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Abstract. In this chapter we describe a software tool for modelling fermenta-
tion processes, the FerMoANN, which allows researchers in biology and bio-
technology areas to access the potential of Artificial Neural Networks (ANNs) 
for this task. The FerMoANN is tested and validated using two fermentation 
processes, an Escherichia coli recombinant protein production and the produc-
tion of a secreted protein with Saccharomyces cerevisiae in fed-batch reactors. 
The application to these two case studies, tested for different configurations of 
feedforward ANNs, illustrate the usefulness of these structures, when trained 
according to a supervised learning paradigm. 

1   Introduction 

This chapter discusses a software tool, the FerMoANN, that intends to be a useful 
instrument in research on the modelling, control and optimization of fermentation 
processes, whose aim is to allow an increase on process productivity. 

Most biological processes are difficult to describe mathematically and, as a conse-
quence, it is difficult to predict their behaviour. One of the most difficult aspects of its 
analysis, especially when working in real time, is the dynamic behaviour of bio-
chemical reactions, since most of the times the kinetic equations associated have pa-
rameters that are difficult to estimate. Moreover, problems with sterility and lack of 
reliable measuring techniques are pointed as factors for not having measurements of 
key process variables [22].  

Therefore, it becomes necessary to use non-deterministic models that could be im-
plemented based on data and that are not tied to real-time measurements.   

The Artificial Neural Networks (ANNs) are one of such modelling tools that have 
been extensively used for representing complex phenomena, since they are universal 
non-linear function approximators and their application does not require any knowl-
edge about the structure of the model [20]. ANNs are therefore suitable for modelling 
fermentation processes. 
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This work integrates the ANNs in FerMoANN, with an intuitive design and inter-
face, aiming at becoming a powerful instrument for researchers in the field of Biology 
/ Biotechnology to study fermentation processes. A similar tool has not been found 
available, so its specifications were made from scratch, based on suggestions given by 
researchers from the biological area.  

In this work, in order to test the performance of the developed tool, two case stud-
ies are considered, with different degrees of complexity. These cases are fermentation 
processes of the yeast Saccharomyces cerevisiae (S. cerevisiae) and of the bacterium 
Escherichia coli (E. coli). 

2   Fermentation Processes 

In general, fermentation can be defined as a bioprocess that generates a product 
through the mass culture of a microorganism [30] in a bioreactor.  

There are several factors that can influence a fermentation process and among them 
there is the quantity and composition of the substrate that are provided to the cell 
culture. The substrate is what supports the life of a particular microorganism and 
could include nutrients like glucose, oxygen, and light or nitrogen source. Other im-
portant parameters affecting cellular growth are the physical and chemical conditions 
of the environment (temperature, pH, pressure, etc.) and protein induction [16].  

This work focuses on the influence of the substrate administration on microorgan-
ism cultures, making possible to test any feed profile and see their influence on the 
productivity of the culture. 

2.1   Cultivation Techniques 

There are three main cultivation techniques, which are chosen considering the type of 
the desired product and the characteristics of the microorganism. These modes of 
operation are continuous, batch and fed-batch cultures: 

 
Batch. In this cultivation mode, an initial amount of substrate is provided, and the 
process runs with the generation of biomass and products without the addition of 
more nutrients, until all the substrate is consumed.  

 
Continuous. In this cultivation mode, the substrate is continuously provided to the 
bioreactor. Also, a part of the fermentation broth is removed in quantities that allow 
the culture continuity without reaching the maximum capacity of the bioreactor vol-
ume. If the rate of substrate addition is constant, a steady state can be reached inside 
the bioreactor with constant values for biomass, substrate and product concentrations. 

 
Fed-batch. This technique is based on the continuous or sequenced batch supply of 
one or more nutrients, without removal of the bioreactor broth. The process continues 
until the desired volume is reached or until the maximum capacity of the container is 
achieved. The fed-batch cultures have some advantages, such as prevention of sub-
strate inhibition, high cell density cultivation, etc [34]. 
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It is in this last type of culture where simulation and optimization tools could be of 
greater value for researchers, since they produce data that could be used in fermenta-
tion process control, influencing their behaviour in run-time. A vast set of studies 
could be found, that use fed-batch bioreactors for process control and optimization, 
namely those in [2], [3], [16] or [21]. 

However, some of the main difficulties in the design of on-line optimization and 
control for biological processes lie in the insufficiency of cheap and reliable hardware 
and software sensors capable of providing direct and on-line measurements of the 
biological variables. Many times an off-line optimization is made for the determina-
tion of the operating conditions before the cultivation is carried out and the optimized 
operating conditions are not modified during the cultivation [34]. Even with recent 
developments in hardware and software sensors, only some of the state variables 
involved, that are critical for efficient control, are available for on-line measurement. 
For example, usually the dissolved oxygen concentration and gaseous flow rates are 
available for on-line measurement while the biomass, products and substrates concen-
trations are often available via off-line analysis. Given the low frequency in biomass, 
substrate and product measurements in most fermentation processes, it is very diffi-
cult to estimate on-line important variables like specific growth, consumption and 
production rates, the so-called kinetic variables [14]. The specific cell growth rate is 
one of the most important process variables characterizing the state of microorgan-
isms during fermentations mainly because the biosynthesis of many products of inter-
est is often related with the values assumed by this variable. 

The developed tool was designed to aid in the effort of estimating kinetic variables 
in fermentation processes from other available measurements. For evaluating the 
software performance, data were gathered from two separate fermentation processes. 
These case studies will be briefly described in the next two sections. 

2.2   The Saccharomyces cerevisiae Fermentation Process  

This process is based in the production of a secreted protein with post-translational 
modifications, using the yeast Saccharomyces cerevisiae (SEY2102) as the host or-
ganism and SUC2-s2 as secreted protein. This process was studied by Park and Rami-
rez (PR) in a fed-batch bioreactor [21]. The analogy between the products secreted by 
this type of cells and mammalian cells, the lack of pathogenicity with humans and 
other characteristics makes this culture suitable for the large production of useful 
human proteins. 

The equations that describe the PR process are as follows [19] (the detailed expla-
nation of each equation is beyond the objectives of this work): 
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x1: Concentration of secreted protein (units / L) 
x2: Concentration of total protein (units / L) 
x3: Concentration of cells (g / L) 
x4: Concentration of substrate (g / L) 
x5: Bioreactor Volume (L) 
u: Feed rate (L / h) 
A: Specific growth rate (h-1) 

 

 
In this experiment, the aim is to find the best operating conditions that maximize 

the production of the secreted protein, which is intrinsically related with the yeast 
specific grow rate (A). In equation (6) we can observe that the state variable x4 (sub-
strate concentration) is the essential element for determining A. So, this equation will 
be used to produce data for the learning process of the ANN model. 

2.3   The Escherichia coli Fermentation Process  

The bacterium Escherichia coli (Ecoli) has been one of the most commonly used re-
combinant protein production systems, because of its ability to grow rapidly and at high 
densities on inexpensive substrates like glucose. Furthermore, it is one of the best char-
acterized systems regarding molecular genetics, physiology and expression systems. An 
important problem in this culture lies in the tight control that is necessary during the 
fermentation process, since at particular conditions (excessive or low glucose concentra-
tion) recombinant protein production can be significantly reduced [25], due to the effect 
of acetic acid or cellular starvation. The main optimization objective in this process is to 
control the feeding trajectory in a manner that concentration of glucose maintains at 
optimum levels for cell growth and subsequent high protein production. 

The detailed mathematical model describing this process can be found in [26]. The 
substrate specific consumption rate is given by the following equation: 
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qS: Specific substrate uptake rate (h-1) 
qS,max: Maximum specific uptake rate (h-1) 
KS: Affinity constant for glucose uptake (g / kg) 
Ki,S: Inhibition constant of acetate on glucose uptake (g / kg) 
 

A: Acetate concentration (g/kg) 
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The specific substrate uptake rate is related with the specific growth rate by: 

XS
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µ: Specific growth rate (h-1) 
kXS: Global yield coefficient (g/g) 

 

The model differential equations obtained from mass balances to the main state vari-
ables are the following, in a matrix format: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

+

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−
−

−−
=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

CTR

OTR

S

W

F

C

O

A

S

X

DX

kkk

kkk

kk

kk

C

O

A

S

X

dt

d
in

Sin

TT

0

0

0

0

0

0

0

0

0

111

,

3

2

1

1098

765

43

21

μ
μ
μ  

(9) 

X: Biomass concentration (g/kg) 
S: Substrate concentration (g/kg) 
O: Dissolved oxygen concentration (g/kg) 
CT: Total dissolved carbon dioxide concentration (g/kg) 
kx: Yield parameters 
D: Dilution rate (h-1) 
Fin,S: Liquid mass flow of the stream containing glucose fed into the bioreactor (kg h-1) 
W: Weight of liquid inside the bioreactor (kg) 
Sin: Substrate concentration in the inflow (g kg-1) 
OTR: Oxygen transfer rate from the gaseous to the liquid phase (g/kg/h)  
CTR: Carbon dioxide transfer rate from the liquid to the gaseous phase (g/kg/h) 

 
In the Ecoli process, the parameters of interest are the specific growth rates (µ1, µ2, 

µ3) and the specific substrate uptake rate (qs), which represent the dynamic behaviour 
of this process. These are the parameters that are difficult to measure in real-time on 
the culture and for whom an ANN model could be of great interest. For the ANN 
validation, the mathematic equations 7 and 8 will be used, together with the heuristics 
from [26], since they determine the kinetic coefficients from other measurable pa-
rameters like X, S, A, O, and CT.   

2.4   Levels of Complexity 

The main differences in the complexity of the two case studies arise from: 

− Number of the input and output variables; 
− Continuity and complexity of the mathematical functions to approximate by the 

ANN. 
 

The PR kinetic behaviour could be described by equation (6), which means that 
with only one input variable (x4: substrate concentration) it is possible to achieve the 
values of the only kinetic coefficient relevant in this process (A: Specific growth rate).  
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The Ecoli process kinetic behaviour, expressed by equation (9) shows that five 
variables (X, S, A, O, CT) can have influence in the values of the three kinetic vari-
ables (µ1, µ2, µ3).  

The number of input and output variables defines the number of neurons at the in-
put layer and at the output layer, respectively, in an ANN. More inputs and more 
outputs mean more processing units and more connections for the Artificial Neural 
Network, which increases significantly the processing burden.  

The PR equation does not have discontinuity points, and the variations on the ki-
netic variables are relatively smooth. 

The Ecoli process has considerable changes in state variables, from a low initial to 
a very high biomass and product concentration [24]. Also, the switches from different 
metabolic states cause discontinuities in the values that are very difficult for an ANN 
to learn.  

3   Artificial Neural Networks 

Artificial Neural Networks (ANNs) are based on an analogy with biological brains. 
Their way of operation provides them with features that are not present in traditional 
computing machines, such as massive parallelism, distributed computing and repre-
sentation, adaptability, among many others [12].  

The building blocks of ANNs are the artificial neurons (Fig. 1). The weights define 
the interaction of each neuron with its neighbours. For each neuron, any signal that 
arrives is multiplied by the weight of the corresponding connection. These values are 
added with an offset, or bias, to reach the activation of the neuron. The activation 
function applied over this value grants the non linearity of ANN’s behaviour. 

ANNs are mainly characterized by the topology of the connections between neurons, 
also known as architecture, the method of adjusting its connection weights (training 
algorithm) and the activation function [5], [7]. The neurons in an ANN are typically 
disposed in layers, with a layer for input neurons that receives the signal from the envi-
ronment and has no processing associated. There is also an output layer, containing  
 

 

Fig. 1. Artificial neuron structure 
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neurons with a normal operation, whose outputs are sent to the environment. Internally, 
between these two layers, other layers of neurons can exist, which are called intermedi-
ate or hidden layers. In the same layer, usually all neurons have the same activation 
function and the same structure of links to other layers of neurons [6]. 

According to its architecture, an ANN can be classified as a single layer network (it 
actually has two layers, the input layer and output layer) or multilayer (input layer, 
one or more hidden layers and the output layer). ANNs can also be classified accord-
ing to the direction of the internal information flow. If the information flows layer by 
layer, without cycles, this is a unidirectional or feed-forward network. Otherwise, it is 
classified as a recursive network. The choice of which model of information flow 
should be used to represent a process depends on the dynamics and complexity of the 
problem under analysis [17], [18]. 

A multilayer ANN has, in principle, a higher ability to solve more complex prob-
lems. The greater the number of neurons in each layer and the number of layers, the 
higher is the degree of complexity of the problems that the network can solve. How-
ever, the excessive complexity of a network is often unnecessary and carries an extra 
processing burden, probably causing overfitting problems. The optimal number of 
hidden neurons is the smallest number that yields an acceptable prediction error [10]. 
Therefore, there are mechanisms for constructing and pruning networks, with the aim 
of building them with only the necessary size for a good performance in learning and 
generalization of the problem. 

In this work, ANN training is done according to the paradigm of supervised learn-
ing. There is a data set of known input and output vectors with interrelated data, 
which the ANN will have to assimilate, through the successive application of these 
training cases. The training process is repeated while the response of the network does 
not coincide or not satisfactorily approaches the desired outputs [8].  

To ensure the effectiveness of the model, ANNs with three layers (input, hidden 
and output) were used, since they are able to represent any continuous functional 
mapping [1], [10]. The number of nodes at the hidden layer could be achieved by 
practical methods, testing several hypotheses until finding the number that demon-
strates best results.   

The training algorithm used was Backpropagation [10], which is based on the 
known delta rule, with roots in the optimization of filters [32]. This algorithm is com-
posed of two phases. In the first phase, a stimulus is applied to the network and the 
error difference between the obtained and the expected output value is registered. In 
the second phase, that error is propagated backwards through the network, causing an 
adjustment of the connection weights, thus implementing the learning of the network.  

This algorithm has proven to be very effective in most cases but it may, in certain 
circumstances, show some drawbacks. For example, in learning, where the lowest 
possible error of training is sought, there may be stagnating points when a local mini-
mum is found. This value is the lowest error in a certain neighbourhood but not the 
overall minimum. This and other problems that lead the network learning to virtually 
stagnate can be solved, or at least mitigated, through the use of some heuristics.  

One of these heuristics is used by the Resilient Back Propagation (RProp) [23], 
which is considered the best learning algorithm for networks with various topologies. 
The basic idea of this algorithm is to update the weights of the network using only the 
rate of learning and the sign of the partial derivative of the error function of each 
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weight. This process provides convergence speed, robustness and is easy to imple-
ment. Experiences made comparing the use of Rprop with the use of the Backpropa-
gation algorithm show that the first method performs better in 98% of the cases. If, 
however, an appropriate pre-processing of the data is made, the performance is almost 
equal [11], [28]. 

The learning process could lead to several models presenting all a good learning 
performance. To choose the best of these models, some selection methods could be 
used to estimate their generalization capabilities, like cross validation [13]. By train-
ing an ANN with a particular data set, there is a risk that the network specializes and 
adapts its behaviour specifically to the solution of the cases used for training. This 
leads to loss of generalization and, hence, the loss of capacity to solve new problems 
not considered in the training data set. To identify the most specialized models, the 
ANN needs to be validated by applying new cases that are not included in the training 
set and the responses to those cases should be determined. 

4   State of the Art 

Nowadays, it is already possible to find a vast set of studies in the area of biopro-
cesses modelling. For describing fermentation processes, usually three types of mod-
els are used: white box, grey box and black box models. These designations classify 
the models according to the degree of visibility that an observer has on the internal 
structure of the respective systems. The choice of a particular type generally depends 
on the existing amount of a priori knowledge about the system to be modelled 
[17,18], the nature of the problem to be solved and on the process variables that could 
be measured in real-time of the biological experiments. 

Traditionally, the whole process is described in a mechanistic way, being the physic 
behaviour of the process externally visible. Because of this visibility, these models are 
called white box models. These models are mainly composed by differential equations 
with kinetics based on the Monod or Monod-derived equations, which describe the cell 
growth limited by substrate concentrations and often contemplate inhibition by different 
compounds [5]. These models are empirical and highly non-linear, requiring the deter-
mination of both model structure and parameters for each particular case [6, 9, 33]. One 
of the major applications of these models is process optimization. 

The white box approach is used in the work of Veloso et al. [31], where the equa-
tions of mass balance, a complex kinetic model and an Extended Kalman Observer 
were used for the on-line determination of biomass concentration. Park and Ramirez 
[21] proposed an optimal control policy for the optimization of a secreted heterolo-
gous protein production process, described by a white-box model. They based their 
work the Pontryagin’s Minimum Principle for determining the necessary conditions 
for system optimization. Lee and Ramirez [16] established optimal control strategies 
for maximizing the production of induced foreign protein by recombinant bacteria, by 
deterministic algorithms that calculate exactly the periods where the cell specific 
growth rate and protein production are maximized. Some process optimizations re-
quire more advanced techniques. For example, Genetic and Evolutionary Algorithms 
had been used in several works [24, 25, 26, 27]. Mendes et al. [19] presented an ex-
perimental comparison between Particle Swarm Optimization, Differential Evolution 



 Modelling of Biotechnological Processes 319 

and real-valued Evolutionary Algorithms for the optimization of fed-batch fermenta-
tion processes described by white-box models.  

On the other hand, Artificial Neural Networks have proven to be of great value, 
due to their ability to model nonlinear systems trough input-output mapping. ANNs 
can be constructed from process experimental data, being suitable to use as black box 
models of biological processes. Lee and Park [15] used an ANN model as a software 
sensor for monitoring and controlling wastewater treatment process. The problem is 
that existing measures does not give on-line measurements of nutrient dynamics.  

The use of a single ANN to optimize processes does not always brings the best re-
sults, even at the level of process function approximation, or at the level of processing 
burden when the system to approach is too complex and has a great number of inputs 
and outputs. A possible solution is to divide the problem into several parts, which 
could be implemented by a set of ANNs or by ANNs combined with other solutions 
(hybrid model). Chen et al. [3] presented an optimization of a fed-batch bioreactor 
using two cascade recurrent neural networks for process modelling which predict the 
biomass production based on the feed rate profile. A Genetic Algorithm is then com-
bined with the extended recurrent neural networks model to determine the feed rate 
profile that maximizes the final quantity of biomass for the fed-batch fermentation 
process. Another example is the work of Koprinkova et al. [14] that focuses on the 
time delay between the changes in substrate level and the adjustment of the growth 
rate at the appropriate level in chemostat cultivations. They proposed different feed-
forward ANNs with delay elements for both specific growth rate and specific con-
sumption rate estimation as a solution for modelling this behaviour. 

When white box and black box components are joined together, a grey box model 
is obtained. For example, Zuo and Wu [34] proposed a method to semi real-time op-
timization and control of a fed-batch fermentation system using hybrid neural net-
works for process modelling and genetic algorithms for determining optimal feeding 
rates. The hybrid model joins the knowledge-based part (differential equations, from 
mass balance of the system) and the black box part (ANN, for dynamic behaviour of 
the specified system). Peres et al. [22] presented a method of expressing and combin-
ing different types of knowledge, consisting in a gating system that joins knowledge 
modules that could be white, black or gray box models. By this way, it is possible to 
combine the capacity of the three types of models to achieve a better prediction. A 
similar method is applied by Simutis et al. [29], which also highlighted the impor-
tance of starting with a clear definition of the problem and a corresponding quantita-
tive objective function. 

Given all this work in the area, it is important to establish what is intended for the 
current work stating what is the problem to solve and what is the difference between 
this and other solutions for related problems: 

1. The objective is to optimize a fed-batch bioreactor, increasing product forma-
tion. A similar objective could be found in the work of Chaudhuri and Modak 
[2], but this method should be applicable to any strain of microorganisms; 

2. The control variable is the feed profile; 
3. Real feed profiles exist, considered like near optimal solutions for maximum 

cell growth and product formation, obtained by optimization methods; 
4. Given 1, 2 and 3, the aim of this chapter is to present a computational tool that 

allows the use of ANNs in the modelling of these processes.  
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Fig. 2. Schema of the deterministic (white box) model for fermentation processes 
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Fig. 3. A schematic representation of the generic grey box model for the simulation of fermen-
tation processes 

The starting point was the existing knowledge about the processes, in the form of 
white-box models composed of ordinary differential equations that describe the fer-
mentation processes behaviour (Fig. 2).  

To establish the optimum feed profile it is necessary to have a reliable model for the 
prediction of process state and kinetic variables. These last ones are not possible to 
measure directly in the culture experiment, and so they are obtained through other vari-
ables. Moreover, the structure of the kinetic equations is often obtained with empirical 
methods that are dependent of the culture strain in study. To avoid this limitation, an 
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ANN is used to simulate the kinetic behaviour for each process, being the number of 
inputs and outputs defined by existing process data. 

Establishing a structure that could be applied to any fermentation process, the ob-
jectives for process optimization becomes too general to be resumed in an objective 
function like the one proposed by Simutis et al. [29]. Instead of achieving an optimal 
feed profile for a particular process, the objective was to give biologists a tool with 
which it is possible to construct a reliable model for any fermentation process. In this 
tool, it should be possible to introduce feed profiles and to test their contribute in 
process yield maximization.  

In this way, the existing mechanistic knowledge is combined with a component 
implemented with a black box. The result is a hybrid grey box (Fig. 3).   

5   The FerMoANN Tool 

The FerMoANN computational tool proposed in this work should allow:  

− To produce process data off-line, that can be used to test the grey box model with-
out having to collect data from the real experiment, decreasing developing time; 

− To select one of the available processes and respective white-box models. It should 
also be possible to automatically add new modules for different processes; 

− To evaluate several ANN configurations, selecting the one that better approximates 
the process kinetic behavior, i.e the one that shows lower Root Mean Square Error 
in their learning and validation. In this evaluation, it should be possible to choose 
the training parameters (e.g. training algorithm), inputs and outputs, validation me-
thod, etc.; 

− To use trained ANNs to model a given process; 
− To visually check the modeling results, and allow testing diverse feed profiles with 

the aim of finding the one that maximizes the process yield.   
  
The general guidelines established for the code design were: 
 

− Modularity, that was achieved with the division of the software in functional 
blocks, which can operate independently one of each other, ensuring also better 
scalability and easing the process of incorporating new software modules; 

− Generalization, that was ensured giving the application the ability to model any 
fermentation process, not merely a set of pre-defined processes; 

− Functionality, that was obtained from the previous two principles and ensuring a 
programme with a simple and user friendly interface that can easily be understood.  
 
The use of ANNs reliefs the researcher from defining mathematically the whole 

process, leaving the kinetic component as a black box, which is obtained through the 
model inference from data coming from the microorganism’s culture. 

The FerMoANN was built using mainly three software packages written in Java by 
the authors (ann, bio and annFerm): 

 

− The ann package provides the necessary features for a generic application using 
feedforward ANNs, following the paradigm of supervised learning [4, 27]. In this 
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module, it is possible to set up the implementation of the network at various levels, 
such as its structure (characterization of the layers), the adjustment of weights (de-
finition of the initial values and adjustment during training), the definition of the 
data to be presented to train the ANN, the selection of the best training algorithm 
for the case study, the type of model validation to use, etc.  

− The bio package refers to fermentation processes modeling by white box where 
kinetic models are based on Monod-type equations [26]. With this module the be-
haviour of various pre-established cultures can be simulated offline. Every culture 
is associated with a fermentation white box model with its own characteristics 
where, in addition to other parameters, a set of differential equations and the ki-
netic equations are included [23, 25]. The fermentation processes here considered 
are the production of recombinant proteins with S. cerevisiae and E. coli (see sec-
tion 2) and the overall schema is given in Fig. 2.  

− The annFerm package provides the bridge between ann and bio packages. It is in 
this package that the fermentation processes models are adapted to allow estima-
tion of kinetic coefficients by artificial neural networks. This adaptation results in a 
grey box model (Fig. 3). 

5.1   Development 

The FerMoANN was split into two modules with different interfaces. One module is 
for white box modelling, that is used to produce data for the other module, the grey 
box model, thus accelerating the development of the application. Each interface con-
tains a set of sections that provide specific functionalities. In the panels, text areas 
have been included to display information to the user when necessary.  

At the programming level, there was a separation between the part concerning the 
visual elements of the interface and the part responsible for carrying out the main 
functions of the program (core functionality). All classes for the interface elements 
have "Intrfc" as a suffix for better distinction of classes that belong to the core. 

The white box interface includes several sections for the generation of feed pro-
files, for the generation of training data, for combination of examples, for the intro-
duction of noise and also for drawing relevant graphs (Fig. 4): 

 
Feed profiles generation. The feeding profiles, i.e. the amount of substrate to feed to 
the culture at each time, represent the inputs of the simulation. Through this panel 
multiple profiles can be created with constant, linear, random, saw, wave or sinus 
functions. Using different feeds to create data allows a broader spectrum of training 
examples. 
 
White box process simulation. This simulation uses Monod-type models for generating 
the kinetics variables, which are then introduced into the ODE models. For each feeding 
profile, a distinct simulation can be conducted resulting in the values for state and kinetic 
variables over time. The data from this panel is used for ANN training and a comparison 
between data that is obtained by the model and with ANNs can be performed.  
 
Mixing examples. A number of files with simulation results can be handled, and used 
to create new files through composition, cutting, interpolation or sampling data. These  
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Fig. 4. White box interface functionalities 

can create more comprehensive sets of examples or decrease the size of some collec-
tions without losing generality. 
 
Adding noise. The introduction of noise on data serves to create data sets that in-
crease the generalization abilities of the ANN model. This can be useful when the set 
of available data is not rich enough to provide a good training process for the ANN.  
 
White box simulation graphs. The graphs allow for a better visualization of the data 
generated by the white-box mathematical model. The preview is done in two separate 
graphs for the state and kinetics variables. It also allows visual comparisons between 
results of different simulations. 

The grey box interface is intended to determine the best ANN configuration that 
fits the problem under study and the application of those ANNs to simulate the proc-
ess. Here a number of functionalities can be found, namely the ANN’s evaluation, the 
ANN’s training, the process simulation using a trained ANN and the evaluation and 
training graphs (Fig. 5): 

 
ANN’s evaluation. This tool can assess various configurations of ANNs, varying the 
input and output variables, the number of nodes in the hidden layer (all ANNs are 
feed-forward with one hidden layer, completely connected), the training algorithm 
and the number of training epochs. Each model is evaluated by its training error and 
generalization error in a validation set. It is thus possible to determine which parame-
ter combinations will lead to more accurate models.  

 
ANN’s training. An ANN with a given configuration (typically the one that resulted 
from the above study) can be trained. It then can be used to predict the kinetic vari-
ables, integrated within the grey box model. 
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Fig. 5. Grey box interface functionalities 

Grey box process simulation. This section enables the simulation of the fermenta-
tion process. Trained ANNs calculate the kinetic variables from the values of the state 
variables in a particular time point and differential equations represent the mass-
balance equations that determine the time evolution of the values of the state vari-
ables. 
 
ANN evaluation graphs. These graphs show the errors of the evaluation of ANN 
configurations. They provide information on the settings, data and variables that were 
used in the training. The graphs allow a better interpretation of the error curves (both 
in training and validation sets). 
 
Grey box simulation graphs. These graphs show data resulting from grey box model 
simulations. They show the time evolution for each state and kinetic variable. It is 
also possible to compare two simulations and thus examine, for example, the differ-
ence between the curves obtained with a grey box model and the ones obtained with 
white box models.  

5.2   Experiments and Results 

For a demonstration of the software capabilities, two case studies were used: PR and 
Ecoli processes, already described in section 2. 

The first step of the modelling process was the feeding profiles generation that al-
low a wide spectrum of examples to be achieved. The profiles range from optimized 
ones (using Evolutionary Algorithms [24]), random profiles, constant profiles, etc. 
These files were then used to simulate the process with white box models, thereby 
obtaining one data set for each profile. Fig. 6 shows the results for the PR case study 
with two distinct profiles. 

The state variables (x1, x2 …) are those involved somehow in the process, and for 
these variables, it is possible to obtain culture measures at different time points. The  
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Fig. 6. Example of white box modelling simulation for PR process. a) and b) Constant feed 
profile; c) and d) Feed profile optimized using Evolutionary Algorithms. 

blocks on the left show the graphs for each state variable. In the blocks on the right, the 
kinetic variable (A) curve is shown, which represents the dynamics of the process. In 
Fig. 6, only the cases of PR process simulation with optimized and constant feed pro-
files are shown, but it is also possible to use other feed profiles (e.g. saw, sinusoidal, 
random and ramp functions). The process steps are the simulation points used in the 
interpolation (100 for PR). In Fig. 7, the graphs for the Ecoli case study are shown. 

22 different feed profiles were used for the PR process with values between 0 and 
3 L/h (given that this was assumed as the maximum capacity of the feeding device), 
considering 4 random profiles, 4 linear, 3 constant, and 11 optimized. With each of 
those 22 profiles the simulation of the PR process was performed.  

Using the data composition interface it was possible to group all simulations form-
ing a single global training set for the ANN. In principle, the PR process will not be 
too difficult to simulate, because of its simplicity. So, from the global data set a sam-
ple of 150 values was retrieved, which make the ANN training data set.  

For the Ecoli case study, 21 different feed profiles were used: 5 random, 5 linear, 4 
constant and 7 optimized. Being a more complex process, 500 examples were ex-
tracted from the entire data set for ANN evaluation.  

If all the configuration parameters are considered, the universe of possibilities for 
different network configurations is enormous. To limit this universe it was stipulated 
that certain parameters remain unchanged, such as training algorithm (RProp), the 
activation function (sigmoid), the number of epochs (1000) and the validation mode 
(KFold). This configuration grants a sufficient base for a good ANN training.  
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Fig. 7. Example of white box simulation for Ecoli process with optimized feed profile 

For each evaluation, the parameters changed were the state variables used as ANN 
inputs and the number of nodes in the ANN hidden layer. An ANN with 20 nodes in 
hidden layer should be able to simulate very complex cases, so every value between 0 
and 20 nodes was tested. To achieve the best combination of input variables (state 
variables) several tests took place ranging from the inclusion of all variables in the 
model to the inclusion of only one of them. Supposedly, the more input variables are 
included, the more the network is capable to determine the outputs (kinetic variables), 
even for processes with complex characteristics. 

For the PR process, the first test was made with each state variable separately. In 
Fig. 8 we show two examples of evaluation results. This figure shows the error over 
the training and test sets during the evaluation. The measures of error used were the 
Root Mean Square Error (RMSE) and Mean Absolute Deviation (MAD). The results 
for both measures have been proportionately identical, which leads to assume that 
conclusions can be drawn using only RMSE results.  

In the horizontal axis the number of hidden nodes for each ANN structure evaluated 
is shown. The training error shows how the ANN assimilated the process in question. 
The test set error shows the adaptation of each network, after trained, to new examples 
from the same biological process. The best solution is the one that shows lower values 
of error in both training and test sets. For example, in Fig. 8 it is possible to see that 
process simulation with the input variable x4 presents lower values of error than when 
the input variable x5 is used. It may also be noted that, using x4, a network with only 
one node in the inner layer is sufficient to simulate the process, since the increase in 
the number of nodes does not bring significant gains in reducing the errors.  

 



 Modelling of Biotechnological Processes 327 

0.010

0.012

0.014

0.016

0.018

0.020

0 5 10 15 20

RM
SE

Hidden nodes

PR_X4 - A

Test Training

a)

0.004

0.006

0.008

0.010

0.012

0.014

0 5 10 15 20

M
A
D

Hidden nodes

PR_X4 - A

Test Training

b)

0.000

0.020

0.040

0.060

0.080

0 5 10 15 20

RM
SE

Hidden nodes

PR_X5 - A

Test Training

c)

0.000

0.015

0.030

0.045

0.060

0 5 10 15 20

M
A
D

Hidden nodes

PR_X5 - A

Test Training

d)  

Fig. 8. Result of evaluation for the PR process only with x4 (a)(b) and only with x5 (c)(d) state 
variables as inputs 
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Fig. 9. Evaluation of mu1 forecasting with the state variable A (a) and with state variable D (b) 
as inputs 

In the Ecoli process, the amount of kinetic variables increases the complexity of 
the selection method. All possibilities considered for the PR case are now multiplied 
by 4 (the number of Ecoli kinetic variables). For an easier interface implementation, 
kinetic variables were named mu1, mu2 and mu3. For example, regarding mu1, if we 
want to test the influence of each state variable in its prediction we would obtain 10 
graphs (the number of Ecoli state variables). Consider, for instance, the RMSE graphs 
for prediction of mu1, when only the A or the D state variables are used as inputs, as 
shown in Fig. 9. 
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Fig. 10. Evaluation of Ecoli kinetic variables prediction with the state variables OTR, CTR, X, 
A and F as inputs 

 

Fig. 11. Trained ANN. Inputs: state variables; Outputs: kinetic variables; Weight Matrix: nodes 
connections weights; Activation function: activation function for each non-input node. Layers: 
number of layers and number of nodes by layer. 

It is possible to create any combination of input variables. For example, in the 
Ecoli case study, the variables OTR, CTR, X, A and F can be chosen to estimate the 4 
kinetic variables, and the result is shown in Fig. 10.  

With the possibility of changing the state variables in the simulation, the researcher 
can confirm whether the variables that initially were thought to be the most suitable 
for the prediction are in fact those with better results. This analysis may even lead to 
the proposal of new hypotheses and a different view of the processes.  
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Fig. 12. PR process simulation using a linear feed profile: with grey box (above); with white 
box (below) 
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Fig. 13. Ecoli process simulation using an optimized feed profile. With grey box (above); with 
white box (below). 
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The more different combinations are tested the better, since the combination of in-
put variables does not present linear results. For example, the junction of two state 
variables may result in a worst prediction than the estimation made with only one of 
them separately. Similarly, a variable that does not produce great results when used 
alone, or in certain combinations, could produce excellent results when used in other 
combinations. Once the best combination of input variables and the best number of 
hidden nodes is determined, an ANN is trained to be further used for the process 
simulation. For example, in the PR case study, using only the state variable x4 and 6 
hidden nodes, the ANN would be the one given in Fig. 11. 

The ANNs are then trained and used to simulate the process, now with a grey box 
model. Using the ANN in Fig. 11, and a linear feed profile, the results for the PR 
process simulation are shown in Fig. 12. 

In Fig. 12 it is shown that the performance of the model was quite satisfactory, 
since the curves of the kinetics and state variables of the two models are very similar, 
even using only 150 training cases. The simulation for the Ecoli case study was also 
satisfactory (Fig. 13), although it is evident that the ANNs have some difficulties to 
model functions with abrupt variations, as for example the variable qS at the beginning 
of the process. For this simulation, the ANN used has 10 hidden nodes, it was trained 
with the input variables OTR, CTR, X, A and F and using an optimized feed profile. 

6   Conclusions 

In the work described in this chapter a software tool, the FerMoANN, was developed 
to aid in the modelling of fed-batch fermentation processes that can be used to create 
ANN based models from data coming from real experiments. It is possible to shape a 
process without the need to know the mathematical description of its mechanism, 
since learning is made directly from examples created from experimental data, show-
ing the potential of the application of ANNs in this type of problems. 

The application makes possible to introduce new fermentation processes at run-
time, enabling the application for a multitude of cases. It not only seeks to provide a 
solution to a specific case, but serves as a platform for a layman in ANNs to evaluate 
and use multiple models for each culture.  

This is possible since user interfaces are implemented in a simple and intuitive 
way. The modularity of the FerMoANN makes it scalable; the main modules can 
easily be used for future work. The core implementation of the functionalities is de-
tached from the user interface, to make code understanding and re-use easier. 

The implementation of several graph displays allows making visual comparisons 
between results, providing easier analysis of the factors influencing the course of the 
process. Thus, it is possible to identify potential optimizations that can be made, such 
as to change the feed profile. These optimizations can be tested within the tool, 
thereby avoiding some real experiments that bring, necessarily, increased costs for 
research. 

In the future, a major aim is to improve the capabilities of FerMoANN with new 
functionalities. An important concern is to create an interface to make the introduction 
of new processes easier, without having to write Java code. A generic objective func-
tion that could use the model to automatically define an optimization curve for some 
parameters (like feed rate profile) could also be implemented. 
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