provided by Universidade do Minho: RepositoriUM

DETACHED CELLS: DIFFERENTIAL GENE Expression and antibiotic resistance

Â. França¹, V. Carvalhais², M. Vilanova³, G. Pier⁴, N. Cerca¹;

¹University of Minho, Braga, PORTUGAL, ²University of Porto and University of Minho, Porto, Braga, PORTUGAL, ³University of Porto (ICBAS), Porto, PORTUGAL, ⁴Harvard Medical School, Boston, MA.

Staphylococcus epidermidis has emerged over the last 3 decades as a leading cause of nosocomial infections due to its ability to form biofilms, particularly, on the surface of indwelling medical devices. The detachment of cells from the biofilm by both active and passive mechanisms is believed to be crucial for the dissemination of infection, often leading to serious complications such as embolic events, endocarditis, sepsis and pneumonia. Hence, a better characterization of biofilm-detached cells may help to employ more effective strategies against biofilm-related infections. In order to characterize the phenotype of S. epidermidis biofilm-detached cells, we assessed cell properties by measuring growth curves, expression profiles of key genes involved in initial adhesion, biofilm regulation, detachment and immune evasion (*atlE*, *agrB*, psm β *l*, *rsbU* and icaA), and the susceptibility to vancomycin, a cell wall synthesis inhibitor, and tetracycline, a protein synthesis inhibitor, comparing planktonic, biofilm-detached and biofilm-derived cell populations. Despite their planktonic state, biofilm-detached cells had some specific features of biofilm cells, including low expression levels of agrB and higher expression of rsbU and ica transcripts. In contrast, the biofilmdetached cells had higher expression of psm β1 transcripts, a class of surfactant peptides that

E ON BIOFILMS

107

POSTER ABSTRACTS

has been related to dispersal mechanisms, with the biofilm-detached cells resembling the $psm\beta l$ expression profile of planktonic cells. Similar to biofilm-derived cells, the antibiotic susceptibility properties of the biofilmdetached cells showed more resistance to tetracycline than stationary planktonic cultures. For vancomycin susceptibility, no differences were found among the 3 populations. Finally, biofilm-detached cells mostly followed the growth kinetics of planktonic cells with only small differences found, and had a higher growth rate compared to biofilm cells during the first 5 h of culture. The results suggest that biofilm-detached S. epidermidis cells may constitute a distinct phenotype, presenting some features of biofilm-derived cells and other features associated with the planktonic cell phenotype. Targeting the properties of the biofilm-detached cells could present opportunities to more effectively treat these infections and prevent the pathologic events associated with dissemination of cells from a biofilm to more distant sites.

ASM conferences

6th ASM Conference on **Biofilms**

September 29 – October 4, 2012 Miami, Florida

© 2012, American Society for Microbiology 1752 N Street, N.W. Washington, DC 20036-2904 Phone: 202-737-3600 World Wide Web: www.asm.org

All Rights Reserved Printed in the United States of America ISBN: 978-1-55581-876-0