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ABSTRACT: 

The objective of this paper is to propose a new hybrid methodology according to near surface mounted (NSM) 

technique, using carbon fiber reinforced polymer (CFRP) reinforcement for the flexural strengthening of reinforced 

concrete (RC) beams. This NSM hybrid flexural strengthening technique combines non-prestressed and prestressed 

CFRP laminates in the same application in order to provide a good balance in terms of load carrying and ultimate 

displacement capacity to the strengthened elements. An experimental program composed of six RC beams was carried 

out to assess the benefits of this NSM hybrid technique when compared to the use of non-prestressed or prestressed 

NSM CFRP laminates (NSM prestressing technique). For this purpose, the performance of both techniques in terms 

of crack width, prevailing failure mode, ultimate displacement capacity, energy absorption, and load carrying capacity 

of the strengthened beams was assessed. The experimental tests were also simulated by executing advanced 3D 

nonlinear finite element analysis. Moreover, the potentialities of other configurations for the NSM hybrid technique 

by adopting different non-prestressed CFRP reinforcement ratios were numerically assessed executing a parametric 

study, and the relevant results are presented and discussed. 
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1. Introduction 

Extensive research has provided evidence for the efficiency of carbon fiber reinforced polymer (CFRP) composite 

materials for the flexural and shear strengthening of RC structures according to externally bonded reinforcing (EBR) 

or near surface mounted (NSM) techniques [1-6]. The NSM technique offers higher strengthening effectiveness than 

the EBR technique due to the higher confinement that the concrete surrounding the CFRP reinforcement provides to 

these composite materials [7]. 

The strengthening potentialities of high tensile strength of CFRP reinforcement can be mobilized by using composite 

material applied with a certain prestress level [8, 9]. The prestressed CFRPs provide an increase of load carrying 

capacity for deflection levels corresponding to the serviceability limit state (SLS) [10]. The maximum load capacity 

of the strengthened beams is, however, not influenced by the applied prestress level, while the load carrying capacity 

corresponding to concrete cracking and steel yield initiation has a tendency to increase with the prestress level [10]. 

Moreover, the prestressing system provides several additional strengthening benefits like closing the existing cracks, 

decreasing the crack width and cracked zone length, and reducing the probability of corrosion in steel reinforcement 

(durability benefit) [10, 11]. 

In spite of these benefits of prestressing system, the experimental results have indicated a decrease in terms of energy 

absorption and displacement ductility capacity up to failure of the strengthened beams, when the prestress level applied 

to the NSM CFRP reinforcement increases [8, 10, 12]. The energy absorption (
dE ) is determined by integrating the 

area under the force-displacement curve up to the deflection at ultimate strength (
u ), while the displacement ductility 

capacity is evaluated through a ductility index ( 
) that is defined as ratio between the deflection corresponding to 

the ultimate strength (
u ) and to the steel yield initiation (

y ) of the beams (
u y    ). This ductility criterion 

evaluates the ability of a structure to sustain plastic deformation without significant loss of load carrying capacity 

prior to collapse.  

On the other hand, beams flexurally strengthened with FRP systems and applied according to EBR or NSM technique, 

do not present an almost perfectly plastic behavior after yielding of the longitudinal tensile steel bars, as is the case of 



conventionally RC beams, since the FRP reinforcement has linear elastic behavior up to its brittle failure [13, 14]. 

Hence, in order to evaluate the ductility performance of FRP strengthened RC beams, deformability criterion was 

proposed by [15, 16] to evaluate the capacity of FRP strengthened beams to present, timely, signals of attaining 

collapse. Deformability index (
d ) is defined as the ratio between the deflection corresponding to the failure (

u ) 

and to the SLS conditions (
SLS ) of the FRP strengthened beams (

d u SLS   ). 

The reduction of ultimate displacement capacity of the prestressed NSM CFRP beams with the increase of the prestress 

level is caused by the rupture of the CFRP reinforcement at smaller deflections, as a consequence of the initial tensile 

strain due to the prestress imposed to these composite materials. To improve the ultimate displacement capacity of 

NSM CFRP strengthened RC beams, partially bonded system (similar to fully bonded system except an unbonded 

portion of CFRP length at mid-span) was applied by [15]. Although the partially bonded strengthening has provided 

an improvement of the deformability compared to the fully bonded strengthening system, a slight decrease (4%-11%) 

was observed in terms of load carrying capacity at the steel yield initiation and at the failure when the corresponding 

values for the fully bonded system with similar prestress level were considered for comparison purpose.  

Few studies have been dedicated to propose techniques for the enhancement of the ultimate displacement capacity of 

RC beams strengthened with prestressed NSM CFRP reinforcement (NSM prestressing technique). Hence, the 

purpose of the current study is to assess experimentally and numerically the potentialities of a new NSM hybrid 

strengthening methodology to enhance not only the load carrying capacity at SLS and ultimate conditions, but also 

the ultimate displacement and energy absorption capacity, when compared to the use of NSM prestressing technique. 

The proposed NSM hybrid technique combines non-prestressed and prestressed CFRP laminates in the same 

application for the flexural strengthening of RC beams. In this context an experimental program composed of RC 

beams strengthened according to the NSM prestressing and NSM hybrid techniques, using CFRP laminates, was 

carried out. 

A 3D finite element (FE) model was adopted to simulate the experimental tests. This model is capable of simulating 

the nonlinear behavior of the constituent materials and the behavior of CFRP-adhesive-concrete interfaces, and the 

prestress process adopted in the test setup. After demonstrating the good predictive performance of this numerical 



strategy, the efficiency of another configuration for the proposed NSM hybrid technique was numerically assessed for 

the flexural strengthening of RC beams, and the relevant results are presented and discussed. 

 

2. Experimental Program 

2.1. Beams and test setup 

The experimental program was composed of six rectangular cross-section RC beams. One of the RC beams was kept 

un-strengthened as a control beam, while three RC beams were strengthened with a CFRP laminate prestressed at 0% 

(serving as a passive strengthened beam), 20%, and 40% of its nominal tensile strength, by adopting the NSM 

technique (designated as Pre-beams). The remaining two RC beams were strengthened by applying a NSM hybrid 

technique using non-prestressed and prestressed (20% and 40%) CFRP laminates in the same application (designated 

as HPre-beams). 

Characteristics of the tested beams (geometry, loading configuration, support conditions and reinforcement details) 

are schematically represented in Figure 1 (dimensions are in mm). These simply supported beams were monotonically 

loaded up to failure under four-point loading configuration by imposing a displacement rate of 1.2 mm/min. The shear 

reinforcement ratio was designed to avoid shear failure for the RC beams ( . 0.38%sw sw wA b s   , where 
swA is the 

cross sectional area of a steel stirrup, 
wb is the width of beam’s cross section, and s is the spacing of the stirrups). The 

shear capacity of these beams, calculated according to the recommendations of [17] and [18], varies between 211 kN 

and 228 kN, which is slightly higher than the expected maximum flexural capacity for the strengthened beams (

. 0.87%s s wA b d   , where
sA  is the cross sectional area of the tensile steel reinforcement, and d is its effective depth 

from top fiber of beam’s cross section).  

For the flexural strengthening of the RC beams according to the NSM prestressing technique, a CFRP laminate of 1.4 

× 20 mm2 cross sectional area was introduced into a groove (6 × 25 mm2 cross section) pre-executed on the concrete 

tensile surface along the total beam length (sec.(A) in Figure 2). The CFRP laminate was bonded to the surrounding 

concrete with epoxy adhesive, and its extremities become at 50 mm before the supports (150 mm from the extremities 

of the beam) in order to simulate the anchorage conditions in a real applications (more details about the anchorage 



conditions can be found elsewhere [10]). The tensile strains of the CFRP reinforcement in the passive strengthened 

beam were recorded by installing two strain gauges on the laminate (SG 1 and 2 shown in Figure 3), while for the 

prestressed strengthened beams, in addition of these two strain gauges, one more was installed on the prestressed 

laminate to better assess of the prestress losses (SG3 in Figure 3).  

In the case of the hybrid strengthened beams, one additional passive CFRP laminate of 1.4 × 20 mm2 cross sectional 

area was placed on each side of a prestressed CFRP laminate (1.4 × 20 mm2 cross section) into the same groove 

(Figures 2 and 3) to provide an attempt of avoiding rupture of the prestressed CFRP laminate in the maximum bending 

moment region. At the location of the passive laminates, the groove size was increased to 15 × 25 mm2 cross section 

(sec.(B) in Figure 2). The length of the passive laminates was extended at both extremities of the maximum bending 

moment region as development length represented in Figure 2. The development length was determined according to 

the recommendation of [1],    . . 2.( ).db b b fd b b bl a b f a b   , where 
ba  and 

bb  are the thickness and height of the 

laminate’s cross section, 
fdf  and 

b  are the tensile strength of CFRP and the average bond strength, respectively. By 

considering for 
ba , 

bb , 
fdf  and 

b  the values of 1.4 mm, 20 mm, 2000 MPa, and 6.9 MPa, respectively, it was obtained 

190mmbdl  , and a value of 300 mm was adopted due to the uncertainty in terms of the 
b  values. The tensile strain 

developed in the passive laminates was assessed by installing one strain gauge on the laminate (SG1 in Figure 3), 

while four strain gauges were installed on the prestressed laminate (SG 2, 3, 4 and 5 in Figure 3). To evaluate an 

eventual occurrence of a strain gradient in the prestressed laminate in the zone of the extremities of the passive 

laminates, SG 3 and 4 were installed at 50 mm before and after this section on the prestressed laminate, respectively. 

Moreover, one strain gauge was installed on the top fiber of the concrete at the mid-section of all the tested beams to 

monitor the concrete compressive strain (“Concrete SG” in Figure 3). 

   

2.2. Prestressing system 

The prestressing system represented in Figure 4 was designed to apply the prestress force to the CFRP reinforcement 

by taking advantage of an existing high stiff reaction steel frame in the laboratory of Minho University [19]. This 

prestress force was applied to the laminate at the sliding extremity of the prestressing system (Figure 4) using a hollow 



hydraulic cylinder. This hydraulic cylinder was connected to a through-hole load cell to control release rate of the 

prestress force. Two steel rollers were placed under the beams to ensure a simultaneous release of the prestress force 

in both extremities of the RC beams. A more detailed description of the adopted prestressing system in the present 

experimental program (for laboratory conditions) can be found elsewhere [10], where the prestressing system for the 

flexural strengthening with NSM prestressed CFRP laminates on real conditions is also introduced. The applied 

prestress level was controlled by monitoring the average strain values of the strain gauges installed on the prestressed 

CFRP laminate (represented in Figure 3), considering the material properties reported by the manufacturer (elasticity 

modulus of 150 GPa and nominal tensile strength of 2000 MPa). The prestress force was totally removed after the 

recommended curing time for epoxy adhesive (72 hours at room temperature) adopting a relatively low releasing rate 

of 0.3 kN/min to avoid damage in the interface connections. 

  

2.3. Material properties 

The average values of the main properties for concrete, steel bars, CFRP laminate, and epoxy adhesive are indicated 

in Table 1, where the average compressive strength and Young’s modulus of the concrete were evaluated from uniaxial 

compression tests on cylinders of 150 mm diameter and 300 mm height at the age of the beam tests (165 days).   

 

3. Experimental Results 

3.1. Load-displacement curves 

The relationship between the applied load and the displacement at the mid-span for all the tested beams is depicted in 

Figure 5a. Regardless the prestress level, Figure 5a and Table 3 show an average increase of about 30% in terms of 

the maximum load carrying capacity for the beams strengthened with the NSM prestressing technique when compared 

to the control beam, while the average increase for the HPre-beams was about 44% when the same comparison is 

done. Figure 5b represents the strengthening efficiency in terms of load carrying capacity at concrete cracking, SLS 

conditions, steel yield initiation, and ultimate stage for all the strengthened beams, where the load capacities were 

normalized to the corresponding ones of the control beam. The SLS conditions for this experimental program were 



adopted according to the requirements of the actual European design recommendations ( 250 8.8mmL  , where L is 

the beam’s span) [17]. 

Table 2 shows the main relevant results of the flexural response of the tested beams, where it can be confirmed that 

both strengthening techniques (Pre and HPre) have assured an increase in terms of load carrying capacity at concrete 

cracking (
crP ), SLS deflection conditions (

SLSP ), and steel yield initiation (
yP ), when the corresponding values of the 

passive strengthened beam are considered for comparison purposes, since an initial compression field in the tensile 

steel bars and surrounding concrete is introduced after the release of the prestress force. The increase of these force 

indicators is relatively small because only one prestressed laminate was applied in the Pre and HPre beams, which 

corresponds to a strengthening ratio of only 0.065%. However, the HPre-beams presented a higher increase in terms 

of the aforementioned force indicators and maximum load (
uP ) without compromising the ultimate displacement 

capacity. This higher increase of the force indicators for the HPre-beams can be justified by the higher CFRP 

reinforcement ratio ( . 0.195%f f w fA b d   , where 
fA  is the cross sectional area of the CFRP reinforcement, and 

fd  is its effective depth from top fiber of beam’s cross section) in the maximum bending moment region.  

As previously mentioned, all strengthened beams presented higher 
yP  than the control beam, which results in a higher 

safely margin at SLS conditions (  control control

y SLS SLSP P P , where control

SLSP  is the load corresponding to the SLS deflection 

of the control beam) based on the requirements of [17] (keeping the stress level in the longitudinal tensile steel bars 

below its yield strength) (Table 3). This increase of the safety margin was 13%, 19%, and 28% for the beams 

strengthened with the CFRP laminate prestressed at 0%, 20%, and 40% level, respectively, while the HPre-beams 

prestressed at 20% and 40% level presented an enhancement of 43% and 46% in terms of this safety margin, 

respectively. On the other hand, at the deflection limit corresponding to the SLS requirement, the NSM prestressing 

technique provided an increase of 4%, 6%, and 15% in terms of the load carrying capacity for prestress level of 0%, 

20%, and 40%, respectively, when the control beam is considered for comparison purposes, while for the HPre-beams, 

the increase of the service load was 21% and 24%, for 20% and 40% prestress levels, respectively (Table 3). 

According to Table 2, the energy absorption (
dE ) and deformability (

d ) indexes tended to decrease with the increase 

of the prestress force applied to the CFRP reinforcement. In fact, by increasing the prestress level in the laminate, the 



rupture of the CFRP, when is the prevailing failure mode, occurs at a smaller deflection, resulting a decrease of the 

nonlinear response of the prestressed beams after steel yielding. Figure 6 shows the normalized indexes of energy 

absorption ( pas

d dE E ) and deformability ( pas

d d  ) for the strengthened beams, where the pas

dE  and pas

d
 are the 

energy absorption and deformability indexes of the passive strengthened beam.  

Figure 6 evidenced that for 40% prestress level, the HPre-beam showed an enhancement of 24% and 9% in terms of 

energy absorption and deformability indexes, respectively, compared to the beam strengthened according to the NSM 

prestressing technique. For 20% prestress level, the HPre-beam developed an energy absorption similar to the beam 

strengthened with prestressed CFRP laminate (Pre-beam), while the NSM hybrid technique showed a decrease of 12% 

in terms of deformability index when compared to the use of NSM prestressing technique for the flexural strengthening 

of the beam. This fact can be justified by an unexpected premature failure of the 20% HPre-beam before the rupture 

of the prestressed laminate, which will be discussed in Section 3.3.  

 

3.2. Internal strain distribution 

At the maximum flexural capacity of the strengthened beams, the tensile strains recorded by the strain gauges installed 

on the laminates (see Figure 3) are depicted in Figure 7, where the prestrain value represents the initial tensile strain 

of the laminate after the release of the prestress force. Figure 7 evidences that the maximum tensile strain in the 

laminate of the beams strengthened with the NSM prestressing technique, has occurred in the maximum bending 

moment region, while in the case of the HPre-beams, due to the strengthening contribution of the passive laminates, 

the location of the maximum tensile strain in the prestressed laminate was transferred to just after the extremity of the 

passive laminates (SG4), which can postpone the failure of the prestressed laminate. 

The relationship between the applied load and concrete compressive strain at the top fiber of the mid-section is 

represented in Figure 8 (data of the strain gauge in the control beam has not been reported due to the deficient 

functioning of this SG). This figure evidences that by increasing the level of the prestress force applied to the CFRP 

laminate, the Pre-beams exhibited a lower concrete compressive strain at the failure (as also observed by [10]). On 

the other side, the concrete compressive strains at the top fiber of the HPre-beams were, at the maximum beam’s 

capacity, significantly lower than the compressive strains of the beams strengthened with the NSM prestressing 



technique. This is justified by a downward of the position of the neutral axis, as well as a lower tensile strain in the 

laminates due to the higher flexural strengthening ratio in the region of highest bending moment in the HPre-beams.   

 

3.3. Failure modes and crack patterns 

The ultimate flexural capacity of all the tested beams was controlled by three types of failure modes after yielding of 

the tensile steel bars, namely: crushing of the concrete in the compression zone (CC); rupture of the laminate (CR); 

and concrete cover delamination (CD), as represented in Figure 9. In the control and passive strengthened beams, the 

concrete has crushed at the top zone of the central region of these beams (a maximum compressive strain of 0.0035 

was recorded in the passive strengthened beam before the rupture of the laminate). In the passive strengthened beam, 

the laminate has ruptured immediately after concrete crushing. The beams strengthened with prestressed CFRP 

laminate failed by the rupture of the laminate due to the attainment of the ultimate tensile strength of the CFRP in a 

cracked section.  

After yielding of the tensile steel bars, the HPre-beams experienced different failure modes, located at the end section 

of the passive laminates, as represented in Figure 9, while the failure modes of all other beams were located within 

the maximum bending moment region. Investigation of the crack widths in the HPre-beams evidenced that the cracks 

in the concrete surrounding the laminates in the region where the SG4 is located (Figures 3 and 9) were wider than 

the cracks at the SG3 section (Figures 3 and 9). This is supported by the higher tensile strain value recorded by the 

SG4 compared to the corresponding value of SG3 in the prestressed laminate of the HPre-beams, as shown in Figure 

7. According to the principle of static equilibrium applied to the concrete placed between these two cracked sections, 

the shear (
s ) and tensile (

t ) stresses can be created in the weakest level along the concrete section (as shown in 

Figure 9). This weakest level is a plane just below the tensile steel bars due to a higher percentage of the voids formed 

during the concrete casting process (as previously confirmed by [20, 21]). At this weak plane’s level, the tensile stress 

(normal to the plane), conjugated with the shear stress, can contribute to separate the concrete cover below the tensile 

steel bars by horizontally extending the cracks at the SG4 section. On the other side, the prestressed laminate 

(continuously passing from both SG3 and SG4 cracked sections) attempts to prevent this concrete cover separation.  



During the bending loading process, by increasing the aforementioned stresses in the weak plane, the 20% HPre-beam 

showed a staircase pattern of load decay after the maximum flexural capacity (Figure 5a) due to the gradually 

separation of the concrete cover (cover delamination), while the 40% HPre-beam failed by rupturing of the prestressed 

CFRP laminate at a tensile strain less than its ultimate tensile strength (see Figures 7 and 9), since the weak plane’s 

stresses may have contributed to the higher prestress level applied to the CFRP laminate. However, the 40% HPre-

beam provided a higher maximum flexural capacity when compared to the corresponding value of the 20% HPre-

beam (Table 2). In fact, by increasing the prestress level, a higher compressive strain field is created in the concrete 

cover below the tensile steel bars, which may provide more resistance in terms of opening and extending the cracks 

at the section of SG4, resulting in a higher flexural capacity for the strengthened beam when failing by concrete cover 

delamination.  

The crack pattern of all the tested beams at the ultimate stage is shown in Figure 9, where most cracks consisted of 

flexural cracks. In the shear spans (defined between the point loading and the nearest support) flexural-shear cracks 

have formed. Due to the higher load carrying capacity of the HPre-beams, a more diffuse crack pattern with a 

predominance of shear cracks has formed in the shear spans of these beams, when compared to the other beams, since 

the shear capacity of all the beams is equal. Additionally, Figure 9 evidenced that by increasing the prestress level 

applied to the CFRP laminate, a decrease in terms of cracked zone length was observed in the Pre-beams due to an 

initial compressive strain field introduced by the prestress force. However, the HPre-beams showed longer cracked 

zone length compared to the Pre-beams due to a higher load carrying capacity provided by the hybrid strengthening 

system. The comparison between the cracked zone lengths for all the strengthened beams is indicated in Figure 10b, 

where the cracked zone lengths were normalized to the corresponding length of the control beam.  

The relationship between the average crack width and applied load for the tested beams is represented in Figure 10a, 

where the average crack width was calculated by averaging the widths of the cracks located in the maximum bending 

moment region at the level of the tensile steel reinforcement. To evaluate the efficiency of the presented strengthening 

techniques in terms of limiting the crack width of the beams at SLS conditions, Figure 10b compares the average crack 

width of the strengthened beams at the SLS deflection limit (8.8 mm) normalized to the one registered in the control 

beam. Both prestressing and hybrid strengthening techniques showed a smaller average crack width when the prestress 

level applied to the CFRP laminate increases. This reduction of the average crack width was more noticeable in the 



HPre-beams when compared to the Pre-beams with similar prestress level, which can be attributed to the higher 

flexural stiffness provided by the hybrid technique due to the contribution of the passive laminates. 

 

4. Numerical Simulation 

4.1. Description of finite element model 

Previous research of the authors [10] evidenced that, a 3D finite element (FE) approach, capable of simulating the 

nonlinear behavior of the used materials, and the laminate-epoxy adhesive and concrete-epoxy adhesive interfaces, as 

well as, reproducing the real conditions for the experimental prestress process, can predict with high accuracy the 

behavior of RC beams strengthened with prestressed CFRP laminates applied according to the NSM technique. Hence, 

this numerical approach was used to simulate the experimental tests, by modeling one quarter of the beam, taking 

advantage of the double symmetry of the beams in order to reduce the computational time.  

Figure 11 represents the finite element mesh of the hybrid strengthened beams, where a refined mesh was applied in 

the location where relatively high strain gradients are expected to develop. The support and loading conditions were 

simulated according to the characteristics of the test setup, and the experimental prestress process were reproduced 

adopting the real conditions in laboratory (1st applying the prestress force; 2nd introducing the interfaces; 3rd release 

the prestress force at both extremities of the CFRP reinforcement).  

Eight-node solid elements were used for the concrete, and the Concrete Damaged Plasticity (CDP) model was adopted 

to simulate the concrete’s nonlinear behavior. The CDP model considers two main damage mechanisms of the 

concrete, namely, cracking formation and propagation in tension, and elasto-plasticity in compression [22]. The 

uniaxial behavior of the uncracked concrete in tension and compression was assumed to be linear up to
tf  (concrete 

tensile strength: 1.8 MPa) and '0.45 cf  (concrete compressive strength: 24.5 MPa), respectively, while stress-crack 

opening and stress-strain relations for uniaxial tension and compression of the cracked concrete were obtained 

according to the recommendation of CEB-FIP model code (with tensile fracture energy, 
fG , of 0.07 N/mm) (Figure 

12a and 12b) [18, 23].  



The constitutive parameters of the CDP model (dilation angle  , plastic potential eccentricity e , stress ratio
0 0b cf f

, shape of the loading surface cK , viscosity parameter V ) were estimated based on the recommended range of values 

by [22, 24], and are included in Figure 12a. The parameters   and e  represent the shape of the flow potential function 

that were determined based on the proposed ranges for  (34o - 43o) and e (1 – 1.5) [24], while
0 0b cf f and cK describe 

the shape of the yield function, and the adopted values are the default ones recommended by CDP model [22]. The 

value of V parameter was assumed to be zero in this analysis.  

Steel reinforcement was perfectly bonded to the concrete by embedding 3D two-node truss elements into the concrete 

elements. An idealized elasto-plastic model with associated plastic flow was assigned to these truss elements to 

simulate the behavior of the steel bars up to its ultimate tensile strength based on the simplified model recommended 

by CEB-FIP code [23] ( 563MPasyf   and 656MPasuf  represented in Figure 12c). Eight-node solid elements were 

adopted to model the CFRP laminate and epoxy adhesive. A perfect plasticity model, with no hardening, was used to 

simulate the epoxy adhesive behavior represented in Figure 12c ( 20 MPaef  ), while the tensile behavior of the CFRP 

laminates was assumed to be linear up to its ultimate tensile strength ( 1922 MPaff  , represented in Figure 12d). After 

ultimate tensile strain, fu , the contribution of the laminates is neglected. 

To consider debonding aspects in the FE model, two surface-based contact interfaces between concrete-epoxy 

adhesive and laminate-epoxy adhesive were defined. A mixed mode of normal stress-separation and shear stress-slip 

was used to model concrete-epoxy interface, while shear stress-slip mode was only considered to simulate the behavior 

of the laminate-epoxy interface. Damage evaluation of the interfaces was defined by a linear softening branch 

considering the fracture energy of the interfaces (Figures 12e and 12f).  

The normal tensile stress and tensile fracture energy of the concrete-epoxy interface was limited to the tensile strength 

and fracture energy of the concrete ( , 1.8MPan max tf   ,
, 0.07 N mmn f fG G  ), while the maximum shear stress 

and shear fracture energy of this bond was obtained from the model recommended by [25] (
, 7.1MPas max  ,

, 6.4 N mms fG  ). The maximum shear stress of the laminate-epoxy interface was found from the literature [26] (



, 20MPas max  ), while the shear fracture energy corresponding to this interface was estimated by calculating the area 

under the proposed shear stress-slip curve [26] (
, 23.56 N mms fG  ).  

 

4.2. Assessment of the numerical strategy 

The predictive performance of the described numerical model was assessed by simulating all the tested beams, and 

the comparison of the applied load versus mid-span displacement response obtained numerically and experimentally 

is depicted in Figure 13. This figure indicates a good predictive performance of the numerical strategy in terms of the 

flexural response of the tested beams. Moreover, in the cases of the control beam and beams strengthened with 

prestressed laminate at 0%, 20%, and 40% level, the numerical model predicted with good accuracy the displacement 

level when the concrete crushing and the rupture of the CFRP have occurred experimentally.  

For the flexural response of the hybrid strengthened beams, the numerical model estimates an almost constant load 

carrying capacity after the development of high stress gradient in the zone where experimentally an intense damage 

evolution was observed (Figure 9). The instant of the development of this stress gradient higher than the concrete 

tensile resistance was pointed on the numerical flexural response of the HPre-beams in Figure 13, as a stage when the 

concrete cover below the tensile steel bars cannot sustain the created stress concentration, and concrete cover 

delamination can occur. Finally, the failure modes registered experimentally were captured numerically, but for 

displacement levels higher than the ones observed experimentally. This fact can be attributed to the use of embedded 

truss elements within the concrete elements to model the longitudinal tensile steel bars, preventing to create the weak 

plane just below the tensile steel bars in the concrete. The concrete tensile strain field based on the PEEQT output 

(equivalent plastic strain in uniaxial tension) of the FE software is represented in Figure 14 for the prestressed and 

hybrid strengthened beams at the maximum capacity [22]. 

  

5. Evaluation of another configuration of the NSM hybrid technique 

This section aims to numerically evaluate the efficiency of passive CFRP reinforcement ratio of the NSM hybrid 

technique (lower than the one adopted in the experimental program), on the prevailing failure mode and ultimate 



displacement capacity of the strengthened beams. For this purpose, another configuration for combining passive and 

prestressed CFRP laminates based on the NSM hybrid technique was adopted for the flexural strengthening of the RC 

beams. This configuration was composed of two prestressed CFRP laminates of 1.4 × 10 mm2 cross sectional area and 

one passive CFRP laminate of either 1.4 × 10 mm2 (designated as HPre-L10, sec. (A1) in Figure 15) or 1.4 × 20 mm2 

(designated as HPre-L20, sec. (A2) in Figure 15) cross sectional area, introduced in separate grooves. The ratio of the 

prestressed CFRP reinforcement of this configuration was adopted similar to the corresponding ones in the 

experimental program (
( ) 0.065%f pre  ), and was also prestressed at 20% and 40% of its nominal tensile strength 

(Figure 15). The total length of the passive laminates was determined for fulfilling the development length adopted in 

the experimental tests (Figure 2). 

The RC beams strengthened with the proposed hybrid configuration (represented in Figure 15) were simulated using 

the described FE model, and the applied load versus mid-span displacement responses are represented in Figure 16a 

and 16b for 20% and 40% prestress levels, respectively. This figure also numerically compares the flexural response 

of HPre-L10 and HPre-L20 beams with the Pre and HPre beams adopted in the experimental tests (designated as Pre-

FE and HPre-FE, respectively) with similar prestress level.   

Figures 16a and 16b evidence that, regardless the prestress level, both HPre-L10 beams (prestressed at 20% and 40% 

level) failed by yielding of the tensile steel bars followed by the rupture of the prestressed CFRP laminates due to the 

attainment of its ultimate tensile strength at the end section of the passive laminate, while the HPre-L20 beams 

prestressed at 20% and 40% level experienced different failure modes after yielding of the tensile steel bars at the end 

section of the passive laminate. For 20% prestress level, the HPre-L20 beam failed by concrete cover delamination, 

while rupture of the prestressed laminates occurred in the 40% HPre-L20 beam. In fact, as previously mentioned 

(section 3.3), by increasing the prestress level, due to the higher compressive strain field in the concrete cover below 

the tensile steel bars, a higher resistance to the susceptibility of  concrete cover delamination can be provided for the 

hybrid strengthened beams. This higher resistance when conjugated with the higher initial tensile strain introduced in 

the CFRP, can result to increase the possibility of occurrence of the rupture of the prestressed laminates before the 

concrete cover delamination.  



Table 4 presents the most relevant results of the flexural response of the beams simulated in this section. It can be 

confirmed that, regardless the prestress level, by increasing the passive CFRP reinforcement ratio (
( )f pas ) of the hybrid 

beams, the load carrying capacity corresponding to the steel yield initiation stage has increased, as well as the 

corresponding deflection. On the other hand, increasing the passive CFRP reinforcement ratio has provided a higher 

ultimate displacement capacity and energy absorption index when the hybrid beams have failed by rupture of the 

prestressed laminates. In fact, the ultimate displacement capacity of the hybrid beams can significantly be affected by 

the prevailing failure mode at this stage.  

Figures 16c and 16d show the normalized indexes of energy absorption ( pas

d dE E ) and deformability ( pas

d d  ) for 

the simulated beams prestressed at 20% and 40% level, respectively, where the ( pas

dE ) and ( pas

d ) are the energy 

absorption and deformability indexes of the numerical response of the passive strengthened beam. This figure shows 

that, for 20% prestress level, the HPre-L10 beam (with
( ) 0.032%f pas  ) presented the highest energy absorption and 

deformability indexes amongst the beams strengthened according to the NSM hybrid technique, while for 40% 

prestress level, the HPre-L20 beam (with
( ) 0.065%f pas  ) provided the highest values for these indexes. Hence, it can 

be concluded that, regardless the prestress level, the increase of the passive CFRP reinforcement ratio (
( )f pas ) of the 

hybrid strengthened beams provides a higher energy absorption and deformability indexes when the rupture of the 

prestressed laminates (located at the end section of the passive laminate) is observed at the maximum capacity as 

governing failure mode.  

 

6. Conclusion 

This work aimed to explore a new hybrid methodology according to the near surface mounted (NSM) technique, using 

the carbon fiber reinforced polymer (CFRP) reinforcement for the flexural strengthening of reinforced concrete (RC) 

beams. This NSM hybrid technique combines non-prestressed and prestressed CFRP laminates in the same 

application. The efficiency of the proposed NSM hybrid technique for the flexural strengthening was evaluated by 

performing an experimental program composed of six RC beams. The experimental tests were simulated by a 3D 

nonlinear finite element model and then, the potentialities of other configurations for the NSM hybrid technique were 



numerically assessed. According to the obtained results from the current study, the following conclusions can be 

drawn:  

- NSM hybrid strengthening technique provided a higher strengthening efficiency in terms of load carrying capacity 

at concrete cracking, SLS conditions and steel yield initiation, when compared to the use of NSM prestressing 

technique for the flexural strengthening of RC beams. 

- The hybrid strengthened beams provided an average increase in terms of ultimate load carrying capacity higher 

than the ones obtained for the prestressed strengthened beams, when compared to the results obtained for the 

control beam. This ultimate flexural capacity of the hybrid beams was influenced by the prestress level applied 

to the CFRP laminate, due to the different prevailing failure modes.  

- The ultimate flexural capacity of all the tested beams was controlled by three types of failure modes after yielding 

of the tensile steel bars, namely: crushing of the concrete (CC); rupture of the CFRP laminate (CR); and concrete 

cover delamination (CD). The failure modes of the control and prestressed strengthened beams (CC and CR) were 

located within the maximum bending moment region, while the hybrid strengthened beams failed (by CR and 

CD) at the end section of the passive laminates. Moreover, the results showed that both prestressing and hybrid 

techniques decrease the possibility of the CC as prevailing failure mode of the strengthened beams, while this 

reduction was more evident when hybrid technique was adopted for strengthening application.  

- Both prestressing and hybrid strengthening techniques showed a smaller average crack width when the prestress 

level applied to the CFRP laminate increases. This reduction of the average crack width was more noticeable in 

the hybrid beams when compared to the prestressed beams with similar prestress level. 

- Reduction of the ultimate displacement capacity of the prestressed NSM CFRP beams was observed with the 

increase of the prestress level, resulting a decrease in terms of energy absorption and deformability indexes, while 

the aforementioned indicators for the hybrid NSM CFRP beams were influenced by the type of prevailing failure 

mode at the maximum capacity (CR or CD). The hybrid strengthened beam, failed by the CR failure mode at the 

maximum capacity, showed a higher energy absorption and deformability indexes compared to the prestressed 

strengthened beam with similar prestress level.   

- A 3D finite element (FE) model was adopted to simulate the experimental tests, and its good predictive 

performance was demonstrated. This model is capable of simulating the nonlinear behavior of the constituent 

materials, CFRP-adhesive-concrete interfaces, and the prestress process adopted in the test setup.  



- The efficiency of another configuration for the proposed NSM hybrid technique was numerically assessed for the 

flexural strengthening of RC beams. The results of this numerical analysis showed that, by increasing the passive 

CFRP reinforcement ratio in the hybrid system, a higher energy absorption and deformability indexes, when the 

CR failure occurs before the CD failure at the maximum capacity, can be achieved for the hybrid strengthened 

beams. The highest energy absorption and deformability indexes for the simulated hybrid beams were numerically 

obtained with an average increase of 21% and 37%, respectively, when the corresponding values of the prestressed 

NSM CFRP beam with similar prestress level are considered for comparison purpose. 
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Figure 1: The beams of the experimental program: a) geometry and loading configuration; b) steel reinforcement 

(dimensions in mm) 

  



  

Figure 2: CFRP reinforcement details of hybrid and prestressing NSM techniques (dimensions in mm) (the beams 

are intentionally represented upside down to reveal the grooves) 

 

 



 

Figure 3: Position of the strain gauges (SG) installed on the CFRP laminates and concrete (dimensions in mm) 

  



 

 

Figure 4: Prestressing system  

  



 

  

Figure 5: a) Load versus mid-span displacement of the tested beams, b) load capacities at concrete cracking, SLS 

deflection, steel yielding, and ultimate point normalized to the control beam 

  



 

Figure 6: Energy absorption and deformability indexes normalized to the passive strengthened beam 

  



 

Figure 7: Tensile strains of the CFRP laminate at maximum load: a) hybrid strengthened beams; b) beams 

strengthened with NSM prestressing technique 

  



 

Figure 8: Load versus concrete compressive strain for strengthened beams 

  



 

Figure 9: Crack pattern and prevailing failure modes at the ultimate capacity of the tested beams 

  



 

Figure 10: a) Load versus crack width of the tested beams, b) cracked zone length and crack width at SLS deflection 

normalized to the corresponding values of the control beam 

  



 

Figure 11: Boundary conditions and mesh of the FE model 

  



 

 

Figure 12: Uniaxial constitutive laws of the used materials: a) concrete in compression and in tension up to crack 

initiation, b) concrete post-cracking, c) steel reinforcement and epoxy adhesive, d) CFRP reinforcement, e) normal 

stress-separation relationship of the interface, f) shear stress-slip relationship of the interface 

  



 

 

Figure 13: Numerical simulation of the experimental tests: a) control beam, b) passive strengthened beam, c) 20% 

Pre-beam, d) 40% Pre-beam, e) 20% HPre-beam, f) 40% HPre-beam  

  



 

Figure 14: Distribution of the concrete tensile strain based on the PEEQT output 

  



  

Figure 15: Characteristics of another configuration for the hybrid technique (dimensions in mm) (the beam is 

intentionally represented upside down to reveal the grooves) 

  



   

Figure 16: a) load versus mid-span displacement of 20% hybrid beams, b) load versus mid-span displacement of 

40% hybrid beams, c) normalized energy absorption and deformability indexes for 20% prestress level, d) 

normalized energy absorption and deformability indexes for 40% prestress level 

 

  



Table 1: The average values of the main material properties of the constituent materials 

Concrete 
Compressive strength Young’s modulus 

fcm= 24.5 MPa Ec=20 GPa 

 

Steel bars 

Diameter Yield initiation strength Tensile strength Elasticity modulus 

6 mm fsym=613 MPa fsum= 696 MPa Es=218 GPa 

12 mm fsym=563 MPa fsum= 656 MPa Es=203 GPa 

 

CFRP laminate 
Tensile strength Ultimate tensile strain Elasticity modulus 

ffum= 1922 MPa εfum= 11.7 (‰) Ef=164 GPa 

 

Epoxy adhesive 
Tensile strength Elasticity modulus 

fem= 20 MPa Ee=7 GPa 

 

  



Table 2: Relevant results obtained in the tested beams 

RC beams 
(%)

f
 

( )

crP

kN
 

( )

cr

mm


 

( )

yP

kN
 

( )

y

mm


 

( )

uP

kN
 

( )

u

mm


 

( )

SLSP

kN
 

( )

dE

kN mm
 

( )

d

u SLS



 
  

Control 0 18.00 0.51 104.50 9.01 111.39 24.79 102.68 2284 2.82 

Passive 0.065 22.10 0.60 115.84 10.17 142.48 25.43 107.10 2721 2.89 

20% Pre 0.065 23.39 0.85 122.18 10.45 144.52 21.40 108.88 2226 2.43 

40% Pre 0.065 25.81 0.90 131.17 10.59 149.40 16.60 117.95 1688 1.89 

20% HPre 0.195 26.55 0.80 146.83 11.28 156.80 19.20 124.75 2203 2.18 

40% HPre 0.195 31.68 0.90 150.31 11.41 164.20 18.00 127.17 2099 2.04 
-ρf is the CFRP reinforcement ratio at mid-section of the beams; 

-Pcr is the load at cracking initiation, and δcr its corresponding deflection; 

-Py is the load at yielding of tensile bars, and δy its corresponding deflection; 

-Pu is the maximum load, and δu its corresponding deflection; 

-PSLS is the load at SLS conditions; 

-Ed is energy absorption index;  

-µd is deformability index.  

 

  



Table 3: Relevant results obtained in the tested beams 

RC beams 
(%)

control

SLS SLS

control

SLS

P P

P



 
(%)

control

y SLS

control

SLS

P P

P



  
(%)

control

u u

control

u

P P

P



  
(%)

pas

u u

pas

u

P P

P



 
(%)

control

u u

control

u

 





 
(%)

pas

u u

pas

u

 





 

Control - 1.77 - - - - 

Passive 4.30 12.81 27.91 - 2.58 - 

20% Pre 6.04 18.99 29.74 1.43 -13.67 -15.84 

40% Pre 14.87 27.74 34.12 4.85 -33.03 -34.72 

20% HPre 21.49 42.99 40.76 10.05 -22.54 -24.49 

40% HPre 23.85 46.38 47.41 15.24 -27.39 -29.21 

- control

SLSP is the load of the control beam at SLS conditions; 

- control

uP is the maximum load of the control beam, and control

u its corresponding deflection; 

- pas

uP is the maximum load of the passive strengthened beam, and pas

u its corresponding deflection; 

 

  



Table 4: Relevant results obtained in the numerical investigation  

Prestress 

level  

(%) 

specimens 
( )

(%)

f pas
 

( )

(%)

f pre
 

( )

yP

kN
 

( )

y

mm


 

( )

uP

kN
 

( )

u

mm


 

( )

d

u SLS



 
 

( )

dE

kN mm
 

0% Pas-FE 0.065 - 123.29 10.12 148.17 28.42 3.23 3306.22 

20% 

Pre-FE - 0.065 129.64 10.84 149.12 22.82 2.59 2578.87 

HPre-L10 0.032 0.065 139.64 11.61 164.22 26.96 3.06 3383.21 

HPre-L20 0.065 0.065 144.23 12.26 163.75 24.71 2.80 3071.48 

HPre-FE 0.129 0.065 154.41 13.07 163.07 20.25 2.30 2456.89 

40% 

Pre-FE - 0.065 136.70 11.57 149.30 16.95 1.92 1790.97 

HPre-L10 0.032 0.065 144.34 11.97 162.02 18.52 2.10 2113.53 

HPre-L20 0.065 0.065 146.99 12.21 165.02 21.10 2.393 2568.86 

HPre-FE 0.129 0.065 159.20 14.16 166.89 19.79 2.24 2428.90 
-ρf(pas) is the passive CFRP reinforcement ratio at mid-section of the beams; 

-ρf(pre) is the prestressed CFRP reinforcement ratio at mid-section of the beams.  

 

 


