Metadata of the chapter that will be visualized online

Chapter Title	Detection of the Gluco SDS-PAGE	corticoid Receptors in Brain Protein Extracts b	
Copyright Year	2014		
Copyright Holder	Springer Science+Bus	iness Media New York	
Author	Family Name Marques		
	Particle		
	Given Name	Fernanda	
	Suffix		
	Division	Life and Health Sciences Research Institute (ICVS), School of Health Sciences	
	Organization	University of Minho	
	Address	Campus Gualtar, Braga, 4710-057, Portugal	
Author	Family Name	Sousa	
	Particle		
	Given Name	João C.	
	Suffix		
	Division	Life and Health Sciences Research Institute (ICVS), School of Health Sciences	
	Organization	University of Minho	
	Address	Campus Gualtar, Braga, 4710-057, Portugal	
Author	Family Name	Cerqueira	
	Particle		
	Given Name	João J.	
	Suffix		
	Division	Life and Health Sciences Research Institute (ICVS), School of Health Sciences	
	Organization	University of Minho	
	Address	Campus Gualtar, Braga, 4710-057, Portugal	
Corresponding Author	Family Name	Sousa	
	Particle		
	Given Name	Nuno	
	Suffix		

thor's Proof			
	Division	Life and Health Sciences Research Institute (ICVS), School of Health Sciences	
	Organization	University of Minho	
	Address	Campus Gualtar, Braga, 4710-057, Portugal	
	Email	njcsousa@ecsaude.uminho.pt	
Abstract	and for the maintenance part of these actions ar that belongs to the nucl processes the different that are originated d mechanisms. For this should preferentially de Here, we describe the	Glucocorticoids are steroid hormones vital for organ system homeostasis and for the maintenance of essential biological processes. A significant part of these actions are mediated through glucocorticoid receptor (GR) that belongs to the nuclear receptor superfamily. To cover such variety of processes the different glucocorticoids act through different GR isoforms that are originated due to posttranscriptional and posttranslational mechanisms. For this reason when evaluating the levels of GRs we should preferentially determine protein levels instead of gene expression. Here, we describe the detection by Western blotting of the GR (α and β isoforms) protein, using macrodissected brain tissue.	
Key words (separated by "-")	Glucocorticoid recepto	r - Brain - Protein levels - Western blot	

Chapter 20

Detection of the Glucocorticoid Receptors in Brain Protein Extracts by SDS-PAGE

Fernanda Marques, João C. Sousa, João J. Cerqueira, and Nuno Sousa

Abstract

Glucocorticoids are steroid hormones vital for organ system homeostasis and for the maintenance of essential biological processes. A significant part of these actions are mediated through glucocorticoid receptor 7 (GR) that belongs to the nuclear receptor superfamily. To cover such variety of processes the different 8 glucocorticoids act through different GR isoforms that are originated due to posttranscriptional and posttranslational mechanisms. For this reason when evaluating the levels of GRs we should preferentially determine protein levels instead of gene expression. Here, we describe the detection by Western blotting of the GR (α and β isoforms) protein, using macrodissected brain tissue.

Key words Glucocorticoid receptor, Brain, Protein levels, Western blot

14

13

2

3

4

5

1 Introduction

Glucocorticoids are steroid hormones that are regulated in a circa-15 dian and stress-associated manner to maintain various functions of 16 the different body systems [1, 2]. These hormones regulate essen-17 tial biological processes including growth, inflammation, metabo-18 lism, apoptosis, and behavior. Most of these actions are mediated 19 at the genome level through the action of two distinct receptors: 20 the high-affinity mineralocorticoid receptor (MR) and the low-21 affinity glucocorticoid receptor (GR) [1]; herein, we will describe 22 the detection of GR given its ubiquitous distribution throughout 23 the body (including the central nervous system cells), and because 24 of the availability of good antibodies for its identification. In the 25 absence of glucocorticoids, GR is located in the cytoplasm bound 26 to chaperone proteins such as heat shock protein 90 [3]. 27 Glucocorticoids are lipophilic molecules and they can easily cross 28 the cell membrane. Then, intracellularly they bind to GR that 29 undergoes a conformational change, with the consequent GR 30 translocation to the nucleus. In the nucleus the ligand-bound GR 31 recognizes and binds to specific DNA sequences, known as 32 33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

Fernanda Marques et al.

glucocorticoid-response elements (GREs), which are usually located in the promoter region of target genes [4]. Once it binds to these DNA regions GR modulates gene expression mainly through activation and/or repression mechanisms. The diversity observed in GR signaling comes from the fact that different genes may contain, or not, GREs, and multiple receptor isoforms can be generated by alternative splicing and alternative translation initiation [2]. Also of relevance are the multiple posttranslational modifications that GR can suffer such as phosphorylation, acetylation, ubiquitination, and SUMOylation with small ubiquitin-related modifier proteins that can alter the function of this transcription factor [5]. One of the most relevant posttranscriptional alterations in GR synthesis is the alternative splicing that occurs in exon 9 (GR is the product of a single gene, NR3C1, that contains nine exons both in humans and in rodents). This alternative splicing results in two isoforms of the GR: GRα and GRβ, which are identical through amino acid 727 but differ in their C terminal [5]. The GR α isoform binds to glucocorticoids, translocates to the nucleus, and recruits coregulators to exert transcriptional effects. However, the GRß isoform resides constitutively in the nucleus and acts as a natural dominant negative inhibitor of the GR α isoform [2]. Here we will describe a Western blot method to quantify GR in rodents using an antibody that recognizes both isoforms [GRa (more abundant) and $GR\beta$], since it is an affinity-purified polyclonal antibody raised against a peptide mapping at the N-terminus of GR of mouse origin. The first step in the Western blotting procedure is, after protein extraction and quantification, using mixtures of solubilized proteins under denaturing conditions [in the presence of detergent, sodium-dodecyl-sulfate (SDS), and reducing agent $(\beta$ -mercaptoethanol)] to separate the macromolecules based on their molecular weights using a polyacrylamide gel electrophoresis (SDS-PAGE). After electrophoresis, the separated molecules are transferred or blotted onto a second matrix, generally a nitrocellulose or polyvinylidene-difluoride (PVDF) membrane. Next, the membrane is blocked to prevent any nonspecific binding of antibodies to the surface of the membrane. After blocking, the membrane is incubated with a primary antibody that will recognize and bind the antigen. A labeled secondary antibody that is directed against the primary antibody is then used. Labels include biotin, fluorescent probes such as fluorescein or rhodamine, and enzyme conjugates such as horseradish peroxidase or alkaline phosphatase. An appropriate substrate is then added to the enzyme and together they produce a detectable product such as a chromogenic precipitate on the membrane for colorimetric detection. The most sensitive detection methods use a chemiluminescent substrate that, when combined with the enzyme, produces light as a by-product. The light output can be captured using film, a CCD camera, or a phosphoimager that is designed for chemiluminescent detection.

86

Alternatively, fluorescent-tagged antibodies can be used, which are 81 directly detected with the help of a fluorescence imaging system. 82 Whatever system is used, the intensity of the signal should correlate with the abundance of the antigen on the membrane when 84 normalized for a housekeeping protein. 85

2 Materials

All solutions are prepared using ultrapure water (prepared by puri-87 fying deionized water to attain a sensitivity of 18 M Ω cm at 25 °C) 88 and analytical grade reagents. C57BL/6 male mice at 8- to 9-week 89 of age (Charles River) are used and mice brain regions are collected 90 by macrodissection, using a light microscope (SZX7, Olympus). 91 2.1 Protein 1. Radio-Immunoprecipitation Assay (RIPA) buffer (see Note 1): 92 Extraction 50 mM Tris-HCl, pH 8.0, 250 mM sodium chloride (NaCl), 93 2 mM EDTA, 10 % Glycerol, 1 Complete Protease Inhibitor and Denaturation 94 Cocktail Tablet (Roche Diagnostics), and inhibitor phospha-**Buffers** 95 tases 1 and 2 cocktail (Sigma-Aldrich). 96 Prepare: 97 - 1 M of Tris-HCl, pH 8.0: weight 30.3 g Trizma Base and 98 add 150 mL of water, adjust pH to 8.0, and adjust with 99 water until 250 mL. 100 - 3 M NaCl: weight 5.84 g of NaCl and add 100 mL of water. 101 - 0.5 M Ethylene-diamine-tetraacetic acid (EDTA), pH 8.0: 102 weight 186.1 g of EDTA and add 700 mL of water, adjust 103 pH to 8.0 with NaOH 10 M (~50 mL), and complete with 104 water until 1 L. 105 Dissolve one tablet of Complete Protease Inhibitor Cocktail 106 in 2 mL of water. 107 For 20 mL of RIPA buffer, use 1 mL of 1 M Tris-HCl, pH 8.0, 108 0.2 mL of 3 M NaCl, 40 µL of 0.5 M EDTA, 2.3 mL Glycerol 109 (87 %), 500 µL proteases inhibitor, 200 µL cocktail inhibitor phos-110 phatases 1 and 2. Add water until 20 mL. Store at -20 °C. Before 111 use, add 1 mM phenyl-methanesulfonyl-fluoride (PMSF). A PMSF 112 solution at 100 mM can be prepared by weighting 0.7 g of PMSF 113 in 40 mL ethanol 100 % (see Note 2). Add 200 µL of this solution 114 to the 20 mL of RIPA solution. 115 2. For quantification: use Quick Start[™] Bradford 1× Dye Reagent 116 (Bio-rad, Hercules, CA, USA) following the manufacturer 117 instructions. 118 3. SDS denaturating/lysis buffer (5×): 0.3 M Tris-HCl, pH 6.8, 119 10 % SDS (see Note 3), 25 % β -mercaptoethanol, 0.1 % bro-120 mophenol blue, 45 % glycerol. For 10 mL use 6 mL of 0.5 M 121

Author's Proof

Fernanda Marques et al.

122 123 124			Tris–HCl, pH 6.8 (see Subheading 2.2), 1 g of SDS, 2.5 mL of β -mercaptoethanol, 0.01 g of bromophenol blue, and 4.5 mL glycerol 100 %. Aliquot and store at -20 °C.
125 126 127 128	2.2 SDS Polyacrylamide Gel Materials and Solutions	1.	Resolving gel buffer: 1.5 M Tris–HCl, pH 8.8, weigh 181.7 g Tris, and transfer to a 1 L flask. Add water to a volume of 900 mL. Mix and adjust pH with HCl. Complete to 1 L with water. Store at 4 °C.
129 130 131		2.	Stacking gel buffer: 0.5 M Tris–HCl, pH 6.8. Weigh 60.6 g Tris and prepare a 1 L solution, as in the previous step. Store at 4 $^{\circ}$ C.
132 133		3.	40 % acrylamide and bis-acrylamide solution 19:1 (Bio-Rad; <i>see</i> Note 4). Store at 4 °C.
134 135		4.	SDS 10 %: weigh 5 g of SDS to 50 mL of water. Store at room temperature (<i>see</i> Note 5).
136 137		5.	<i>N</i> , <i>N</i> , <i>N</i> , <i>N</i> '-tetramethyl-ethylenediamine (TEMED; Bio-Rad). Store at room temperature (<i>see</i> Note 6).
138 139		6.	Ammonium persulfate (APS) 10 %: weigh 1 g of APS and dissolve in 10 mL of water (<i>see</i> Note 7).
140 141 142 143 144 145		7.	SDS-PAGE running buffer: 0.025 M Tris–HCl, pH 8.3, 0.192 M glycine, 0.1 % SDS. Prepare $10 \times$ native buffer (0.25 M Tris, 1.92 M glycine, 1 % SDS), for that weigh 30 g Tris, 144 g glycine, and 10 g SDS, mix, and make it to 1 L with water (<i>see</i> Note 3). Dilute 100 mL of $10 \times$ native buffer to 900 mL with water.
146 147		8.	Protein markers (Page Ruler™ Plus Prestained Protein Ladder, Fermentas, Thermo Scientific).
148 149 150 151 152 153	2.3 Immunoblotting Solutions	Ŀ	Western blot transfer buffer: 0.025 M Tris, 0.192 M glycine, and 20 % methanol. Prepare 10× transfer buffer (0.25 M Tris, 1.92 M glycine). Weigh 30 g Tris and 144 g glycine to make it to 1 L with water and mix until dissolution of the powder. Dilute 100 mL of 10× transfer buffer to 700 mL with water and add 200 mL of methanol (<i>see</i> Note 8).
154 155 156 157 158 159		2.	Phosphate buffered saline (PBS; $10\times$): 1.5 M NaCl, 0.1 M Tris-HCl, pH 7.4. Add 80 g sodium chloride (NaCl), 2 g potassium chloride (KCl), 14.4 g sodium phosphate dibasic (Na ₂ HPO ₄), and 2.4 g potassium phosphate monobasic (KH ₂ PO ₄), dissolve with 800 mL of water, adjust pH to 7.4, and fill with water until 1 L.
160 161		3.	PBS-0.2 % T: dissolve 2 mL of Tween-20 in 1 L of PBS. Store at 4 °C.
162 163		4.	Blocking solution (5 % milk in PBS-T): weigh 5 g of milk in 100 mL of PBS-T and store at 4 $^{\circ}\mathrm{C}.$

Author's	Proof

Glucocorticoid Receptor Detection

	5. Antibody diluent solution (2.5 % milk in PBS-T): weigh 0.25 g of milk in 10 mL of PBS-T and store at 4 °C.	164 165
	 6. Clarity[™] Western ECL Substrate (Bio-Rad). 	166
2.4 Western Blot	1. Primary antibody: mouse anti-GR (M-20; Santa Cruz	167
Antibodies	Biotechnology). This antibody is recommended for detection	168
	of mouse and rat GR α and GR β . Cross-reactivity with human GR is, however, indicated by the manufacturer.	169 170
	2. Secondary antibody: anti-rabbit IgG-HRP (SC-2301; Santa	170
	Cruz Biotechnology).	172
2.5 Immunoblotting	1. Mini-PROTEAN Tetra Cell Electrophoresis Module (Bio-Rad).	173
Materials	2. Mini Trans-Blot cell (Bio-Rad).	174
	3. Nitrocellulose membranes (Amersham, GE Healthcare).	175
	4. Whatman no.3 filter.	176
3 Methods		177
	Unless otherwise specified, carry out all procedures at room	178
	temperature.	179
3.1 Preparation	1. Set the casting frames (clamp two glass plates in the casting	180
of the Gel	frames) on the casting stands (see Note 9).	181
	2. Prepare the running gel: 12.5 mL of 40 % acrylamide solution,	182
	12.5 mL 1.5 M Tris-HCl, pH 8.8, 500 µL SDS 10 %, com-	183
	plete with water until 50 mL. From this mixture and for each mL of solution use 10 μ L of APS 10 % and 1 μ L of TEMED	184 185
	for polymerization. This is a 10 % acrylamide gel that will allow	186
	a good resolution of the GR protein, which migrates with an	187
	apparent molecular weight of 95 kDa. The volume will depend	188
	on the protein apparatus that is available in the laboratory.	189
	3. Swirl the solution gently but thoroughly.	190
	4. Pipet appropriate amount of separating gel solution (listed above) into the gap between the glass plates.	191 192
	5. To make the top of the separating gel horizontal, fill the gap	193
	until the top of the glasses with water (isopropanol can also be used).	194 195
	6. Wait for 20–30 min to let it gelate (see Note 10).	196
	7. Prepare the stacking gel: 5 mL of 40 % acrylamide solution,	197
	12.6 mL of 0.5 M Tris-HCl, pH 6.8, 500 µL SDS 10 % water	198
	until 50 mL. From this mixture and for each milliliter of solu-	199
	tion use 10 μ L of APS 10 % and 1 μ L of TEMED for polym-	200
	erization. This is a 4 % acrylamide gel.	201



Fernanda Marques et al.

202		8.	Discard the water or the isopropanol.
203		9.	Pipette in stacking gel until it overflows.
204 205			Insert the well-forming comb without trapping air under the teeth. Wait for 20–30 min to let it polymerized.
206 207 208 209 210 211		11.	Make sure a complete polymerization of the stacking gel occurred and remove the comb. Take the glass plates out of the casting frame and set them in the running tank. Put the running buffer (electrophoresis buffer) into the inner cham- ber and keep pouring after overflow until the buffer surface reaches the required level in the outer chamber.
212 213 214 215 216 217 218 219 220	3.2 Preparation of the Samples	anes mec salir a cc in d trol desc	$^{7}BL/6$ male mice (8- to 9-week of age) are utilized. Mice are sthetized with ketamine hydrochloride (150 mg/kg) plus letomidine (0.3 mg/kg). Upon transcardiac perfusion with the buffer, brain regions are collected by macrodissection using onventional light microscopy. Samples are immediately frozen ry ice and stored at -80 °C. Use chemical inhibitors and con- led temperature is strongly suggested during the below cribed steps to minimize the activity of proteases and other ymes that may modify the protein composition of the sample.
221 222 223		1.	Add RIPA buffer to the brain samples (<i>see</i> Note 11) and pass through a 20 G needle until all the tissue is disrupted (<i>see</i> Note 12).
224 225		2.	Sonicate the sample on ice five times, for 2 s every time (see Note 13).
226		3.	Centrifuge at 13,000 rpm during 10 min at 4 °C.
227		4.	Remove the supernatant for a new centrifugation, as in step 3.
228 229		5.	Perform a protein assay to determine the protein concentra- tion of the supernatant that should be $5-10 \ \mu g/\mu L$.
230 231 232	S		Mix 25 μ g of total protein of each sample with SDS denaturat- ing/lysis buffer (loading buffer). The maximum volume that is possible to load in the well depends on the comb used.
233			Heat them in boiling water for 5–10 min.
234		8.	Load the protein marker to the first well and then load pre- pared samples into the other wells, making sure not to over-
235 236			flow. Then close the chamber with the cover and connect the
237			anodes.
238 239		9.	Set an appropriate volt, usually 100 V, and run the electrophoresis.
240 241 242 243		10.	As for the total running time, since we are analyzing a protein that is approximately 95 kDa, stop SDS-PAGE running when a good resolution of the proteins with higher molecular weight in the protein marker used is visible.

[AU1]

	3.3	Immunoblot	tran this wich A n with the	use the wet transfer unit (Mini Trans-Blot cell) to perform the asference of the proteins from the gel to the membrane. Using electrophoretic transfer system, the gel and membrane sand- h is entirely submerged in transfer buffer within a buffer tank. conconducting cassette holds the membrane in close contact in the gel and the cassette assembly is placed in the tank between electrodes, transverse to the electrical field, and submerged ler conducting transfer buffer.	244 245 246 247 248 249 250 251
			1.	Place the transfer tank onto a magnetic stir-plate.	252
			2.	Add enough transfer buffer to the tank to fill it approximately halfway, add a stirbar, and begin stirring. This will help to maintain uniform conductivity and temperature during electrophoretic transfer.	253 254 255 256
			3.	Set up the cooling system for the tank transfer system.	257
			4.	Immediately following SDS-PAGE separate the gel plates with the help of a spatula or similar tool. Remove the stacking gel.	258 259
			5.	Insert the gel carefully in a box with deionized water to remove traces of SDS-PAGE running buffer and then let it equilibrate in Western blot transfer buffer.	260 261 262
[AU2]			6.	Let the membrane equilibrate for 5 min in western blot trans- fer buffer.	263 264
			7.	Embed the six sections of Whatman no. 3 filter paper in the Western blot transfer buffer.	265 266
			8.	Soak a fiber pad in transfer buffer and place it on top of the white side of the cassette.	267 268
			9.	Place on the top of the fiber pad three sections of embedded Whatman no. 3 filter paper and remove the bubbles. On top put the membrane without the formation of bubbles (<i>see</i> Note 14).	269 270 271
			10.	Place the gel on the top of the membrane followed by three or more embedded Whatman no. 3 filter paper. Remove the bub- bles (<i>see</i> Note 14).	272 273 274
			11.	Soak a fiber pad in transfer buffer and place it on top of the filter paper.	275 276
			12.	Close the cassette and lock it, insert it into the tank. Make sure the black cassette plate faces the black electrode plate.	277 278
			13.	Add transfer buffer to the tank until the tank is filled and place the lid on top, checking that the color-coded cables on the lid are attached to the electrode cards of the same color.	279 280 281
			14.	Connect the cables to the power supply and set at $100 \text{ V}/350 \text{ mA}$ and run for 1 h.	282 283
			15.	Upon completion of the run, remove the cassettes and disas- semble the gel and membrane sandwich. Rinse the membrane briefly in water to ensure that no residual gel pieces stay adher- ent to the membrane.	284 285 286 287

Fernanda Marques et al.

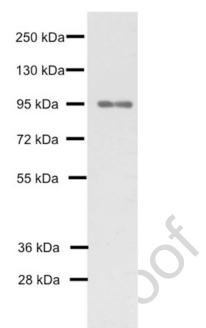


Fig. 1 The figure shows the immunoblot of protein extracted from mouse hippocampus with anti-GR Ab. One 95 kDa band is detected. It corresponds to GR α , the most abundant isoform

288	16. Incubate for 5 min in Ponceau S dye (see Note 15).
289 290	17. Wash in water until the Ponceau S staining disappears from the membrane.
291	18. Block the membranes with blocking solution for 1 h.
292	19. Wash 3×10 min in PBS-T.
293 294	20. Incubate with diluted (1:1,000 in PBS-T) anti-GR antibody and incubate overnight at 4 °C with shaking.
295	21. Wash 3×10 min in PBS-T.
296 297	22. Incubate with secondary antibody (diluted 1:10,000 in PBS- T) for 1 h at RT.
298	23. Wash 3×10 min in PBS-T.
299 300	24. Develop the blot using Clarity [™] Western ECL Substrate and incubate for 5 min, following manufacture instructions.
301 302	25. Expose the membrane to X-ray film during approximately 3–5 min (<i>see</i> Note 16).
303 304 305	26. Check the molecular weight of the band putting the film on the top of the membrane and checking the position of the band relatively to the protein marker (Fig. 1) (<i>see</i> Note 17).

4 Notes

1.	RIPA buffer enables efficient cell lysis and protein solubilization while avoiding protein degradation and interference with the proteins' immune reactivity and biological activity.	307 308 309
2.	Store the PMSF solution at -20 °C protected from the light.	310
3.	Care should be taken to weight SDS since it is toxic; individual protection mask should be used.	311 312
4.	Due to the Acrylamide/Bis solution toxicity we advice to use the commercially available ones.	313 314
5.	SDS can precipitate if stored at 4 °C or if the room tempera- ture is too low, if this happens dissolve it by warming if needed.	315 316
6.	Due to its pungent smell when pipetting TEMED you should use individual protection mask. If stored at 4 °C, its pungent smell is reduced.	317 318 319
7.	When aliquots of APS are stored at -20 °C for long periods, the correct gel polymerization might be compromised.	320 321
8.	Care should be taken to add methanol since it is toxic; it should be done in a hood. Use only high-quality, analytical grade methanol. Impure methanol can cause increased transfer buffer conductivity and poor transfer. Avoid adding methanol directly to the 10x buffer, since it precipitates its ingredients.	322 323 324 325 326
9.	All glass plates should be clean and dry.	327
10.	Various factors affect the properties of the resulting gel: higher concentration of APS and TEMED will lead to a faster polymerization, but on the other hand, to a lower stability and elasticity. The optical temperature for gelation is 23–25 °C. Low temperature will lead to turbid, porous, and inelastic gels.	328 329 330 331 332
11.	A suggestion of the RIPA volume that should be used for dif- ferent brain regions is indicated in Table 1.	333 334
t1.1 Tab	le 1 ıme of RIPA for each mouse brain region to obtain approximately	

t1.3 14 ng of protein

t1.4	Brain region	RIPA volume (µL)
t1.5	Brainstem	400
t1.6	Cerebellum	300
t1.7	Hypothalamus	150
t1.8	Hippocampus	300
t1.9	Cortex	600
t1.10	Substantianigra	30

306

Author's Proof

Fernanda Marques et al.

335	12.	Mechanical cell lysis usually generates heat. Use cooling where
336		required to avoid overheating the sample.
337	13.	Pause between sonication steps to avoid overheating.
338	14.	A 10 mL pipette can be used to remove by rolling out the air
339		bubbles from the gel-membrane sandwich prior to placing in
340		the transfer cassette.
341	15.	It is recommended to perform Ponceau S staining before pro-
342		ceeding for the immune-blot to control the transference effi-
343		ciency and the efficient running of the samples in the gel. If
344		the efficiency was low or if the protein running in the acryl-
345		amide gel was abnormal or if there are bubbles in the mem-
346		brane, do not proceed with the immunoblot.
347	16.	Exposure time to the X-ray film will also depend on the expres-
348		sion level of GR in the sample.
349	17.	Predicted band size: 87 kDa; observed band size: 95 kDa.

350 **References**

- Oakley RH, Cidlowski JA (2013) The biology of the glucocorticoid receptor: new signaling mechanisms in health and disease. J Allergy Clin Immunol 132:1033–1044
- Kadmiel M, Cidlowski JA (2013) Glucocorticoid receptor signaling in health and disease. Trends Pharmacol Sci 34:518–530
- Grad I, Picard D (2007) The glucocorticoid responses are shaped by molecular chaperones.
 Mol Cell Endocrinol 275:2–12
- 4. Meijsing SH et al (2009) DNA binding site sequence directs glucocorticoid receptor structure and activity. Science 324:407–410 363
- Oakley RH, Cidlowski JA (2011) Cellular processing of the glucocorticoid receptor gene and protein: new mechanisms for generating tissuespecific actions of glucocorticoids. J Biol Chem 286:3177–3184
 364 365 366 367 368

Author Queries

Chapter No.: 20 0002151701

Queries	Details Required	Author's Response
AU1	Please provide g-force value for 13,000 rpm.	
AU2	Please check if edit to the sentence "Let the membrane equilibrate" is appropriate.	

Rected