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Abstract. Environmental concerns regarding the high CO2 emissions related to the production of 

ordinary Portland cement (OPC) led to research efforts on the development of eco-efficient 

alternative binders. Geopolymers constitute promising inorganic binders alternative to OPC which 

are based on aluminosilicates by-products and alkali activators. The geopolymerization technology 

of aluminosilicates is a complex chemical process evolving dissolution of raw materials, 

transportation, orientation and polycondensation of the reaction products. Classical two part 

geopolymers could become more eco-efficient with a lower CO2 footprint if sodium silicate usage is 

avoided. Besides current geopolymeric mixes can suffer from efflorescence originated by the fact 

that alkaline or soluble silicates that are added during processing cannot be totally consumed during 

geopolymerisation. Therefore, new and improved geopolymer mixes are needed. One-part 

geopolymers (sodium silicate free) were first proposed in 2007. However, very few papers were 

published on these materials. This paper presents experimental results on the durability performance 

of one-part geopolymers concerning water absorption, penetration of chloride, carbonation 

resistance and resistance to acid attack. Hydration products results assessed by FTIR spectra are 

also presented.  

Introduction 

Concrete is the most used construction material on Earth, its consumption reaching almost 

10.000 million tons per year and the projections for the global demand of the main binder of 

concrete structures, Portland cement, show that in the next 40 years, concrete production will keep 

on rising [1].  

Portland cement production represents 74-81% of the total CO2 emissions of concrete, 

aggregates, in turn, represent 13-20% of the total, therefore batching, transport and placement 

activities have no relevant expression in terms of carbon dioxide emissions [2,3].  

The production of one tonne of Portland cement generates 0.55 tonnes of chemical CO2 and 

requires an additional 0.39 tonnes of CO2 in fuel emissions for baking and grinding, all accounting 

for a total of 0.94 tonnes of CO2 [4]. In order to reduce the environmental impacts associated to 

OPC some solutions have been suggested by Flatt et al. [5]:  

1. Partial cement (clinker) replacement by supplementary cementitious materials  

2. Development of alternative binders  

3. Broader use of concrete mix designs that limit cement content  

4. Recycling of demolished concrete in new concretes  

5. Enhancement of durability (designing new infrastructures for longer service life)  

6. Rehabilitation of existing infrastructures (extending the service life of existing infrastructures) 

 

Concerning the development of alternative binder geopolymers have received a lot of attention in 

the last decade. The name ‘geopolymer’ was introduced by Davidovits in the 1970s, however the 

technology of alkali-activation predates this terminology by more than 60 years [6].  
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These materials “are produced through the reaction of an aluminosilicate—normally supplied in 

powder form as an industrial by-product or other inexpensive material—with an alkaline activator, 

which is usually a concentrated aqueous solution of alkali hydroxide, silicate, carbonate or 

sulphate” [6].  

Despite all the investigations published on these materials in the last decades some aspects still 

needed to be further investigated especially concerning durability performance [7]. The discovery 

of one-part geopolymers (also known as hybrid alkaline cements) is considered a key event on the 

evolution of low carbon geopolymer technology, however they were associated with very low 

compressive strength [8]. According to those authors an increase in the compressive strength to 

4MPa would require 24 h hydrothermal treatment at 100 ºC.  The use of a much more intensive 

treatment (140 ºC) would increase compressive strength to 12-20 MPa. Some authors recently 

investigated these materials having reported a 28 days curing compressive strength of 27 MPa by 

using fly ash and 30% OPC [9]. This paper presents results on the durability of these new mixtures. 

Introduction 

Materials and mix proportioning. The compositions of the dry mixes contain the following 

materials: kaolin, fly ash, ordinary Portland cement (OPC), sodium hydroxide, calcium hydroxide 

(Ca(OH)2), water and superplasticizer. These are adapted from the ones presented in the 

international patent WO 2007/109862 A1 [10]. The OPC is of class I 42.5 R type, containing 

between 95% to 100% of clinker content, a specific weight of 3.15 g/cm
3
 and a Blaine fineness of 

3842 cm
2
/g. A superplasticizer (SP) from SIKA 3002 HE was used to maintain a uniform 

consistency throughout the different mixes. Fly ash was used as partial replacement of Portland 

cement. Its chemical composition complies with the minimum requirements indicated in EN-450-1 

[11] being categorized as class B and group N for the loss of ignition and fineness, respectively. It 

has a specific weight of 2.42 g/cm
3
. A mixture of kaolin and sodium hydroxide with is calcined in a 

furnace at 650 ºC during 140 minutes. The cooled mixture was grinded into poder and named as 

calcined stuff. Table 1 shows the composition of the five mixtures which were tested in this study. 

 

Table 1: Mix composition [Kg/m
3
] 

Name OPC Fly ash Ca(OH)2 Calcined stuff Water SP Sand 

R1 - OPC 100 1013.8 ---- ---- ----- 354.8 8.1 811 

R2 - OPC 70 – FL 30 689.6 295.5 ---- ----- 344.8 7.8 788.1 

R3 - OPC 30-FL 58.3-CH 7.7-CS 4 283.9 551.7 32.9 37.8 331.2 7.5 757 

R4 - OPC 26-FL 58.3-CH 7.7-CS 8 245 549.5 32.8 75.4 329.9 7.5 754 

R 5 - OPC 18-FL 58.3-CH 7.7-CS 16 168.3 545.2 32.5 149.6 327.3 7.4 748.1 

 

Testing. The compressive strength was performed under NP EN 206-1. The mortar specimens were 

conditioned at a temperature equal to 21 ± 2 ºC cured in a moist chamber until they have reached 

the testing ages. Tests were performed on 50×50×50 mm
3
 specimens. Compressive strength for 

each mixture was obtained from an average of 3 cubic specimens determined at the age of 14 and 

28 days of curing.  

Concerning water absorption by immersion specimens with 28 days curing were immersed in 

water at room temperature for 24 hours. First the weight of the specimens while suspended by a thin 

wire and completely submerged in water is recorded as WIm (Immersed weight). After that the 

specimens were removed from water, and placed for 1 min on a wire mesh allowing water to drain, 

then visible surface water is removed with a damp cloth and weight is recorded as WSat (Saturated 

weight). All specimens are placed in a ventilated oven at 105 ºC for not less than 24 hours and 

allowing that two successive weightings at intervals of 2 hours show an increment of loss not 

greater than 0,1% of the last previously determined weight of the specimen. The weight of the dried 

specimens is recorded as WDry (oven-dry weight).  

The water absorption by capillarity test was done according to EN 1015-18:2002 using three 

specimens with 100×100×100 mm
3
. After been dried in the oven at 105 ºC during 60 hours, they 
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were isolated along their lateral surfaces with a fine layer of silicon in order to reduce water 

evaporation.  

The chloride ion diffusion coefficient was carried out following the standard LNEC 463. In this 

test the penetration depth of chloride ions through 50 mm thick cylindrical slices (100 mm nominal 

diameter) with 28 days of curing is assessed. A potential electric difference of 30±0.2 V is 

maintained across the specimens. One face is immersed in a solution with sodium chloride and 

sodium hydroxide, and the other in a sodium hydroxide solution. After the migration of chloride 

ions the penetration depth is measured by splitting the specimens. The surface of the split mortar is 

then spread with silver nitrate (NO3Ig) solution and the penetration depth is measured by difference 

in the colour. The chloride diffusion coefficient can be calculated using the following equation: 
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Where Dnssm is non-steady-state migration coefficient, × 10-12 m2/s; U: absolute value of the 

applied voltage (V); T: average value of the initial and final temperature in the anolyte solution 

(ºC); L: Thickness of the specimen (mm); Xd: Average value of the penetration depth (mm).  

The carbonation resistance test was performed with the following conditions of temperature, 

relative humidity (RH) and CO2 concentration: 20ºC, 55% and 4%, respectively. The specimens 

were taken out of the carbonation chamber and split in a tensile test. The split surfaces were cleaned 

and sprayed with a phenolphthalein pH indicator. The indicator used was a phenolphthalein 1% 

ethanol solution with 1 g phenolphthalein and 90 ml 95.0 V/V% ethanol diluted in water to 100 ml. 

In the noncarbonated part of the specimen, where the mortar was still highly alkaline, a purple-red 

colour was obtained. In the carbonated part of the specimen where the alkalinity of mortar is 

reduced, no coloration occurred. The average depth of the colourless phenolphthalein region was 

measured in twenty points, perpendicular to the two edges of the split face. 

The resistance to acid attack was carried out using cubic specimens with 50×50×50 mm
3
. Before 

being immersed in a solution containing 10% sulphuric acid (H2SO4) the weight of the specimens 

were assessed. The weights of specimens were assessed again after 7, 14, 28 and 56 days after 

immersion in the acid solution. The appearances of specimens were also observed.  

The FTIR spectra were acquired in the attenuated total reflectance mode (ATR), between 4000 

and 550 cm
-1

, using a Perkin Elmer FTIR Spectrum BX with an ATR PIKE MIRacle Specimens for 

FTIR study were prepared by mixing 1mg of sample in 100 mg of KBr as .suggested by Zhang et 

al. [12]. Spectral analysis was performed over the range 4000–400 cm
-1

 at a resolution of 4cm
-1

. 

Results and discussion 

Compressive strength. Fig. 1 shows the compressive strength results. The reduction of OPC 

content leads to a high reduction on the compressive strength of the mortars. The slow hydration 

characteristics of fly ash contribute to explain that reduction. The mixture with just 30% OPC (and 

58.3 fly ash, 7.7 calcium hydroxide and 4% calcined stuff) shows an almost 40% reduction in 

compressive strength when compare to the reference mixture. Since this mixture has a higher 

percentage reduction on OPC content this could mean that the addition of metakaolin and calcined 

sodium hydroxide could have compensated that reduction. However, the use of increase content in 

calcined stuff does not seem to compensate the OPC reduction. Thus meaning that the use of 4% 

calcined stuff seems to be an optimum content. 
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Fig 1. Compressive strength  

 

Water absorption by immersion. The results of water absorption by immersion are presented 

in Fig. 2. Since all the mixtures have the same w/b ratio they should present a similar open porosity. 

So the differences between the several mixtures could be explained by the scatter data because they 

are small enough for that. Of course the different hydration products present in the different 

mixtures may contribute for the porosity differences but only in a very slight manner. That´s why 

the mixture already mention in the previous section as having a good compressive strength 

performance shows the lower open porosity. 

 

 
Fig 2.  Water absorption by immersion 

 

Capillarity water absorption. The water absorption capillarity coefficients are showed in Fig. 

3. The reference mixture shows the best performance of them all. On the opposite side the mixture 

with 26% OPC 58.3 fly ash, 7.7 calcium hydroxide and 8% calcined stuff clearly shows a very high 

water absorption by capillarity even at early ages. Such performance is typical of a microstructure 

with a high amount of capillary pores. The three remaining mixtures show a similar capillary water 

absorption coefficient indicating a similar internal capillary pore network. 
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Fig 3. Water absorption capillarity coefficient. 

 

Chloride diffusion. Fig. 4 shows the results of the chloride diffusion coefficient. The results are 

in accordance with the water absorption (open porosity) results. They show that all the mixtures 

have in the worst case a moderate resistance to chloride diffusion when a comparison is made to the 

performance of Table 2. With the exception of the mixture with 18% OPC 58.3 fly ash, 7.7 calcium 

hydroxide and 16% calcined stuff all the other three mixtures in which OPC was partially replaced 

by fly ash showed a high resistance to chloride diffusion. 

 

 
Fig 4. Chloride diffusion coefficient  

 

Table 2 – Resistance to chloride penetration [13] 

×10
-12 

(m
2
/s) Concrete resistance 

>15 Low 

10-15 Moderate 

5-10 High 

2.5-5 Very high 

<2.5 Ultra high 

 

Carbonation resistance. Fig. 5 shows the results of the carbonation resistance. The 100% OPC 

based mortar showed the lowest carbonation depth. Replacing 30% OPC by fly ash leads to a 
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higher carbonation depth. Part of the explanation is related to the higher capillarity coefficient of the 

latter and the other part to the different hydration products.  

 

 
Fig 5. Carbonation depth  

 

Previous investigations [14] have already reported an increase in concrete carbonation when fly-

ash (FA) is used. The mixture with 30% OPC, 58.3 FA, 4% calcined stuff and 7.7% Ca(OH)2 shows 

a much higher carbonation depth than the second mixture with 30% FA. Since both mixtures have 

the same capillarity coefficient this means that the carbonation behaviour is related exclusively to 

the different hydration products. Thus meaning that the new hydration products are proper to 

carbonation. As to the mixture with 26% OPC, 58.3 FA, 8% calcined stuff and 7.7% Ca(OH)2 it 

shows the highest carbonation depth. This result is not a surprise because this mixture has also the 

highest water absorption capillarity. The mixture with 18% OPC, 58.3 FA, 16% calcined stuff and 

7.7% Ca(OH)2 shows almost the same carbonation depth as the mixture with 30%OPC and just 4% 

calcined stuff meaning that difference has little influence on carbonation depth. 

 

Resistance to acid attack. The results of mass loss for specimens exposed to 10% sulphuric acid 

solutions are shown in Fig 6.  

 

 
Fig 6. Weight loss of specimens due to acid attack 
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After 1 day the best results are shown by the reference mixture and also by the mixture in which 

30% OPC was replaced by fly ash. Since the reference mixture has much lower capillary water 

absorption than the other mixes this means that in a short term the rate of acid ingress contributes to 

explain the observed results. However, this is not the case of the one part geopolymeric mixture 

with 8% calcined stuff because since it has the highest capillarity coefficient it should have a higher 

weigth loss than the other geopolymeric mixtures.  

After 3 days exposure to acid attack one can confirm that the weigth loss is proportional to the 

OPC content in the mixtures. A higher OPC content is associated to a lower weight loss. High 

pozzolan content mixtures showed lower resistance to acid attack this results do not confirm 

previous findings about the fact that the presence of pozzolanic admixtures was found to lower the 

detrimental effect of acid attack on concrete [15,16]. Probably because a denser microstructure 

typical of pozzolanic based mixtures were not yet formed by the time this mixtures were tested.  

 

FTIR. The FTIR spectra are presented in Fig. 7. The strong peak band 965 cm
-1

 is characterized 

as asymmetric Si-O-Si or Al-O-Si stretching, which is typical of the polymerization of the silicate 

group with the formation of CSH [17, 18]. A shift to a high wave number occurs when the different 

spectra are compared. Usually this indicates an increase in the Si content of the gel.  

The carbonate bands C-O at around 1415 cm
_1

 and 850 cm
_1

 arise from the reactions of 

atmospheric CO2 with calcium hydroxide. This peak intensity changes with the amount of calcium 

hydroxide.  

The broad bands in the region of 1648–3000 cm
-1

 characterized the spectrum of stretching and 

deformation vibrations of O-H and H–O–H groups from the weakly bound water molecules. 

 

 
Fig 7. FTIR spectra 

Conclusions 

In this study, the durability of OPC mortars and one part geopolymer mortars were assessed 

using three different tests (water absorption by immersion, water absorption by capillarity and 

resistance to acid attack). Compressive strength results were also presented showing that the 

reduction of OPC content in the mortars leads to a high reduction on the compressive strength. The 

slow hydration characteristics of fly ash leads to a severe reduction on mechanical strength. In the 

geopolymeric mixtures the one with of 4% calcined stuff seems to correspond to a good 

compromise between a low OPC content and an acceptable compressive strength. The results of 

water absorption by immersion are very similar for all the mixtures which is due to the fact that they 

have the same w/b ratio. The capillary water absorption is very high for the one part geopolymeric 

mixtures with 8% calcined stuff indicating a microstructure with very high amount of capillary 

pores. The results of resistance to acid attack show that the weight loss is proportional to the OPC 

content in the mixtures. 
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