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The ability of bacteria to bind different compounds and to adhere to biotic and abiotic surfaces

provides them with a range of advantages, such as colonization of various tissues, internalization,

avoidance of an immune response, and survival and persistence in the environment. A variety of

bacterial surface structures are involved in this process and these promote bacterial adhesion in a

more or less specific manner. In this review, we will focus on those surface adhesins and

exopolymers in selected foodborne pathogens that are involved mainly in primary adhesion. Their

role in biofilm development will also be considered when appropriate. Both the clinical impact and

the implications for food safety of such adhesion will be discussed.

Introduction

Foodborne diseases represent a global threat to human
health. The vast majority of foodborne diseases are asso-
ciated with pathogenic micro-organisms and/or their toxins,

whereas other causes such as parasites, chemicals and toxins
naturally present in some foods have been reported only
sporadically. Besides health disorders that may vary from
medium-risk to fatal, foodborne diseases can lead to very
high economic losses, such as those related to medical
treatments, lost wages and productivity, or recall and
destruction of food products (Ray & Bhunia, 2007).

Microbiological safety of food is closely related to the quality
of raw materials and hygienic practices on farms and in
food-processing plants (Verran et al., 2008). However, the
ability of micro-organisms to persist in food-processing
environments plays a crucial role in the epidemiology of
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foodborne diseases. The survival and persistence of micro-
organisms on food matrices and food contact surfaces
including technological equipment is influenced greatly by
their ability to colonize biotic and abiotic surfaces, including
those conditioned with biological material (Burgess et al.,
2014). Colonization of surfaces consists of two successive
steps: initial adhesion and biofilm formation (Götz, 2002). A
range of different factors promote bacterial adhesion,
namely physico-chemical properties of the surface and the
bacterial cell as well as specific cell surface adhesins and the
exopolymeric matrix (Chagnot et al., 2013). In this review,
we will primarily focus on the cell surface structures and
extracellular components involved in the adhesion of
selected foodborne pathogens. Particular emphasis will be
placed on surface proteins that are certainly the most
functionally diverse components that play a role in bacterial
adhesion (Chagnot et al., 2013). Interestingly, several of the
surface adhesins that are involved in adhesion to various
host tissues may also play a role in adhesion to abiotic
surfaces. Therefore, both clinical aspects and the implica-
tions of surface adhesins for food safety will be discussed.

Salmonella enterica

Salmonella enterica comprises six subspecies and over 2500
serovars. Sa. enterica infects humans and animals through
the faecal–oral route. Most of the human pathogenic
serovars belong to the subspecies enterica. The serovars
Typhi and Paratyphi cause typhoid and paratyphoid fever
with an estimated annual global incidence of 21 million
cases and a fatality rate of 1–4 % (World Health Organi-
zation, 2008). The non-typhoid serovars cause gastro-
enteritis with over 90 million cases estimated globally each
year, leading to more than 150 000 deaths (Majowicz et al.,
2010). Sa. enterica can adhere to a variety of biotic and
abiotic surfaces using fimbriae and flagella, as well as other
proteinaceous and non-proteinaceous adhesins. In Fig. 1,
the most important adhesion molecules of Sa. enterica are
depicted.

Fimbria

Fimbriae are thin, proteinaceous, fibrillar surface struc-
tures. They are approximately 3–10 nm in diameter, up to
several micrometres long and are generally involved in
biofilm formation, colonization and invasion of cells
(Allen-Vercoe & Woodward, 1999; Reid & Sobel, 1987;
Ugorski et al., 2001; Wagner & Hensel, 2011). Based on
some morphological differences, they have also been
termed pili, which can be misleading with respect to their
homology and/or molecular assembly mechanisms. Some
researchers reserve the term pilus for the appendage
required for bacterial conjugation. In this review, the
terms fimbriae and pili will be used interchangeably.
Fimbriae are also immunogenic and have therefore been
used as successful vaccines in animals and are important
targets for diagnostic tests (Müller et al., 1991). Several
types of fimbria are found in Sa. enterica.

Curli (thin aggregative fimbriae, Tafi or SEF17 fimbriae)
are involved in adhesion to solid substrates, either abio-
tic, such as food contact surfaces (Jain & Chen, 2007;
Woodward et al., 2000), or biotic, such as animal host cells
(Bäumler et al., 1997; Dibb-Fuller et al., 1999) and plant
tissues (Barak et al., 2005; Lapidot & Yaron, 2009).
Interestingly, bacterial curli are also recognized by specific
host proteins (Toll-like receptors) resulting in an immune
response (Tükel et al., 2010). Curli promote cell-to-cell
interactions, aggregation and biofilm formation (Austin
et al., 1998; Castelijn et al., 2012). They belong to a growing
class of fibrillar proteins known as amyloids (Blanco et al.,
2012). Curli are known to be assembled via the extra-
cellular nucleation–precipitation (ENP) pathway, i.e. the
type VIII secretion system (T8SS), well studied in Escherichia
coli (Chagnot et al., 2013; Hammar et al., 1996; Hammer
et al., 2007). In Salmonella, the csg genes (previously called
agf genes) involved in curli biogenesis are organized in two
adjacent divergently transcribed operons, csgDEFG and
csgBAC (Collinson et al., 1996; Römling et al., 1998a).
CsgD is the transcriptional regulator of the csgBAC operon
(Römling et al., 2000) and its complex expression is tightly
regulated by global regulatory proteins (Gerstel et al., 2003)
acting in hierarchical regulatory cascades (Kader et al.,
2006), and by several nucleotide messengers, including
cyclic-di-GMP (Simm et al., 2007). Curli expression is
influenced by a variety of environmental stimuli, such as
starvation, oxygen tension, temperature, pH and osmolarity
(Gerstel & Römling, 2003). In most wild-type Salmonella
strains, this occurs at temperatures below 30 uC, but
mutations in the csgD promoter can lead to curli expression
independently of temperature (Römling et al., 1998b).
Interestingly, curli synthesis has recently been shown to be
controlled by small regulatory RNAs (Bordeau & Felden,
2014; Mika & Hengge, 2013).

Type 1 fimbriae are the best characterized salmonella
fimbriae and are approximately 7 nm in diameter and 0.5–
2.0 mm in length (Korhonen et al., 1980). They have a
channelled appearance due to the arrangement of subunits
around a hollow core (Chu & Barnes, 2010). These sub-
units are composed of 17 kDa protein subunits, called pilin
(Korhonen et al., 1980). Type 1 fimbriae are encoded by
the fim gene cluster and are assembled by the chaperone–
usher pathway (Hultgren et al., 1991). These fimbriae are
termed mannose sensitive because exogenous mannose
inhibits binding by the fimbriae. The fimA gene encodes
the major structural subunit, while the fimH gene encodes
the adhesin protein that is located at the tip of the
assembled fimbrial structure and mediates binding to the
receptor (Ledeboer et al., 2006). Type 1 fimbriae play a role
in the adhesion of salmonella to epithelial cells and aid in
biofilm formation on abiotic surfaces (Chu & Barnes, 2010;
Korhonen et al., 1980; Ledeboer et al., 2006). These
fimbriae are expressed in vitro after static growth for 48 h
at 37 uC and are repressed by high osmolarity, low pH and
low temperatures (Ledeboer et al., 2006; Thanassi &
Hultgren, 2000).

Z. Jaglic and others

2562 Microbiology 160



To date, several other fimbriae expressing adhesive
properties have been described. For instance, SEF14
fimbriae are only expressed in serovar Enteritidis and
closely related serovars and may play a certain serovar-
specific role in pathogenesis (Zhu et al., 2013). SEF14 has
been shown to be a T-cell immunogen and to contribute to
adherence to murine epithelial cells (Ogunniyi et al., 1994;
Peralta et al., 1994). Long polar fimbriae (Lpf) encoded by
the lpfABCDE operon confer adhesion to the murine small
intestine (Bäumler et al., 1996b; Ledeboer et al., 2006).
Expression of Lpf in salmonella undergoes phase variation,
such that the bacteria alternate between expressing and not
expressing Lpf (Fierer & Guiney, 2001). Pef fimbriae are
encoded on the 90 kb salmonella virulence plasmid by two
divergently transcribed operons (Friedrich et al., 1993). Pef
fimbriae confer adhesion to the murine small intestine and
to certain tissue culture cells (Bäumler et al., 1996a).

Flagella

Recently it was established that bacterial flagella participate
in many additional processes of motility including
adhesion, biofilm formation, virulence factor secretion,
adhesion and modulation of the immune system of

eukaryotic cells (Duan et al., 2013; Haiko & Westerlund-
Wikström, 2013). Allen-Vercoe & Woodward (1999) con-
cluded that a non-flagellate mutant strain, a flagellate but
non-motile (paralysed) mutant strain and a smooth-
swimming chemotaxis-deficient mutant strain were less
adherent than the wild-type strain, but that observation
depended on the assay conditions used and the fact that
biofilm formation is strongly strain-dependent (Crawford
et al., 2010; Van Houdt & Michiels, 2010). Research data
indicate that the flagellar filament, not motility, is necessary
for adhesion to surfaces and biofilm formation by salmonella
on gallstones (Crawford et al., 2010; Prouty et al., 2002).
However, flagellar motility is required for biofilm formation
on glass (Prouty & Gunn, 2003) and adhesion of bacteria to
M cells of the appendix (Marchetti et al., 2004).

Other proteinaceous adhesions

Several proteinaceous adhesins have been described in Sa.
enterica. Biofilm-associated protein A (BapA) is a large,
loosely associated surface protein that is required for
biofilm formation, and also contributes to the invasion of
epithelial cells (Latasa et al., 2005). It is secreted by a T1SS,
expression of which is coordinated with that of genes
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Fig. 1. Schematic drawing of the cell envelope of Sa. enterica (OM, outer membrane; P, periplasma with peptidoglycan; IM,
inner membrane) with symbolized bacterial adhesion molecules including their receptors (?, unknown receptors). *Mediates
adhesion to abiotic surfaces and biofilm formation. ECM, extracellular matrix proteins; FP, fibrinolytic proteins. The different
bacterial adhesion molecule categories are symbolized and described in the text. The structures depicted do not necessarily
reflect the real macromolecule structures.
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encoding curli fimbriae and cellulose, i.e. through the action
of csgD. SiiE is a giant protein (595 kDa) that mediates
adhesion to epithelial cells (Gerlach et al., 2007). It is
encoded by Salmonella Pathogenicity Island (SPI) 4 together
with its T1SS and retained on the bacterial envelope in the
phase of invasiveness (Wagner et al., 2011). The molecule
has a highly repetitive structure of bacterial Ig-like domains,
and Ca2+ binding confers SiiE with a rigid, rod-like habitus
that is required to reach out beyond the LPS layer (Griessl
et al., 2013). SadA belongs to the family of trimeric
autotransporter adhesins (TAAs) which are modular, highly
repetitive proteins that form stable trimers on the bacterial
cell surface (Hartmann et al., 2012). In Sa. enterica serovar
Typhimurium, expression of SadA resulted in cell aggrega-
tion, biofilm formation and increased adhesion to human
intestinal epithelial cells when the O-antigen was removed.
Thus, SadA may primarily be important under conditions
where production of large surface structures is reduced, for
example during macrophage infection (Raghunathan et al.,
2011). MisL and ShdA are fibronectin-binding autotran-
sporter adhesins. MisL, which is found in the extracellular
matrix (ECM), is involved in intestinal colonization (Dorsey
et al., 2005) and adhesion to plant tissue (Kroupitski et al.,
2013). It is encoded by SPI 3, and regulated by the
transcriptional activator MarT. ShdA is surface-localized,
and expressed in the intestine (Kingsley et al., 2002). PagN is
an outer-membrane protein which contributes to adherence
and invasion in mammalian cells via interaction with pro-
teoglycan and it is regulated by PhoP (Lambert & Smith,
2008). MAM7 is a relatively small and constitutively expressed
surface adhesin that is widely distributed in Gram-negative
bacteria including S. enterica (Krachler & Orth, 2011). It is
anchored in the outer membrane and contains seven of the
mammalian cell entry (mce) domains responsible for host
cell binding (Chitale et al., 2001; Saini et al., 2008). MAM7
seems to bind to fibronectin with a low-affinity interaction,
which is complemented by a second receptor, phosphatidic
acid, resulting in an overall affinity that is very high.

Exopolymers

LPSs are known to be important for the initial step in
biofilm formation (Williams & Fletcher, 1996) and the
direct effect of LPSs on cell-surface interactions is related to
the interaction between the O-antigen part and the solid
surface (Jucker et al., 1997). Changes in the cell surface
caused by LPS alteration in the ddhC and waaG mutants of
the serovar Typhimurium resulted in significant changes
in the production of both curli and cellulose, as well as
biofilm formation (Anriany et al., 2006). Solano et al.
(2002) concluded that cellulose is one of the main com-
ponents of the biofilm produced by the serovars Enteritidis
and Typhimurium and two operons, bcsABZD and bcsEFG,
are required for cellulose biosynthesis. However, they
found that cellulose deficiency did not affect serovar
Enteritidis virulence. Furthermore, Vestby et al. (2009a)
found no difference in biofilm formation on polystyrene
when comparing wild-type strains with and without

cellulose production, indicating minor differences also in
adhesion. By contrast, Barak et al. (2007) found that
mutations in bacterial cellulose synthesis (bcsA) and O-
antigen capsule assembly and translocation (yihO) reduced
the ability of bacteria to adhere to and colonize alfalfa
sprouts whereas a colanic acid mutant was unaffected in
plant adhesion or colonization. However, they noted that
bacterial requirements for adhering to and colonizing plant
tissue differ significantly from what is required for adher-
ence to glass test tubes, other bacterial cells and animal
cells.

Food safety impact

Salmonella can adhere to and form biofilm on various
surfaces in food-processing environments, including food
matrices and other organic material, and it has been shown
that long-term persistence in production environments is
correlated with the ability to form biofilm (Vestby et al.,
2009b). Fimbriae (primarily curli and type 1), flagella and
BapA are all known to be involved in biofilm production,
although their roles in adherence to abiotic surfaces are less
clear and depend on the type of surface, as well as other
environmental factors. Furthermore, LPSs are important
for the initial steps of biofilm formation. Undoubtedly, the
ability to recognize how salmonella attaches to raw products
(e.g. meat, produce) and also food contact surfaces is an
important area of focus, as a better understanding of this
ability may provide valuable ways towards the elimination of
this pathogenic bacterium from food-processing environ-
ments and eventually lead to reduced salmonella-associated
human illness.

Enterohaemorrhagic E. coli (EHEC)

EHEC represent a subgroup of Shiga toxin-producing E.
coli (STEC) that can cause serious human infectious
diseases such as haemorrhagic colitis and haemolytic–
uraemic syndrome (Nataro & Kaper, 1998). EHEC are
zoonotic bacterial agents responsible for foodborne infec-
tions via contaminated animal food products, vegetables
and watery drinks (Bavaro, 2012). By definition, all EHEC
are considered as pathogenic STEC, but not all STEC are
necessarily intestinal pathogenic E. coli (InPEC). While
there are over 300 distinct STEC serotypes (Karmali et al.,
2010), only a limited number of serotypes have been
reported to be involved in human infection, prevalently
represented by serotype O157. The major non-O157 EHEC
comprise the serotypes O26, O45, O103, O111, O121 and
O145, the so-called ‘big six’ (Brooks et al., 2005).
Important surface adhesins of EHEC are encoded on the
locus of the enterocyte effacement (LEE) pathogenicity
island, other pathogenicity islands and plasmids (Farfan &
Torres, 2012). Among the best-characterized adhesins are
the bacterial outer-membrane protein intimin and its
translocated intimin receptor Tir. In Fig. 2, the most
important adhesion molecules of EHEC are depicted.
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LEE-encoded adhesions

A subgroup of EHEC (attaching and effacing E. coli, AEEC)
harbour a pathogenicity island that encodes a T3SS, a
number of type III effector proteins and the outer-membrane
adherence protein intimin (eae) (Wong et al., 2011). The
T3SS forms a needle-like structure, called the injectisome,
which connects the bacterial cell with the target host cell
(Cornelis, 2010). While not generally described as a pilus, the
injectisome is a cell surface supramolecular structure acting
as a molecular syringe closely related to the Hrp (hypersens-
itive response and pathogenicity) pilus in plant pathogens. In
fact, both structures belong to the T3SS, which comprises (i)
subtype a, i.e. the non-flagellar T3SS (T3aSS) involved in the
assembly of the injectisome as well as the Hrp pilus, and (ii)
subtype b, i.e. the flagellar T3SS (T3bSS) responsible for
assembly of the flagellum (Desvaux et al., 2006; Journet et al.,
2005; Pallen et al., 2005; Tampakaki et al., 2004). Type III
effector molecules are then transported through the needle
and interact with the host actin structure to form a pedestal-
like structure. The first effector molecule is the translocated
intimin receptor Tir, which inserts into the host cytoplasmic

membrane and comes into close contact with intimin. The
resulting intimate attachment is a key feature of the inter-
action of LEE-positive bacteria with host cells (Wong et al.,
2011). The injectisome per se also mediates intimate bacterial
adhesion to gut epithelial cells (Garmendia et al., 2005) and
was further reported to have marked tropism for the stomata
during adhesion of EHEC O157 : H7 to lettuce leaves (Berger
et al., 2010; Saldaña et al., 2011; Shaw et al., 2008).

Pili

As in the case of Salmonella above, in this review the terms
fimbriae and pili will be used interchangeably. EHEC
contain numerous putative pili operons (Low et al., 2006b;
Rendón et al., 2007). Pili are cell surface supramolecular
protein complexes secreted and assembled by different secre-
tion systems in diderm-LPS bacteria, i.e. archetypal Gram-
negative bacteria (Chagnot et al., 2013). Lpf are encoded by
two loci in E. coli O157 : H7 [lpf1 (lpfABCC9DE) and lpf2
(lpfABCDD9)]. The LpfA proteins (encoded by both loci) as
well as the LpfD2 protein of those pili mediate adhesion to
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epithelial cells and intestinal colonization (Torres et al.,
2002a, 2007). Lpf bind to a wide variety of ECM com-
ponents, e.g. fibronectin, laminin or collagen IV (Farfan et al.,
2011) and influence intestinal tissue tropism (Fitzhenry et al.,
2006; Jordan et al., 2004; Torres et al., 2004). Pili of
the curli type (csgBA and csgDEFG) are assembled by the
T8SS, i.e. the extracellular nucleation–precipitation pathway
(Chagnot et al., 2013; Desvaux et al., 2009). While generally
considered as very important for adhesion by its subunit
protein CsgA, curli were shown not to contribute to intes-
tinal colonization in E. coli O157 : H7 (Lloyd et al., 2012).
The E. coli common pilus (ECP, yagZ), also called meningitis-
associated and temperature-regulated (Mat) fimbriae (Lehti
et al., 2013), is an important colonization factor involved
not only in adhesion to epithelial cells (Rendón et al., 2007)
but also in the early stage of biofilm formation (Garnett et al.,
2012). The protein mediating this adhesion is EcpA. The
haemorrhagic coli pilus (HCP, hcpA) is actually a type 4
pilus, which is secreted and assembled by a T2cSS (Chagnot
et al., 2013; Vignon et al., 2003). In E. coli O157 : H7, HCP
was shown to be multifunctional. Its main subunit protein
HcpA mediates interbacterial connections conducive to
biofilm formation as well as specific binding to certain ECM
proteins, namely laminin and fibronectin but not collagen
(Ledesma et al., 2010; Xicohtencatl-Cortes et al., 2009b), as
well as intestinal colonization (Xicohtencatl-Cortes et al.,
2007). Sorbitol-fermenting EHEC O157 fimbriae (SFP,
sfpAHCDJG, plasmid pSFO157 encoded) are a novel type
of pilus identified in EHEC (Brunder et al., 2001) and are
most certainly assembled and secreted by the T7SS in
diderm–LPS bacteria, i.e. the chaperone–usher pathway
(Chagnot et al., 2013). The protein acting as an adhesin is
SfpG. While involved in haemagglutination, the SFP were
also demonstrated to participate in adherence to epithelial
cells (Müsken et al., 2008). F9 pili (f9 operon, Z2200–Z2206,
chromosomally encoded on O-island 61), also secreted and
assembled by the T7SS, are involved in binding to bovine
fibronectin and to bovine epithelial cells (Low et al., 2006a),
although the expression of the T3aSS can hinder their
adhesion capacities. The main subunit proteins of F9 pili are
encoded by Z2203. The FedF proteins of F18 fimbriae
(fedABCEF, plasmid encoded) mediate the adherence of
EHEC to porcine enterocytes (Bardiau et al., 2010). The
YcbQ proteins of E. coli YcbQ laminin-binding fimbriae
(ELF, ycbQRST) are responsible for specific binding to
laminin but not fibronectin or collagen, and were demon-
strated to contribute to adhesion to intestinal epithelial cells
(Samadder et al., 2009). Except for the injectisome, the
respective contribution of these different pili to the
colonization of food matrices remains to be evaluated.

Flagella

Motility of EHEC and other E. coli is mediated by flagella,
and their filaments are encoded by the fliC gene. The
heterogeneity of these flagella filaments (H-antigens) is
determined by fliC sequence variations (Zhang et al., 2014).
H6 and H7 flagella, which are frequently present in EHEC,

and their FliC monomers bind to mucus as well as mucins I
and II (Erdem et al., 2007), while no adherence was
observed in deletion mutants of E. coli O157 : H7 strain
EDL933. Likewise, fliC deletion mutants of this strain were
significantly less adherent to leaf surfaces (Xicohtencatl-
Cortes et al., 2009a).

Autotransporters

Autotransporter proteins mediate adherence to eukaryotic
cells and ECM proteins. While E. coli O157 strains mainly
use curli for adhesion, non-O157 EHEC/STEC strains
were reported additionally to depend on autotransporters
(Biscola et al., 2011). EHEC autotransporters EhaA, EhaB,
EhaG and EhaJ (ehaA, ehaB, ehaG, ehaJ) are important for
the formation of biofilms on biotic and abiotic surfaces and
for adhesion to primary epithelial cells of the bovine
terminal rectum (EhaA; Wells et al., 2008), collagen I and
laminin (EhaB; Wells et al., 2009), laminin, fibrinogen,
fibronectin and several collagen types (EhaG; Totsika et al.,
2012), as well as a blend of ECM compounds (EhaJ; Easton
et al., 2011). However, their involvement in a wild-type
EHEC background has yet to be demonstrated. The extra-
cellular serine protease autotransporter EspP (espP, plasmid
encoded, e.g. pO157, pO113, pO26-Vir) was described by
Brunder et al. (1997), and in the same year an isoform serine
protease secreted by STEC (PssA) was characterized from a
bovine isolate (Djafari et al., 1997). To date, five subtypes
have been identified, with EspPa being associated with the
most virulent strains (Weiss & Brockmeyer, 2013). The
espPa gene is often present in bovine isolates (Boerlin et al.,
1999). It increases the adherence of E. coli O157 : H7 strains
to the intestine of calves (Dziva et al., 2007), but may also
downregulate the human complement system by cleavage of
C3/C3b and C5 (Orth et al., 2010). The STEC autotran-
sporter mediating biofilm formation (Sab) is encoded by the
sab gene located on a megaplasmid that is present in LEE-
negative non-O157 STEC (Herold et al., 2009). It mediates
adherence to human epithelial cells as well as biofilm
formation on polystyrene beads, but its prevalence in food
isolates is low (Buvens & Piérard, 2012). The calcium-
binding antigen 43 homologous protein Cah (cah, chromo-
somally encoded on O-islands 43 and 48) mediates biofilm
formation under nutrient-poor conditions (Torres et al.,
2002b), and the induction of the cah gene into E. coli K-12
induced adhesion to alfalfa sprouts and seed coats (Torres
et al., 2005). The adhesion involved in diffuse adherence
autotransporter AIDA-I (aidA) is plasmid or chromoso-
mally (O-islands 43 and 48) encoded and contrary to the
other autotransporters described, needs to be glycosylated
with heptoses by the autotransporter adhesin heptosyltrans-
ferase [aah, plasmid or chromosomally (O-islands 43 and
48) encoded] (Benz & Schmidt, 2001). AIDA-I conveys
adherence to porcine intestinal cells as well as biofilm
formation on abiotic surfaces (Ravi et al., 2007), and is
dominant in pig isolates (Côté et al., 2012). It is highly
expressed under nutrient limitation (Berthiaume et al.,
2010).
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Other proteinaceous adhesions

A number of other adhesins has been described in EHEC,
the function and role of which have not yet been completely
clarified. The E. coli immunoglobulin-binding protein EibG
(eibG) is present in eae-negative STEC strains (Merkel et al.,
2010) and induces chain-like binding to HEp-2 cells as well as
binding to human IgG and IgA (Lu et al., 2006). The STEC
autoagglutinating adhesin Saa (saa) is encoded on a large
virulence plasmid of LEE-negative STEC, showing a low
degree of amino acid sequence similarity to EibG and causing
comparative adhesion behaviour in vivo (Paton et al., 2001).
The porcine attaching- and effacing-associated adhesin Paa is
commonly detected in EHEC strains, and its sequence
is highly conserved. The paa gene is also detected in entero-
toxigenic E. coli (ETEC) and enteropathogenic E. coli (EPEC)
strains (Leclerc et al., 2007). In EHEC, it is thought to be
involved in adhesion, but the exact mechanism still needs to
be investigated. EHEC factor for adherence Efa1 (efa1,
chromosomally encoded on O-island 122) confers haemag-
glutination, adherence to epithelial cells and autoaggregation
(Nicholls et al., 2000), and it is significant for STEC
colonization of the bovine intestinal tract (Stevens et al.,
2002). Interestingly, the ORF of the efa1 gene is highly
homologous to that of lymphostatin (lifA, chromosomally
encoded on O-island 122) in EPEC, which inhibits lympho-
cyte proliferation, interleukin production and pro-inflam-
matory cytokine synthesis (Klapproth et al., 2000). E. coli
O157 : H7 strains contain only a truncated efa1 gene, but
harbour the homologue toxB gene on the plasmid pO157
(Stevens et al., 2004), and their deletion results in reduced
adherence to epithelial cells. The IrgA homologue adhesin Iha
(iha, either chromosomally encoded on O-islands 43 and 48
or plasmid encoded on megaplasmid pO113) differs from
other adhesins in that it is homologous to iron-acquisition
proteins (Tarr et al., 2000) and is highly prevalent in human
and cattle isolates (Wu et al., 2010). Its expression in E. coli
O157 : H7 on shredded iceberg lettuce during storage under
near-ambient air atmospheric conditions was significantly
increased in comparison with modified atmosphere pack-
aging (Sharma et al., 2011), as well as in ground beef after
heating at 48 uC for 10 min (Slanec & Schmidt, 2011).

Exopolymers

Among other surface macromolecules, E. coli may produce
two types of surface polysaccharide that are used for
serotyping, namely LPSs (O-antigen, encoded by the rfb
genes) and capsular polysaccharides (K-antigen). Their role
in the attachment of EHEC to biotic and abiotic surfaces is
still being investigated, and thus few general conclusions
can be drawn yet. This may be due to strain-specific
properties as well as the surface materials investigated.

LPSs of the E. coli serotypes O111 and O157 were
demonstrated not to be involved in adhesion to human
epithelial cells (Paton et al., 1998). Furthermore, the O-side
chains were shown to interfere with adherence of E. coli
O157 : H7 strains to epithelial cells, as LPS-deficient

mutants adhered more strongly than the wild-type strain
(Bilge et al., 1996). E. coli O157 : H7 LPS-deficient mutant
strains attached equally well to alfalfa sprouts as their
parent strains (Matthysse et al., 2008). In contrast, an E.
coli O157 : H7 mutant strain lacking the O-antigen attached
significantly less well to iceberg lettuce surfaces than its
parent strain (Boyer et al., 2011).

Currently, E. coli capsules are divided into four groups
while EHEC capsules are mainly assigned to groups 1 and 4
(for a review see Whitfield, 2006). Furthermore, Junkins &
Doyle (1992) reported that E. coli O157 : H7 strains are
capable of producing capsular exopolysaccharides with
similar or identical structures to colanic acid. In the food
matrix, the presence of capsular exopolysaccharides con-
veys a longer survival of EHEC strains in the acidic
environment of yoghurt (Lee & Chen, 2004) and leads to a
stronger attachment to fruits and vegetables (Hassan &
Frank, 2004). Furthermore, cellulose and colanic acid
(encoded by the cps gene) were found to be required in
addition to poly-b-1,6-N-acetyl-D-glucosamine for max-
imum binding of E. coli O157 : H7 strains to alfalfa sprouts
and seed coats (Matthysse et al., 2008). While the produc-
tion of exopolysaccharides decreased the attachment of E.
coli O157 : H7 to stainless steel surfaces (Ryu et al., 2004), it
did not influence cell growth during biofilm formation on
these surfaces (Ryu & Beuchat, 2005). According to Yeom
et al. (2012), biofilm production in E. coli O157 : H7 is not
a result of exopolysaccharide production but correlates
with LPS production and increase in membrane rigidity.

Food safety impact

While certain pili, flagella (T3bSS) and the injectisome
(T3aSS) participate in adhesion to vegetables (Shaw et al.,
2008; Xicohtencatl-Cortes et al., 2009a), EHEC were also
demonstrated to colonize certain meat ECM components
(Chagnot et al., 2012, 2013). Considering the wealth of
determinants reviewed here as potentially involved in the
contamination of the food chain, however, their exact and
respective contribution is unknown and most certainly
varies with the environmental conditions, emphasizing that
much remains to be investigated.

Staphylococcus aureus

Staphylococcus aureus has been described as a causative agent
of a wide spectrum of human infections ranging from minor
infections to life-threatening diseases, such as osteomyelitis,
endocarditis and sepsis, including several syndromes
associated with the production of exotoxins and enterotox-
ins (Lowy, 1998). Staphylococci have also been recognized as
the most frequent causative agents of infections associated
with biofilm formation on catheters or prosthetic implants
(Götz, 2002). Moreover, staphylococcal food poisoning (so-
called staphylococcal gastroenteritis) is considered to be one
of the most frequently occurring foodborne diseases world-
wide (Ray & Bhunia, 2007). For instance, severe alimentary
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intoxications caused by a toxigenic strain persisting on the
inner surfaces of dairy plant equipment were reported in
Japan (Asao et al., 2003). A range of surface components
expressing adhesive properties or modulating cell surface
physico-chemistry have been described in St. aureus. These
surface components enable St. aureus to colonize and infect
various tissues as well as to adhere to and persist on abiotic
surfaces. In Fig. 3, the most important adhesion molecules of
St. aureus are depicted.

Surface proteins with specific target binding sites

St. aureus possesses a range of surface adhesins with a
broad spectrum of target binding sites (Table 1). In other
words, St. aureus can adhere to various components of the
ECM to initiate colonization. Adherence to ECM is usually
(but not only) mediated by protein adhesins of the
microbial surface components recognizing adhesive matrix
molecules (MSCRAMM) family, which are in most cases
covalently anchored to the cell wall peptidoglycan via an
LPXTG motif cleaved by sortase A (Clarke & Foster, 2006;
Navarre & Schneewind, 1994). As summarized in Table 1,
many of the surface proteins with specific target binding
sites are able to bind multiple ligands; conversely, the same
host component may be targeted by different adhesins. For
instance, fibronectin-binding protein binds fibronectin and
fibrinogen by two distinct domains. Such domain-specific
binding has been comprehensively reviewed for St. aureus

MSCRAMM proteins by other authors (Clarke & Foster,
2006; Heilmann, 2011). One of the principal functions of
fibronectin-binding proteins, fibrinogen-binding proteins
(clumping factors), elastin-binding protein, collagen adhe-
sin, bone sialoprotein-binding protein, enolase, extracel-
lular matrix-binding protein homologue and extracellular
matrix protein-binding protein is to recognize and
specifically bind one or more of the ECM components
such as fibronectin, fibrinogen, elastin, collagen, sialopro-
tein, laminin and vitronectin. This allows St. aureus to
adhere to and colonize different tissues and to cause a wide
spectrum of diseases (Lowy, 1998). It has also been shown
that conditioning of implant surfaces by ECM enhances
their colonization by St. aureus (Harris et al., 2004). Certain
surface proteins with specific target binding sites have been
shown to be involved not only in primary adhesion but also
in cell–cell interaction and biofilm formation. This
was observed in the case of fibronectin-binding proteins,
plasmin-sensitive protein and the St. aureus surface pro-
teins SasC and SasG (Corrigan et al., 2007; Huesca et al.,
2002; O’Neill et al., 2008; Schroeder et al., 2009).

Besides simply adhesion to ECM, certain surface proteins
may trigger the process of internalization through a fibro-
nectin bridge to the host cell integrin a5b1. As reported by
Henderson et al. (2011), fibronectin-mediated internaliza-
tion has been demonstrated for fibronectin-binding
proteins but this could also be mechanistically presumed
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for other surface proteins that bind fibronectin, such as

clumping factors, iron-regulated surface determinant A,

extracellular matrix-binding protein homologue and extra-

cellular matrix protein-binding protein. Staphylococcal

surface proteins SpaA and Sbi are among those adhesins
that specifically interfere with both innate and adaptive

immune components (Table 1). Moreover, binding to a

complement regulator factor has also been demonstrated

for clumping factor A (Hair et al., 2008).

Biofilm-associated protein (Bap)

Bap is a surface protein originally identified in St. aureus
(Cucarella et al., 2001). St. aureus strains harbouring the
bap gene are highly adherent to inert surfaces and are
strong biofilm formers (Tormo et al., 2005, 2007). Bap was
further identified in other Gram-positive and Gram-
negative bacteria and appeared to correspond to a family
of surface proteins involved in biofilm formation. Moreover,
proteins of the Bap family possess the LPXTG domain

Table 1. St. aureus surface proteins with specific target binding sites

Surface protein Gene Target binding sites

Staphylococcal protein A (Spa)* spa Fc region of IgG (Uhlén et al., 1984); IgM VH3 heavy chain (Vidal & Conde, 1985); von

Willebrand factor (Hartleib et al., 2000); TNFR1 (Gómez et al., 2004); platelet

complement receptor gC1qR/p33 (Nguyen et al., 2000)

Staphylococcal protein SbiD sbi Fc region of IgG (Zhang et al., 1998); complement component C3 and complement

regulators Factor H and FHR-1 (Haupt et al., 2008)

Fibronectin-binding proteins

(FnBPA, FnBPB)*

fnbA, fnbB Fibronectin (Signäs et al., 1989); fibrinogen (Wann et al., 2000); elastin (Roche et al.,

2004); non-professional phagocytes through a fibronectin bridge to the host cell

integrin a5b1 (Henderson et al., 2011) or direct binding to heat shock protein 60

(Dziewanowska et al., 2000); platelets through a fibrinogen or fibronectin bridge to

platelet integrin GPIIb/IIIa and IgG binding to the Fc gamma RIIA receptor

(Fitzgerald et al., 2006); cell-to-cell interaction and biofilm formation (O’Neill et al.,

2008)

Fibrinogen-binding proteins

(clumping factors ClfA, ClfB)*

clfA, clfB Fibrinogen (Nı́ Eidhin et al., 1998; McDevitt et al., 1994); fibrin via ClfA (Niemann

et al., 2004); complement regulator factor I via ClfA (Hair et al., 2008); platelets

through a fibrinogen bridge to platelet integrin GPIIb/IIIa and IgG binding to the Fc

gamma RIIA receptor (Loughman et al., 2005) or direct binding via ClfA (Siboo et al.,

2001); cytokeratin 10 via ClfB (O’Brien et al., 2002a)

Sdr proteins (SdrC, SdrD, SdrE)* sdrC, sdrD,

sdrE

Platelets via SdrE (O’Brien et al., 2002b); desquamated nasal epithelium via SdrC and

SdrD (Corrigan et al., 2009); cells expressing b-neurexin via SdrC (Barbu et al., 2010)

Bone sialoprotein-binding protein

(Bbp)*

bbp Bone sialoprotein (Tung et al., 2000)

Plasmin-sensitive protein (Pls)* pls Cellular lipids and cell–cell interaction (Huesca et al., 2002); nasal epithelial cells

(Roche, F.M. et al., 2003)

Collagen adhesin (Cna)* cna Collagen and collagenous tissues such as cartilage (Switalski et al., 1989)

Elastin-binding protein (Ebp)d ebpS Elastin (Park et al., 1999)

Enolase (laminin-binding protein)§ eno Laminin (Carneiro et al., 2004)

Iron-regulated surface determinants

(IsdA, IsdB, IsdC, IsdH)*

isdA, isdB,

isdC, isdH

Various iron-containing proteins (reviewed by Clarke & Foster, 2006); fibrinogen and

fibronectin via IsdA (Clarke et al., 2004); corneocyte envelope proteins via IsdA

(Clarke et al., 2009), platelet integrin GPIIb/IIIa via IsdB (Miajlovic et al., 2010)

St. aureus surface proteins (SasB,

SasC, SasD, SasF, SasG, SasK, SasH)*

sasB, sasC,

sasD, sasF,

sasG, sasK,

sasH

Squamous nasal epithelium via SasG (Roche, F.M. et al., 2003), cell–cell interaction and

biofilm formation via SasC and SasG, attachment to polystyrene via SasC (Corrigan

et al., 2007; Schroeder et al., 2009)

Serine-rich adhesin for platelets (SraP)* sraP Platelets (Siboo et al., 2005)

Extracellular matrix-binding protein

homologue (Ebh)d

ebh Fibronectin (Clarke et al., 2002)

Extracellular matrix protein-binding

protein (Emp)§

emp ECM and plasma proteins such as vitronectin, fibronectin, fibrinogen and collagen

(Hussain et al., 2001)

*MSCRAMM proteins covalently anchored to the cell wall peptidoglycan via the LPXTG motif, or NPQTN and LPDTG motifs in the case of IsdC

and SraP, respectively (Clarke & Foster, 2006; Heilmann, 2011; Siboo et al., 2005; Tung et al., 2000).

DAssociated with the cytoplasmic membrane via LTA and a putative ligand (Smith et al., 2012).

dTransmembrane proteins (Heilmann, 2011).

§Proteins associated with the cell surface via unknown receptors (Bergmann et al., 2001; Heitmann, 2011).
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enabling their covalent anchoring to the cell wall by sortases
(Lasa & Penadés, 2006; Latasa et al., 2006). However, it has
been demonstrated that St. aureus strains producing Bap
exhibited a lower affinity to certain ECM proteins as well as
to epithelial cells (Cucarella et al., 2002). It could therefore
be assumed that Bap negatively affects primary adhesion via
specific receptors.

Autolysins

These non-covalently bound proteins are associated with
the cell surface by ionic or hydrophobic interactions and
have both enzymic and adhesive functions (Heilmann,
2011). The major autolysin of St. aureus (AtlA) is the most
predominant peptidoglycan hydrolase in staphylococci. It
is a bifunctional enzyme that undergoes proteolytic cleavage
to yield two catalytically active proteins (murein hydrolases),
an amidase and a glucosaminidase, both contributing to
biofilm formation (Bose et al., 2012). Biswas et al. (2006)
reported that AtlA promotes adhesion of St. aureus to abiotic
surfaces such as polystyrene and glass, and that deletion of
the atlA gene resulted in a biofilm-negative phenotype. St.
aureus autolysin AtlA and Staphylococcus epidermidis auto-
lysin AtlE are similar in both sequence and domain
organization. It was further demonstrated that St. epidermi-
dis Esp protease cleaves Atl-derived murein hydrolases and
prevents staphylococcal release of DNA, which serves as
ECM in biofilms (Chen et al., 2013).

Besides adhesion to abiotic surfaces, AtlA has recently been
shown to have binding activity to fibronectin, fibrinogen,
vitronectin and endothelial cells, and to be involved in the
process of internalization into non-professional phagocytes
via binding to the heat shock cognate protein 70
(Hirschhausen et al., 2010). Similar affinity to specific
biological components, namely fibronectin, fibrinogen and
vitronectin, was described in another St. aureus autolysin
Aaa, encoded by the aaa gene (Heilmann et al., 2005).

Exopolymers

Although not covalently attached, extracellular polysac-
charides and DNA (eDNA) are important adhesins in St.
aureus. The polysaccharide intercellular adhesin (PIA) and
the capsular polysaccharide adhesin are both encoded by
the icaADBC operon. They both consist of a poly-b-1,6-N-
acetylglucosamine backbone, but differ chemically due to
different degrees of N-acetylation and O-succinylation and
therefore provide different properties to the cell surface.
While the capsular polysaccharide adhesin adds hydro-
phobic properties to the cell surface and enhances adhesion
to abiotic surfaces (Maira-Litrán et al., 2002), PIA is thought
to be more important for the cell–cell interactions in the
subsequent steps of biofilm formation. PIA possibly acts as
an intercellular adhesin by electrostatically attracting the
negatively charged teichoic acids (Heilmann, 2011). The
enzyme dispersin B hydrolyses poly-b-1,6-N-acetylglucosa-
mine, and Izano et al. (2008) showed that dispersin B could
prevent St. aureus biofilm formation but could not disperse

previously formed biofilm. The role of polysaccharide
adhesins in cell–cell interactions must therefore be comple-
mented by other matrix components as the biofilm matures.

Indeed, Izano et al. (2008) also showed that removal of
eDNA could both prevent biofilm formation and remove
previously formed St. aureus biofilms, and numerous reports
point to eDNA as being critical for both adhesion and biofilm
development in St. aureus and many other bacteria. Forma-
tion of eDNA in St. aureus is linked to the production of
autolysins that lyse a subpopulation of cells. In addition to
atlA, the gene encoding the major autolysin (the role for
which in adhesion and biofilm formation is discussed above),
there are also other genes (cidA and lytS) that are involved
in cell wall remodelling and thus can act as autolysins
promoting eDNA release. Knocking out any of these genes
results in less eDNA and consequently less biofilm formation
(Biswas et al., 2006; Izano et al., 2008; Mann et al., 2009; Rice
et al., 2007; Sharma-Kuinkel et al., 2009). Exactly how eDNA
adsorbs to the cell surface and mediates adhesion is still
somewhat unclear. Interaction with N-acetylglucosamine in
the peptidoglycan has been suggested for other Gram-
positive species (Harmsen et al., 2010), and unspecific acid–
base interactions from loops of eDNA strands protruding
hundreds of nanometres from the cell surface have been
suggested as critical for adhesion to abiotic surfaces (Das et
al., 2011). However, the interplay between eDNA and other
adhesins has yet to be discovered.

While most surface proteins recognize specific targets in a
conditioning layer or on host cells, a range of cell-surface
components also facilitate strong adhesion forces between
bacteria and biotic or abiotic surfaces through non-specific
interactions mediated by electrostatic, acid–base and Lifshitz–
Van der Waals forces. Teichoic acids are assembled by the
Tar enzymes (encoded by the tar gene cluster) and anchored
to the outer layer of the cytoplasmic membrane via a
glycolipid (lipoteichoic acid, LTA) or covalently to the cell-
wall peptidoglycan (wall teichoic acid, WTA) (Heilmann,
2011; Pereira et al., 2008; Smith et al., 2012). Mutants with
reduced synthesis of LTAs completely lose their ability to
form a biofilm on hydrophobic polystyrene plates, indic-
ating changes in the physico-chemical properties of the
bacterial cell surface due to the absence of LTAs (Fedtke
et al., 2007). While teichoic acids determine the overall
negative charge of the cell surface, they also carry positive
charges through linking of D-alanine to the glycerol
phosphate or ribitol phosphate units. While the net cell
surface charge remains negative, the local positive charges
provided by D-alanine are critical for adhesion to abiotic
surfaces, and DdltA mutants lacking the ability to link D-
alanine to teichoic acids are therefore biofilm-deficient on
several substrates (Gross et al., 2001). The mutants regain
adhesiveness when supplemented with MgCl2 (Götz, 2002);
hence, D-alanine affects adhesion simply by lowering the
repulsive electrostatic forces towards negatively charged
abiotic surfaces. Besides abiotic surfaces, the wall teichoic
acid of St. aureus was also shown to mediate binding to nasal
and vascular epithelium (Weidenmaier et al., 2004, 2005).
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Food safety impact

In St. aureus, surface adhesins and exopolymers are mainly
responsible for the secondary contamination of food due
to their involvement in colonization of food-processing
surfaces and subsequent biofilm formation. From this
point of view, the main role of surface adhesins with
specific target binding sites lies in their involvement in
primary adhesion, which is highly influenced by the
presence of organic matter on food-processing surfaces.
These surfaces are often conditioned with a variety of
macromolecular and colloidal materials from food residues
that allow microbial adhesion and subsequent biofilm
formation (Poulsen, 1999; Rubio et al., 2002). By contrast,
some cellular components promote adhesion to abiotic
surfaces in a non-specific manner by modulating cell
surface properties or acting as a glue (e.g. autolysins,
teichoic acids, Bap, PIA). However, their role in adhesion
and biofilm formation on food-processing surfaces has not
yet been studied under field conditions.

Listeria monocytogenes

L. monocytogenes is a ubiquitous soil bacterium and an
opportunistic human foodborne pathogen causing lister-
iosis. In healthy, immunocompetent individuals, infections
manifest as mild gastroenteritis or are completely asymp-
tomatic. Indeed, severe cases of listeriosis are rare and
essentially affect pregnant women, neonates, the elderly
and immunocompromised patients (Farber & Peterkin,
1991). While L. monocytogenes is primarily a saprophytic
bacterium with some strains even being avirulent
(Lindbäck et al., 2010; Roche, S.M. et al., 2003; Vivant
et al., 2013), it can be a source of contamination in a wide
range of raw and processed food (Valderrama & Cutter,
2013). This micro-organism is able to withstand and grow
under a wide range of environmental stresses including pH
(4.3–9.6), temperature (1–45 uC), salt (up to 10 % NaCl)
and water activity (Aw down to 0.93). Furthermore, L.
monocytogenes adheres to and colonizes abiotic surfaces,
which contributes to its persistence in processing food
chains (Carpentier & Cerf, 2011). Cell surface proteins are
the major adhesion factors contributing to surface
colonization in L. monocytogenes (Renier et al., 2011).
According to the most recent proteogenomic analyses
based on the secretome concept (Desvaux et al., 2009;
Renier et al., 2012), 58 secreted proteins were predicted to
be located in the cell wall, of which 43 correspond to
LPXTG proteins covalently attached to the cell wall and 15
correspond to GW (five), WXL (four), LysM (five) and
PGBD1 (one) proteins attached to the cell wall by non-
covalent interactions. Furthermore, numerous proteins are
predicted to be located at the cytoplasmic membrane,
namely 74 lipoproteins and 686 integrated membrane
proteins (IMPs), in addition to cell surface supramolecular
protein structures, namely the pseudo-pilus and flagellum.
Surprisingly, only a few of these proteins and their role in
adhesion to abiotic surfaces have been characterized to

date. In Fig. 4, the most important adhesion molecules of
L. monocytogenes are depicted.

Flagella

L. monocytogenes has four to six peritrichous flagella per
cell and their expression is regulated by temperature (Peel
et al., 1988). The role of flagella in surface attachment of L.
monocytogenes was first demonstrated by non-flagellated fla
mutants, which were impaired in initial adhesion to
stainless steel (Vatanyoopaisarn et al., 2000). Several trans-
poson mutagenesis studies supported the finding that
mutations in flagella synthesis affect biofilm formation
(Chang et al., 2012; Kumar et al., 2009; Ouyang et al.,
2012). In addition to temperature, pH and salinity were
also shown to have an influence on flagella biosynthesis
and, consequently, L. monocytogenes adhesion (Caly et al.,
2009; Tresse et al., 2006, 2009). However, the absence of
flagella only delayed biofilm formation but did not affect
the final levels of adherent bacteria observed after longer
periods of time (Vatanyoopaisarn et al., 2000).

A mutant strain of L. monocytogenes 10403S that expresses
flagella but lacks flagellar motility did not adhere to
or invade human epithelial cells more efficiently than
unflagellated listerial cells (O’Neil & Marquis, 2006).
Likewise, non-motile flagellated listerial cells showed a
similar defect in biofilm formation as an unflagellated
mutant (Lemon et al., 2007). The stimulating role of
flagella in adhesion, invasion and biofilm formation is thus
caused by motility, probably by increasing the likelihood of
encountering a surface and overcoming the repelling
electrostatic forces, and not by flagella acting as surface
adhesins per se. The swarming over swimming motility
hypothesis could further explain the importance of flagella
as motility determinants rather than adhesins in biofilm
formation (Renier et al., 2011).

While those studies on L. monocytogenes agree on the
positive influence of flagella on biofilm formation under
static conditions in microtitre plates, the opposite appears
to be the case under dynamic conditions. Although initial
adhesion of both unflagellated and non-motile L. mono-
cytogenes mutants was reduced under static conditions, the
same mutants were hyper-biofilm formers when grown in
flow cells (Todhanakasem & Young, 2008). The effect of
flagella-driven motility on L. monocytogenes biofilms is
therefore more complex than anticipated. All-in-all, flagella
clearly affect adhesion and biofilm formation in L.
monocytogenes but the promotion or inhibition of these
processes seems to depend on the environmental condi-
tions, such as hydrodynamics. The effects of different
parameters such as growth conditions (e.g. pH, temper-
ature, rich/minimum medium, nutrient or hydrodynamic
regime) should probably be more closely considered to
discriminate their respective and relative contribution.
Interestingly, the flagellin FlaA is the first and only surface
protein reported to be glycosylated in L. monocytogenes
(Schirm et al., 2004); the importance of b-O-linked
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N-acetylglucosamine glycosylation in listerial colonization
has yet to be studied.

Biofilm-associated protein L (BapL)

A homologue of the biofilm-associated protein (Bap) was
recently identified in L. monocytogenes and was named BapL
(Lmo0435) (Jordan et al., 2008). Among the 43 LPXTG
proteins identified to date in L. monocytogenes, BapL is the
only one characterized as playing a role in adhesion to
abiotic surfaces. Indeed, an isogenic mutant of lmo0435
showed a significant reduction in adhesion in comparison
with wild-type L. monocytogenes 10403S. However, only four
of 17 L. monocytogenes clinical and food isolates tested
possessed the gene encoding this protein. Furthermore,
several BapL-negative strains showed higher adherence levels
than BapL-positive strains. Collectively, these data suggest
that in L. monocytogenes, BapL is neither an essential factor
influencing adhesion to surfaces nor is it required for
virulence in vivo (Jordan et al., 2008). In marked contrast to
all other bacteria possessing a Bap homologue (Lasa &
Penadés, 2006), the role of BapL in the course of sessile
development could not be established as a reduced level of
adhesion did not prevent the formation of a biofilm by the
bapL mutant. This questions whether Lmo0435 is a
functional protein and/or its actual relationship with the
Bap family; such aspects would undoubtedly require further
in-depth investigations.

Other protein determinants

The genome of L. monocytogenes encodes a family of
proteins called internalins (Bierne et al., 2007). Based on
the presence of leucine-rich repeat (LRR) domains, i.e.
exhibiting a Sec-dependent N-terminal signal peptide, 35
proteins were identified from the available genomes of
different L. monocytogenes strains (Bierne et al., 2007).
Internalins can be discriminated into three classes: (i)
covalent cell wall anchoring to peptidoglycan via the
LPXTG motif, which represents the majority of internalins;
(ii) non-covalent attachment to the cell surface via cell wall-
binding domains such as GW or WXL motifs; and (iii)
extracellular (Bierne et al., 2007). Among the characterized
LPXTG internalins, InlA, InlB and InlJ were demonstrated
to play a role in adhesion to different types of eukaryotic
host cells (Lecuit et al., 1997; Sabet et al., 2008). The
two best-characterized internalins participating in Listeria
invasion are InlA and InlB, which promote bacterial
internalization into mammalian epithelial cells that express
the surface proteins E-cadherin and tyrosine kinase Met,
respectively (Mengaud et al.., 1996; Shen et al., 2000).
Interestingly, some internalins contain a mucin-binding
domain (MucBP) (Bierne et al., 2007). For InlB, InlC and
InlJ, it was shown that the LRR was sufficient to bind to the
mucin of type II (MUC2) but not to MUC1 (Lindén et al.,
2008). In fact, mucin glycoproteins constitute the protec-
tive mucus layer lining the gastrointestinal tract, where
MUC2 comprises most of the mucus layer, whereas MUC1
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is a cell surface mucin. To date, the role of internalins in
adhesion to abiotic surfaces or biofilm formation has not
been investigated.

Besides LPXTG proteins, none of the other surface proteins
mentioned above (i.e. lipoproteins, IMPs and GW, WXL,
LysM and PGBD1 proteins) have been investigated with
respect to their contribution to adhesion and biofilm
formation in L. monocytogenes. In addition to flagella, the
genome of L. monocytogenes encodes another cell surface
supramolecular protein structure secreted and assembled
by the fimbrilin-protein exporter (FPE) (Desvaux &
Hébraud, 2006). Homologues of these proteins form a
pseudo-pilus in Bacillus subtilis (Chen & Dubnau, 2004;
Chen et al., 2006) and complete type IV pili in Streptococcus
pneumoniae (Laurenceau et al., 2013). In L. monocytogenes,
expression and involvement of this structure in adhesion
remains an intriguing and open question (Renier et al.,
2011). Furthermore, several MSCRAMM proteins were
identified in L. monocytogenes by proteogenomic analysis
(Chagnot et al., 2012), including two fibronectin-binding
proteins (FbpA and FbpB) and seven collagen-binding pro-
teins (Renier et al., 2013). Of these, only FbpA was shown to
bind to immobilized human fibronectin (Dramsi et al.,
2004); the remaining proteins have never been functionally
characterized with respect to their potential to bind to ECM
components, especially fibronectin and collagen, and to their
role in adhesion to abiotic surfaces and/or colonization of
food matrices, especially meat products.

Moonlighting proteins are defined as multifunctional
proteins that perform multiple autonomous and often
generally completely unrelated functions, especially when
present at different subcellular locations (Wang et al., 2013).
Many of the currently known moonlighting proteins are
highly conserved, especially glycolytic enzymes and chaper-
ones (Henderson & Martin, 2011). In L. monocytogenes, the
primarily cytoplasmic proteins enolase (Lmo2455), DnaK
(Lmo1473), EF-Tu (Lmo2653) and glyceraldehyde-3-phos-
phate dehydrogenase (GAPDH; Lmo2459) were shown to be
present on the bacterial cell surface and to bind human
plasminogen (Schaumburg et al., 2004). Listeria adhesion
protein (Lap) is one of the most fascinating moonlighting
proteins. It was initially characterized as a key surface
adhesin and allows bacterial adhesion to intestinal epithelial
cells (Santiago et al., 1999). Later, this protein was identified
as an alcohol acetaldehyde dehydrogenase. On the surface of
human host cells, Lap binds with high affinity to human
chaperone Hsp60 (Wampler et al., 2004). The involvement
of moonlighting proteins in adhesion and biofilm formation
in L. monocytogenes remains to be investigated but might be
of particular importance.

Exopolymers

A striking feature of biofilm formation in L. monocytogenes
is the absence of a dense exopolymeric matrix as observed
in most other microbial biofilms (Renier et al., 2011). In
general, the extracellular biofilm matrix is a complex

mixture of different exopolysaccharides as well as eDNA
and/or polyglutamate. Using ruthenium red staining,
carbohydrate compounds could be visualized on the
surface of L. monocytogenes cells (Borucki et al., 2003).
However, this method could not discriminate between the
presence of exopolysaccharides and other glycosylated
molecules such as peptidoglycan, teichoic acids or proteins,
and these data were not considered conclusive by the
authors themselves. This is further supported by the fact
that isolation and characterization of exopolysaccharides
has not been convincingly reported for L. monocytogenes in
the last decade. This is also supported by the absence of
genes encoding known biosynthetic pathways for exopo-
lysaccharides in the genome of sequenced L. monocytogenes
strains (Renier et al., 2011). Interestingly, several groups
have reported the presence of fibre-like structures between
listerial cells and a surface or other bacterial cells (Borucki
et al., 2003; Hefford et al., 2005; Marsh et al., 2003; Renier
et al., 2011; Zameer et al., 2010); some authors suggested
that massive shrinkage of the exopolymeric materials
resulting from complete dehydration in the course of
sample processing for electron microscopy might lead to
the presence of these thin fibres. In regard to their
appearance and distribution on the bacterial cell surface,
these data were recently reinterpreted and it was proposed
that these structures could actually be pili (Renier et al.,
2011). This question would, of course, require further in-
depth investigations.

L. monocytogenes is amongst the bacteria for which the
presence of eDNA in the biofilm matrix has been
demonstrated (Harmsen et al., 2010; Okshevsky & Meyer,
2013). The presence of DNase I inhibited initial adhesion of
L. monocytogenes EGDe to glass slides (Harmsen et al., 2010).
Moreover, eDNA was isolated from the supernatants of the
inoculum and was shown to be of chromosomal origin. In
chemically defined medium, the addition of DNase I at early
time points inhibited biofilm formation and dispersed
biofilms of a number of isolates from different sources and
to some extent also exerted the same effects when added at
later time points (Harmsen et al., 2010). An effect of DNase
treatment on biofilm formation by L. monocytogenes was
also shown by other authors (Kadam et al., 2013).
Interestingly, an insertion mutant in the lmo1386 gene
encoding a putative DNA translocase was impaired in
biofilm formation (Chang et al., 2013). With respect to
biofilm formation ability, L. monocytogenes is subjected to
high strain variability, which is further exacerbated by the
environmental conditions (Lianou & Koutsoumanis, 2013).
All-in-all, much remains to be learned about the contri-
bution of exopolymer(s) to L. monocytogenes adhesion and
sessile development along the food chain.

Food safety impact

Regarding food contamination and safety, extracytoplas-
mic proteins appear the most important determinants of
adhesion in L. monocytogenes, although eDNA can also play
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a role in the early stages of biofilm formation under certain
environmental conditions. However, their exact and respect-
ive contributions in contamination of the food-processing
environment and/or food matrices have not been demon-
strated to date and the mechanisms and proteins involved in
the colonization process remain to be characterized.

Conclusions and remarks

The ability of bacteria to adhere to surfaces or bind various
compounds provides them with a range of physiological and
survival advantages such as: biofilm formation and long-
term persistence; increased resistance to physical stressors
and chemical compounds; tissue colonization, infection
and internalization; and evasion of the immune response
through interaction with components of the immune
system. Bacterial adhesion is a multi-factorial process
involving a range of factors such as environmental condi-
tions, host–pathogen interactions and physico-chemical
properties of both inert and bacterial cell surfaces. Specific
structures present on the bacterial cell surface play a key role
in adhesion. These can act as surface adhesins with varying
degrees of affinity to particular substrates or can modulate
cell surface properties in such a way that promotes bacterial
adhesion. In many bacteria, various surface determinants
such as fimbriae/pili, flagella, LPSs, exopolysaccharides and
numerous surface proteins may be involved in adhesion.
A range of adhesins specifically recognize different host
receptors, such as various structures on the surface of
eukaryotic cells (e.g. integrins), blood proteins and ECM
proteins, but could also be involved in adherence to abiotic
surfaces and biofilm formation. Therefore, understanding
the mechanisms of bacterial adhesion would help in the
development of new strategies targeting molecular struc-
tures involved in attachment. This would in turn facilitate
new approaches for the control of bacterial adhesion in terms
of prevention of both bacterial contamination and infection.
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Foster, S. J. (2009). Iron-regulated surface determinant protein A
mediates adhesion of Staphylococcus aureus to human corneocyte
envelope proteins. Infect Immun 77, 2408–2416.

Collinson, S. K., Clouthier, S. C., Doran, J. L., Banser, P. A. & Kay,
W. W. (1996). Salmonella enteritidis agfBAC operon encoding thin,
aggregative fimbriae. J Bacteriol 178, 662–667.

Cornelis, G. R. (2010). The type III secretion injectisome, a complex
nanomachine for intracellular ‘toxin’ delivery. Biol Chem 391, 745–
751.

Corrigan, R. M., Rigby, D., Handley, P. & Foster, T. J. (2007). The role
of Staphylococcus aureus surface protein SasG in adherence and
biofilm formation. Microbiology 153, 2435–2446.

Corrigan, R. M., Miajlovic, H. & Foster, T. J. (2009). Surface proteins
that promote adherence of Staphylococcus aureus to human
desquamated nasal epithelial cells. BMC Microbiol 9, 22.
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Heilmann, C. (2010). A novel staphylococcal internalization mech-

anism involves the major autolysin Atl and heat shock cognate

protein Hsc70 as host cell receptor. Cell Microbiol 12, 1746–1764.

Huesca, M., Peralta, R., Sauder, D. N., Simor, A. E. & McGavin, M. J.
(2002). Adhesion and virulence properties of epidemic Canadian

methicillin-resistant Staphylococcus aureus strain 1: identification of

novel adhesion functions associated with plasmin-sensitive surface

protein. J Infect Dis 185, 1285–1296.

Hultgren, S. J., Normark, S. & Abraham, S. N. (1991). Chaperone-

assisted assembly and molecular architecture of adhesive pili. Annu

Rev Microbiol 45, 383–415.

Hussain, M., Becker, K., von Eiff, C., Schrenzel, J., Peters, G. &
Herrmann, M. (2001). Identification and characterization of a novel

38.5-kilodalton cell surface protein of Staphylococcus aureus with

extended-spectrum binding activity for extracellular matrix and

plasma proteins. J Bacteriol 183, 6778–6786.

Izano, E. A., Sadovskaya, I., Wang, H. L., Vinogradov, E., Ragunath,
C., Ramasubbu, N., Jabbouri, S., Perry, M. B. & Kaplan, J. B. (2008).
Poly-N-acetylglucosamine mediates biofilm formation and detergent

resistance in Aggregatibacter actinomycetemcomitans. Microb Pathog

44, 52–60.

Jain, S. & Chen, J. (2007). Attachment and biofilm formation by

various serotypes of Salmonella as influenced by cellulose production

and thin aggregative fimbriae biosynthesis. J Food Prot 70, 2473–2479.

Jordan, D. M., Cornick, N., Torres, A. G., Dean-Nystrom, E. A., Kaper,
J. B. & Moon, H. W. (2004). Long polar fimbriae contribute to

colonization by Escherichia coli O157:H7 in vivo. Infect Immun 72,

6168–6171.

Jordan, S. J., Perni, S., Glenn, S., Fernandes, I., Barbosa, M., Sol, M.,
Tenreiro, R. P., Chambel, L., Barata, B. & other authors (2008).
Listeria monocytogenes biofilm-associated protein (BapL) may con-

tribute to surface attachment of L. monocytogenes but is absent from

many field isolates. Appl Environ Microbiol 74, 5451–5456.

Journet, L., Hughes, K. T. & Cornelis, G. R. (2005). Type III secretion:

a secretory pathway serving both motility and virulence [Review]. Mol

Membr Biol 22, 41–50.

Jucker, B. A., Harms, H., Hug, S. J. & Zehnder, A. J. B. (1997).
Adsorption of bacterial surface polysaccharides on mineral oxides is

mediated by hydrogen bonds. Colloids Surf B Biointerfaces 9, 331–343.

Junkins, A. D. & Doyle, M. P. (1992). Demonstration of exopoly-

saccharide production by enterohemorrhagic Escherichia coli. Curr

Microbiol 25, 9–17.

Kadam, S. R., den Besten, H. M., van der Veen, S., Zwietering, M. H.,
Moezelaar, R. & Abee, T. (2013). Diversity assessment of Listeria

monocytogenes biofilm formation: impact of growth condition,

serotype and strain origin. Int J Food Microbiol 165, 259–264.

Kader, A., Simm, R., Gerstel, U., Morr, M. & Römling, U. (2006).
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Tormo, M. A., Knecht, E., Götz, F., Lasa, I. & Penadés, J. R. (2005).
Bap-dependent biofilm formation by pathogenic species of
Staphylococcus: evidence of horizontal gene transfer? Microbiology
151, 2465–2475.

Tormo, M. A., Ubeda, C., Marti, M., Maiques, E., Cucarella, C., Valle,
J., Foster, T. J., Lasa, I. & Penades, J. R. (2007). Phase-variable
expression of the biofilm-associated protein (Bap) in Staphylococcus
aureus. Microbiology 153, 1702–1710.

Torres, A. G., Giron, J. A., Perna, N. T., Burland, V., Blattner, F. R.,
Avelino-Flores, F. & Kaper, J. B. (2002a). Identification and
characterization of lpfABCC9DE, a fimbrial operon of enterohemor-
rhagic Escherichia coli O157:H7. Infect Immun 70, 5416–5427.

Torres, A. G., Perna, N. T., Burland, V., Ruknudin, A., Blattner, F. R. &
Kaper, J. B. (2002b). Characterization of Cah, a calcium-binding
and heat-extractable autotransporter protein of enterohaemorrhagic
Escherichia coli. Mol Microbiol 45, 951–966.

Torres, A. G., Kanack, K. J., Tutt, C. B., Popov, V. & Kaper, J. B.
(2004). Characterization of the second long polar (LP) fimbriae of
Escherichia coli O157:H7 and distribution of LP fimbriae in other
pathogenic E. coli strains. FEMS Microbiol Lett 238, 333–344.

Torres, A. G., Jeter, C., Langley, W. & Matthysse, A. G. (2005).
Differential binding of Escherichia coli O157:H7 to alfalfa, human
epithelial cells, and plastic is mediated by a variety of surface
structures. Appl Environ Microbiol 71, 8008–8015.

Torres, A. G., Milflores-Flores, L., Garcia-Gallegos, J. G., Patel, S. D.,
Best, A., La Ragione, R. M., Martinez-Laguna, Y. & Woodward, M. J.
(2007). Environmental regulation and colonization attributes of the
long polar fimbriae (LPF) of Escherichia coli O157:H7. Int J Med
Microbiol 297, 177–185.

Totsika, M., Wells, T. J., Beloin, C., Valle, J., Allsopp, L. P., King, N. P.,
Ghigo, J. M. & Schembri, M. A. (2012). Molecular characterization
of the EhaG and UpaG trimeric autotransporter proteins from

pathogenic Escherichia coli. Appl Environ Microbiol 78, 2179–2189.

Tresse, O., Lebret, V., Benezech, T. & Faille, C. (2006). Comparative

evaluation of adhesion, surface properties, and surface protein

composition of Listeria monocytogenes strains after cultivation at
constant pH of 5 and 7. J Appl Microbiol 101, 53–62.

Tresse, O., Lebret, V., Garmyn, D. & Dussurget, O. (2009). The

impact of growth history and flagellation on the adhesion of various
Listeria monocytogenes strains to polystyrene. Can J Microbiol 55, 189–

196.

Tükel, C., Nishimori, J. H., Wilson, R. P., Winter, M. G., Keestra, A. M.,
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