ cf

eb d

]

using two different methods.

2. Can one power M to give conditions for Md to exist?

3. We assumed that ef is regular which is weaker than u being a unit, or equiv-

alently, d# existing.

4. Can we use the fact that d− dddd is nilpotent?

5. When does (p+ q)−1 exist? When does (p+ q)# exist? When does (p+ q)d

exist? They are all related.

6. It seems that there is no nice simplification in general for the form of either

M−1 or M#. However, when d# exists there is a simplification as given in

[2].
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