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Prediction of bioactive compound activity against wood contaminant
fungi using artificial neural networks

Henrique Vicente, José C. Roseiro, José M. Arteiro, José Neves, and A. Teresa Caldeira

Abstract: Biopesticides based on natural endophytic bacteria to control plant diseases are an ecological alternative to chemical
treatments. Bacillus species produce a wide variety of metabolites with biological activity like iturinic lipopeptides. This work
addresses the production of biopesticides based on natural endophytic bacteria isolated from Quercus suber L. Artificial neural
networks were used to maximize the percentage of inhibition triggered by the antifungal activity of bioactive compounds
produced by Bacillus amyloliquefaciens. The active compounds, produced in liquid cultures, inhibited the growth of 15 fungi and
exhibited a broader spectrum of antifungal activity against surface contaminant fungi, blue stain fungi, and phytopathogenic
fungi. A 19-7-6-1 neural network was selected to predict the percentage of inhibition produced by antifungal bioactive com-
pounds. A good match among the observed and predicted values was obtained with the R? values varying between 0.9965-0.9971
and 0.9974-0.9989 for training and test sets. The 19-7-6-1 neural network was used to establish the dilution rates that maximize
the production of antifungal bioactive compounds, namely, 0.25 h~ for surface contaminant fungi, 0.45 h~! for blue stain fungi,
and between 0.30 and 0.40 h—* for phytopathogenic fungi. Artificial neural networks show great potential in the modelling and
optimization of these bioprocesses.

Résumé : Les biopesticides a base de bactéries endophytes naturelles pour lutter contre les maladies des plantes constituent une
alternative écologique aux traitements chimiques. Les espéces de Bacillus produisent une grande variété de métabolites bi-
ologiquement actifs tels que les lipopeptides ituriniques. Cette étude porte sur la production de biopesticides par des bactéries
endophytes naturelles isolées du Quercus suber L. Des réseaux neuronaux artificiels ont été utilisés pour maximiser le pourcentage
d’inhibition provoquée par l’activité antifongique des composés bioactifs produits par Bacillus amyloliquefaciens. Les composés
actifs, produits en culture liquide, ont inhibé la croissance de 15 champignons et avaient un spectre d’activé antifongique plus
large contre les contaminants fongiques de surface, les champignons de bleuissement et les champignons phytopathogénes. Un
réseau neuronal 19-7-6-1 a été choisi pour prédire le pourcentage d’inhibition produit par les composés bioactifs antifongiques.
Une bonne concordance entre les valeurs observées et prédites a été obtenue; les valeurs de R? variaient de 0,9965 a 0,9971 et de
0,9974 a 0,9989 pour les bases d’apprentissage et de test. Le réseau neuronal 19-7-6-1 a été utilisé pour établir les taux de dilution
qui maximisent la production des composés bioactifs antifongiques, nommément 0,25 h~! pour les contaminants fongiques de
surface, 0,45 h~! pour les champignons de bleuissement et entre 0,30 et 0,40 h~! pour les champignons phytopathogenes. Les
réseaux neuronaux artificiels ont un potentiel élevé pour modéliser et optimiser ces processus biologiques. [Traduit par la
Rédaction]|

in the early 1930s (Weindling 1932). Subsequently, this species was
applied successfully as a biocontrol agent against several plant
diseases in commercial agriculture, as a competitive antagonist
against important pathogens of forest trees, and as a biocontrol
agent against wood decay fungi in urban trees (Schubert et al.
2008). Marine fungi, namely Aspergillus japonicus, also have proved
their potential to complete in vitro strong inhibition of the
growth of the pathogenic fungus Fusarium solani as they are bio-
logically based and environmentally safe alternatives (El-Kassas
2008; El-Kassas and Khairy 2009). On the other hand, Cartapip (a
commercial product consisting of inoculum from a melanin-

Introduction

The alarming problem of some fungal diseases in forest systems
increases the urgency of discovering the discovery of new com-
pounds with a higher activity against pathogenic agents that can
cause common diseases in forest systems. Microbial populations
possess enormous metabolic diversity and can activate protective
mechanisms that allow them to withstand the pressures imposed
either by the natural environment or human intervention (Aminov
2009). Indeed, the integration of various disease-control strate-
gies, including biological control, should be considered to im-
prove the efficacy and reduce fungicide levels in the environment.

Sapstain and mould growth on lumber are serious problems in
the forest products industry. Structural damage is minimal to
timber, but the discolorations are objectionable to buyers and
highly detrimental to the pulp and paper industry. Recently, there
have been many reports about the application of antagonistic
fungi to control plant diseases such as the use of the Trichoderma
species (Soytong et al. 2005). The potential of the Trichoderma spe-
cies as a biocontrol agent of plant pathogens was first recognized

deficient strain of Ophiostoma piliferum) is used for the prevention
of sapstain on wood as well as in biopulping, where O. piliferum
reduces the pitch content in wood chips before pulping (Beer et al.
2003). The Bacillus species are well-known producers of metabo-
lites with antimicrobial properties. Usually, three different classes
of bioactive peptides can be distinguished: antifungal peptides,
such as bacilysin and rhizocticin; antifungal lipopeptides, such as
surfactins, iturins and fengycins; and antimicrobial polypeptides,
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such as subtilin (Pabel et al. 2003). The species Bacillus amylolique-
faciens has been reported to produce lipopeptides with antifungal
proprieties. The presence of these compounds and (or) their con-
jugation confers antifungal activity to the cultures. The biological
activity of lipopeptides is the result of the peptide cycle and the
lipid chain, leading to differential inhibitory effects against vari-
ous fungal species (Kowall et al. 1998; Moyne et al. 2001). Further-
more, the production of antifungal bioactive compounds by
Bacillus in liquid cultures depends on the dilution rate used, and
the different sensitivities of the compounds produced are related
to the type of fungi (Caldeira et al. 2011a).

Artificial neural networks (ANNSs) are accepted as reliable data
modelling tools that are able to capture and represent complex
relationships between inputs and outputs. ANNs are computa-
tional tools inspired by the architecture and internal operational
features of the human brain. ANNs can learn from example, are
fault-tolerant (in the sense that they are able to handle noisy and
incomplete data), are able to deal with nonlinear problems, and,
once trained, can perform prediction and generalization at high
speed (Galushkin 2007; Haykin 2008). In recent years, ANNs have
been applied to model and to optimize the production of biocom-
pounds by Bacillus (Silva et al. 2008; Sathish and Prakasham 2010;
Caldeira et al. 2011b; Zafar et al. 2012). However, the establishment
of the dilution rate, which maximizes the activity of compounds
against several types of fungi, is a complex and highly nonlinear
problem for which, to our knowledge, no methods have been
reported in the literature for a direct and accurate prediction. The
objective of the current study was to use artificial-intelligence-
based tools, namely ANNSs, to solve this problem. The ANN-based
approach was used to establish the dilution rate for B. amylolique-
faciens CCMI 1051 cultures to maximize the production of antifun-
gal bioactive compounds against surface contaminant fungi (SCF),
blue stain fungi (BSF), and phytopathogenic fungi (PhF).

Materials and methods

Microorganisms

Bacillus amyloliquefaciens CCMI 1051 was isolated from healthy
Quercus suber L. (Caldeira et al. 2006). The strain was identified by
morphological, physiological, and biochemical characteristics
based on Bergey’s Manual of Systematic Bacteriology and by 16S rDNA
sequence analysis (Accession No. AY785773). Bacillus amyloliquefa-
ciens CCMI 1051 was maintained on nutrient agar (Difco) slants and
stored at 4 °C.

Fungi used in antifungal activity assays were grown on malt
extract agar (MEA) (Merck, Darmstadt, Germany). The contami-
nant fungi were Aspergillus niger CCMI 296, Penicillium expansum
CCMI 625, Trichoderma pseudokoningii CCMI 304, Trichoderma harzianum
CCMI 783, Trichoderma harzianum CCMI 822, and Trichoderma
koningii CCMI 868; the blue stain fungi were Cladosporium
cladosporioides CCMI 680, Cladosporium resinae CCMI 262, and
Cladosporium resinae CCMI 667; and the phytopathogenic fungi
were Botrytis cinerea CCMI 899, Cephalosporium sp. F25, Fusarium
oxysporum CCMI 898, Fusarium solani F4, and Cladosporium
cucumerinum CCMI 206. Cephalosporium sp. F25 and F. solani F4 were
isolated from cork and were provided by the National Agronomic
Institute Collection. Rhizopus oryzae 1122 provided by the Wood
Fungi Collection of the Civil Engineering National Laboratory was
also used. The remaining fungi were provided by the Culture Col-
lection of Industrial Microorganisms (CCMI) of the Portuguese
Laboratory of Industrial Microbiology, Lisbon, Portugal.

Growth conditions

Bacillus sp. CCMI 1051 was grown in continuous culture at 30 °C
using a bench-scale bioreactor (Infors HT CH-4103, Bottmingen,
Switzerland) with a working volume of 1 L. The chemically defined
medium used contained (per litre): (NH,),SO,, 1.5 g; KH,PO,, 1.7 g;
Na,HPO,-2H,0, 1.7 g; MgS0,-7H,0, 0.2 g; yeast extract (Difco),
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0.1 g; glucose, 2 g; and 2 mL of a mineral-rich solution (the Vish-
niac solution, sterilized separately) (Vishniac and Santer 1957).
The medium components were dissolved in 80% of the total dis-
tilled water volume and glucose in the remaining 20% of the final
volume of distilled water and thensterilized separately to avoid
Maillard reactions. Solutions were sterilized in an autoclave at
121 °C and 1 bar (1 bar = 100 kPa) for 20 min. Control of foam was
performed by the addition of 2 mL/L of a sterilized aqueous solu-
tion of polypropylene glycol 2000 (2% (v/v)) into the medium.

After a period of batch cultivation, a variable speed peristaltic
pump (Master Flex, Cole-Parmer Instrument Co., Vernon Hills,
Ilinois) was used to feed sterile medium into the bioreactor at
dilution rates between 0.15 and 0.75 h~'. The culture volume in the
vessel was kept constant using an overflow tube. Metabolic steady
states were achieved when cell and glucose concentrations were
constant for more than four to five retention times.

Antifungal assays

Fungal spore suspension was prepared by suspending loopfuls
of hyphae and spores from a MEA slant (7 day cultures at 25 °C) in
5 mL of a 0.85% NaCl solution. The suspension was filtered
through sterilized cotton. A 108 CFU/mL spore suspension was
obtained through dilutions and adjusted to 105 CFU/mL using a
serial dilution operation. Malt extract (2.5 mL), 0.25 mL of
105 CFU/mL fungi, and 2.5 mL of Bacillus sp. CCMI 1051 cell-free
supernatants were incubated for 24 h at 25 °C. After this period,
1 mL of each interaction mixture was plated, by incorporation in
20 mL of CRB, and the petri dishes were incubated at 25 °C for
24-48 h. The relative inhibition against a control test (%) was
determined in quintuplicate by counting the number of colonies.

Artificial neural networks

In the present study, the most common neural network type,
the multilayer perceptron (Haykin 2008), was adopted. This type
of network is formed by three or more layers of basic computing
units designated by artificial neurons or nodes. It includes an
input layer, an output layer, and a number of hidden layers with a
certain number of active neurons connected by feed-forward
links, to which are associated modifiable weights. In addition,
there are also biases, which are connected to neurons in the hid-
den and output layers. The input layer is where the information is
introduced into the network and then the information is passed
to the hidden layers before reaching the output layer. The number
of nodes in the input layer denotes the number of independent
variables and the number of nodes in the output layer stands for
the number of dependent variables (Galushkin 2007; Haykin
2008).

Network design, i.e., the establishment of network topology, is
a trial-and-error process and may affect the accuracy of the result-
ing trained network. A number of automated techniques have
been proposed to search for a “good” network topology. These
typically use a hill-climbing approach that starts with an initial
topology that is selectively modified to improve performance, i.e.,
to minimize an internal measure of error. The internal error met-
ric most commonly used is the mean square error (Cortez et al.
2004; Han and Kamber 2006).

The training phase is the process whereby the weights are ad-
justed to find the optimal set of weights that would produce the
right output for any input in the ideal case. There are two differ-
ent training methodologies, i.e., supervised and unsupervised.
The former requires input and output parameters and the latter
only needs the inputs. In the present study, a supervised training
method was used. Thus, the available data were randomly divided
into two mutually exclusive partitions: the training set, with two-
thirds of the available data, used to establish the ANN model, and
the test set, with the remaining one-third of data, used after train-
ing, to evaluate the model performance (Souza et al. 2002). To
ensure statistical significance of the attained results and no
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dependence from the random partition of the available data into
training and test sets, 20 runs were applied in all tests.

In the training phase, the back-propagation algorithm (BP)
(Rumelhart et al. 1986) was applied. This is the most widely used
training algorithm for the multilayered perceptron, and evolves
in two phases. The first phase is concerned with the forward stage,
where the information is propagated from the input to the output
layer. The second phase is the backward stage where the error,
defined as the difference between the observed value and the
desired nominal value in the output layer, is propagated back-
wards to adjust the weightings and bias values. In the forward

phase, the weighted sum of input components, u;, is calculated as

mn
()] u; = E wyx; + bias;
i=1

where w;; stands for the weight linking the jth and the ith neurons
in the preceding layer, x; represents the output of the ith neuron
in the preceding layer, and bias; denotes the weight between the
jth neuron and the bias neuron in the preceding layer. The output
of the jth neuron in any layer, y;, is calculated as

(2) Y; = f(“;)

where f represents the activation function. Despite the various
activation functions that can be used in the multilayered percep-
trons, the sigmoid activation function, given as follows, is widely
used (Han and Kamber 2006).

@ ou) = ——
1+e

The software used to implement the ANNs was the Waikato
Environment for Knowledge Analysis (WEKA), keeping the de-
fault software parameters (Hall et al. 2009). In all experiments, the
sigmoid activation function was applied.

Modelling performance criteria

To evaluate the performance of the different ANN models,
mean absolute deviation (MAD) and mean square error (MSE) were
used.

_ Ef,:1|Yi, - Yl|

(4) MAD = N
Eil(Y: B Yl)z

(5) MSE = N

where Yis an experimental value, Y’ represents a predicted value,
and N denotes the number of observations. If the goal is a model
that avoids large errors, MSE should be minimized, since this
error metric amplifies large deviations. Conversely, if some large
deviations can be allowed, the amplification effect is not neces-
sary and MAD should be used, since it attenuates large errors.
These two measures of goodness of fit do not provide any infor-
mation on the nature of the errors. To investigate this point, the
average of all individual errors, named bias, was calculated using

E?’:l(Y; B Yi)

(6) bias = N

Fig. 1. Inhibition halos triggered by antifungal activity of bioactive
compounds produced by Bacillus amiloliquefaciens at different dilution
rate (D) culture broths on a malt extract agar (MEA) petri dish with
Trichoderma harzianum CCMI 783.

This metric is helpful, since it indicates whether the model over-
estimates (bias greater than zero) or underestimates the output
variables (bias less than zero).

To obtain the percentage of variability that can be explained by
the selected ANN model, the coefficient of determination (R?) was
calculated using the following equation:

NS Y- (51, V), V) :

i=1"1 i=1-"1

\/[NE{\LI Y- (Ei\il Y;)Z] X [Nzyﬂ Y- (2?:1 - Y‘)Z]

Results

A strain of B. amyloliquefaciens isolated from healthy Q. suber was
used to produce antifungal bioactive compounds against SCF, BSF,
and PhF. The operating conditions that maximize the production
of these compounds was previously reported (Caldeira et al.
2011b). The cultures of this strain were performed in a chemostat
culture with different dilution rates ranging from 0.15 to 0.45 h—.
Compounds produced by B. amyloliquefaciens inhibited the growth
of the 15 strains of fungi (presented in the Microorganisms sec-
tion) and exhibit a broader spectrum of activity, highly influenced
by culture conditions. Figure 1 shows the inhibition halos trig-
gered by antifungal activity of the bioactive compounds produced
by B. amyloliquefaciens, at different dilution rates of culture broth,
on an MEA petri dish with T. harzianum CCMI 783. The culture
broth, performed in triplicate, produced distinct inhibition halos
according to the dilution rate used. As can be noted from Fig. 1, the
higher dilution rates (0.40 and 0.45 h~?) reveal a weak diffusion
into agar and a more limited antifungal activity.

Database

The data from the antifungal activity of biocompounds pro-
duced at different dilution rates by B. amyloliquefaciens against the
15 contaminant fungi were used to construct a database (Table 1).
This database contained a total of 60 records with four fields;
namely, the type of fungi (SCF, BSF, or PhF), fungal strain, dilution
rate, and percentage of inhibition. Table 2 shows the statistical
characterization of the numerical fields included in the database.
A perusal of Table 2 reveals that the inhibition shows a large
dispersion of the data with a coefficient of variation of 54.2%. This
coefficient is a measure of dispersion of data and it is calculated as
(SD/mean)100.
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Table 1. Antifungal activity of Bacillus amyloliquefaciens CCMI 1051 cell-free supernatants at dilution rates ranging between 0.15 and 0.45 h—.

Inhibition (%)*

A

K

B

Dilution rate (h™)

0.15
0.25
0.35
0.45

0.0+0.0 64.5%3.0 97.4%8.8 58.0+2.1 52.0+6.5 86.0+8.7 15.73.1 70.8%+3.5
35.715.2 57.9%1.5 37.813.2

0.0+0.0

77.316.9 98.3+6.8 28.0%3.2 62.0+2.8 42.7+2.1 12.9%1.4
93.416.0 19.3%1.9

79.216.0

34.3+5.3

96.611.0 74.416.8

52.818.5

97.418.8

81.317.2  80.8%+2.8

62.513.1

5.5%0.2
0.710.2
0.310.1

29.311.8

0.0%0.0 0.0£0.0 47.8+5.3 83.9%3.7 58.118.3 59.1+4.6 86.5t7.4 41.3t7.2 98.6%3.2
33.514.2 73.418.2 56.3+4.0 46.616.1

2.8+0.5

58.513.1

71.3t5.1  82.9%7.9

27.1+4.5
35.215.2

73.015.6

91.8+4.7

91.9+3.4

52.2%2.5 61.817.3 86.1+3.5

87.410.2

59.818.3

Note: Aspergillus niger (A), Penicillium expansum (B), Trichoderma koningii (C), Trichoderma pseudokoningii (D), Trichoderma harzianum sp1 (E), Trichoderma harzianum sp2 (F), Rhizopus sp (G), Cladosporium cladosporioides (H),

Cladosporium resinae sp1 (I), Cladosporium resinae sp2 (J), Cladosporium sp (K), Botrytis cinerea (L), Cephalosporium sp (M), Fusarium oxysporum (N), and Fusarium solani (O).

*The relative inhibition against a control test was represented as % growth by quintuplicate colony counting in the presence of Bacillus amyloliquefaciens CCMI 1051 cell-free supernatants as compared with a control

culture.
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Table 2. Statistical characterization of the numerical variables used
in the study.

No. of Coefficient of
Variable Unit records Min. Max. Mean SD variation (%)
Dilution rate h-' 60 015 045 0.299 0.114 38.1

Inhibition % 60 0.0 98.6 5546 30.09 54.2

ANN model

To obtain the best prediction for the percentage of inhibition
produced by antifungal bioactive compounds, different network
topologies were elaborated and evaluated. The optimum number
of hidden layers and the optimum number of nodes in each of
these was found by trial and error. Table 3 presents the values of
MAD, MSE, and bias for some of the topologies considered. A
glance at Table 3 shows that the 19-7-6-1 ANN topology minimizes
MAD and MSE and exhibits a bias value closer to zero for the
training set and for the test set. Thus, the ANN depicted in Fig. 2,
formed by an input layer with 19 nodes, two hidden layers with
seven and six nodes, respectively, and a one-node output layer was
chosen to model the data. Figure 3 shows the mark point on a
graph for experimental and predicted values of the percentage of
inhibition triggered by the antifungal activity of bioactive com-
pounds produced by B. amyloliquefaciens for the training and test
sets. Table 4 presents the values of the coefficient of determina-
tion (R?) for the evaluation of model performance. A good match
between the observed and predicted values can be observed with
the R? values varying in the range 0.9965-0.9971 for the training
set and 0.9974-0.9989 for the test set. The agreement between the
predicted and experimental values, R2, MAD, MSE, and bias seems
to suggest a good fit of the model to the data set, and demon-
strates the potential of the ANNs in addressing the antifungal
activity of compounds produced by Bacillus at different dilution
rates.

In addition, Fig. 4 shows the plots for residuals versus predicted
values of the percentage of inhibition triggered by the antifungal
activity of the bioactive compounds produced by Bacillus for the
training and test sets. The observed relationship between residu-
als and predicted values for the output variables for the training
and test sets shows complete independence and random distribu-
tion. In fact, the determination coefficients are negligible (varying
in the range 0.011-0.050 for the training set and 3.0 x 10-° to 0.054
for the test set). Figure 4 shows that the points on the chart are
well-distributed on both sides of the horizontal line of the zero
ordinate, corresponding to the correct prediction. Plots of the
residuals versus predicted values can be more informative regard-
ing model fitting to a data set. If the residuals appear to behave
randomly, it suggests that the model fits the data quite well. On
the other hand, if nonrandom distribution is evident in the resid-
uals, the model does not fit the data adequately (McBride 2005).

After the training and validation stages, the selected 19-7-6-1
ANN model was used to establish the effect of dilution rate on
antifungal inhibition. Thus, the selected ANN was brought into
play to predict the responses for different initial conditions,
which exhaustively covered the entire experimental space. In
Fig. 5, the relationships between dilution rate and the antifungal
inhibition for the different fungi are depicted. Response contours
for antifungal inhibition against fungi (Fig. 5) showed a depen-
dence upon dilution rate, illustrating different behaviours for dif-
ferent types of fungi. Surface contaminant fungi showed a profile
converging to a common maximum value of inhibition corre-
sponding to a dilution rate of 0.25 h~. Blue strain fungi showed a
sigmoidlike profile, converging to a common maximum value of
fungal inhibition at a dilution rate of 0.45 h~'. In contrast, the
results obtained indicated that the maximum PhF inhibition was
achieved with dilution rates between 0.3 and 0.4 h—.
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Table 3. Mean absolute deviation (MAD), mean squared error (MSE), and bias for some of the artificial
neural network (ANN) topologies tested.

MAD* MSE* bias*
ANN topology Training set Testset Trainingset Test set Training set  Test set
19-5-1 0.0486 0.0322 0.0047 0.0015 0.0132 0.0125
19-121 0.0725 0.1179 0.0080 0.0203 0.0126 -0.0134
19-3-3-1 0.0527 0.0522 0.0041 0.0042 0.0232 -0.0018
19-4-3-1 0.0733 0.1054 0.0081 0.0162 0.0207 0.0011
19-7-6-1 0.0138 0.0069 2.74x10~* 7.37x10-5  0.0015 -1.38,24.10
19-12-51 0.0908 0.1243 0.0137 0.0259 0.0208 -0.0070
iN:1Y|{7 i {V:l(Y:7Y|)2 :\Ll(Yfin)
*MAD = , MSE = , bias = , where Y, Y’, and N denote, respectively, an

experimental value, a predicted value, and the number of observations.

Fig. 2. The artificial neural network (ANN) structure for modelling
antifungal activity against surface contaminant fungi, blue stain
fungi, and phytopathogenic fungi.

Fig. 3. Plot of the predicted response by the artificial neural
network (ANN) model and experimental values for surface
contaminant fungi (x), blue stain fungi (O), and phytopathogenic
fungi (A) for training (a) and test (b) sets.
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Typically, the efforts in data acquisition will be focused on the 0 .
more relevant variables for model accuracy and dropping or ig- 0 0 100

noring those that matter least. Sensitivity analysis is a simple
procedure that is applied after the modelling phase and analyzes
the model responses when the inputs are changed. Sensitivity
according to variance (Kewley et al. 2000) was used to compute the
relative importance of the input variables for the selected model.
The results are presented in Fig. 6 and reveal that the most infor-
mative variable is the fungal strain. However, despite the impor-
tance of this variable, the other variables (i.e., fungi type and
dilution rate) also have a contribution to the final performance of
the model.

Discussion

Glucose-limited chemostat cultures of B. amyloliquefaciens
CCMI 1051 growing at different dilution rates showed different
antifungal properties, indicating changes in metabolite concen-

% Inhibitiongy,

tration and thus the possibility to obtain a more intense extract
activity. Continuous cultivation allows changes in the specific
growth rate to be studied and allows the detection of physiologi-
cal effects (Nobre et al. 2009). This strain showed the production of
several compounds between 1000 and 1100 Da, comparable to that
of iturin and surfactin compounds, and it also produces antifun-
gal lipoptides between 1436 and 1478 Da (Caldeira et al. 2011a).
The antifungal activity data for the biocompounds produced at
different dilution rates by B. amyloliquefaciens against the contam-
inant fungi show a large dispersion of the data. These results seem
to suggest that the bioactive culture broth produced at different
dilution rates produces different sensitivities against the same
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Table 4. Comparison between measured and evaluated
responses of the selected artificial neural network (ANN)
model for surface contaminant fungi (SCF), blue stain
fungi (BSF), and phytopatogenic fungi (PhF) for the train-
ing and test sets.

Response
Fungi type Training set Test set
SCF 0.9971 0.9989
BBSF 0.9965 0.9982
PhF 0.9969 0.9974

Fig. 4. Plot of residuals versus the predicted response by the
artificial neural network (ANN) model for surface contaminant
fungi (x), blue stain fungi (O), and phytopathogenic fungi (A) for
training (a) and test (b) sets.
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fungi (Figs. 1and 5). In addition to this, the variation in antifungal
activity may reflect differences in the sites of action or the abilities
of the fungi to detoxify the metabolites (Fiddaman and Rossal
1994). Such variability may be attributed to different inhibitory
effects against various fungal species. Indeed, this fact may be
explained by the different responses of each species in the pres-
ence of the components of the metabolite pool (Caldeira et al.
2007). This synergistic effect was also described in cultures of
Bacillus subtilis against Botrytis cinerea because of the simultaneous
presence of surfactin and plipastatin (Tsuge et al. 1996), and in
cultures of B. amyloliquefaciens against Fusarium oxysporum because
of the presence of bacilomicin D and fengycin (Koumoutsi et al.
2004).

Bacillus amyloliquefaciens CCMI 1051 can be a good biological con-
trol agent, which may contribute to the alleviation of the exces-
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Fig. 5. Response contours for antifungal inhibition, obtained with
the 19-6-7-1 artificial neural network (ANN), against fungi upon
dilution rate. Surface contaminant fungi (a), blue strain fungi (b),
and phytopathogenic fungi (c). Aspergillus niger (A), Penicillium
expansum (B), Trichoderma koningii (C), Trichoderma pseudokoningii (D),
Trichoderma harzianum sp1 (E), Trichoderma harzianum sp2 (F), Rhizopus
sp (G), Cladosporium cladosporioides (H), Cladosporium resinae sp1 (I),
Cladosporium resinae sp2 (J), Cladosporium sp (K), Botrytis cinerea (L),
Cephalosporium sp (M), Fusarium oxysporum (N), and Fusarium solani (O).
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Fig. 6. Relative importance of input variables for the selected
artificial neural network (ANN) to model antifungal activity against
surface contaminant fungi, blue stain fungi, and phytopathogenic
fungi.
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sive use of chemical pesticides, and in the end, the reduction of
environmental pollution; in fact, these compounds, made of ami-
no acids and fatty acid, are easily biodegradable in soils. Further-
more, multiple strains of Bacillus spp. have demonstrated the
ability to stimulate plant defence responses because of the pro-
duction of lipopeptides (Ongena et al. 2008).

Glucose-limited chemostat cultures of B. amyloliquefaciens
CCMI 1051 growing at different dilution rates showed different
antifungal properties. The agreement between the predicted and
experimental values demonstrates the potential of the ANN
model to address the antifungal activity of compounds, produced
by Bacillus culture, at different dilution rates. Thus, ANNs can
predict responses for different initial conditions, which exhaus-
tively cover the entire experimental space, to maximize the pro-
duction of antifungal bioactive compounds against SCF, BSF, and
PhF. In fact, treatments based on the use of toxic chemicals that
may accumulate in animal tissues (Greaves 1970) are subject to
increasing restrictions. Thus, biological control (Leifert et al. 1995;
Emmert and Handelsman 1999; Feio et al. 2004) is being seriously
considered for wood protection, not only against sapstain but also
against decay fungi (Bruce 1998; Caldeira et al. 2008). The predic-
tion of bioactive compound activity against wood contaminant
fungi using ANNs can become an important tool in the develop-
ment of an integrated strategy for the management of fungal
pathogens and undesirable saprobes.
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