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Abstract One important goal in multi-state modeling is the estimation of transi-
tion probabilities. In longitudinal medical studies these quantities are particularly
of interest since they allow for long-term predictions of the process. In recent years
significant contributions have been made regarding this topic. However, most of
the approaches assume independent censoring and do not account for the influence
of covariates. The goal of the paper is to introduce feasible estimation methods for
the transition probabilities in an illness-death model conditionally on current or
past covariate measures. All approaches are evaluated through a simulation study,
leading to a comparison of two different estimators. The proposed methods are
illustrated using real a colon cancer data set.

Keywords Conditional Survival · Dependent Censoring · Kaplan-Meier ·
Multi-state model · Nonparametric regression

1 Introduction

The so-called “illness-death” model plays a central role in the theory and practice
of multi-state models (Andersen et al (1993), Meira-Machado et al (2009)). In
the irreversible version of this model, individuals start in the “healthy” state and
subsequently move either to the “diseased” state or to the “dead” state. Individ-
uals in the “diseased” state will eventually move to the “dead” state without any
possibility of recovery. See Figure 1. Many time-to-event data sets from medical
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studies with multiple end points can be reduced to this generic structure. Thus,
methods developed for the three-state illness-death model have a wide range of
applications. From a theoretical standpoint, this is the simplest multi-state gener-
alization of the survival analysis model that incorporates both branching (as in a
multiple decrement/competing risk model) and an intermediate state (as in a pro-
gressive tracking model). Thus, unlike the survival or the competing risk model,
this model is not necessarily Markovian.

Various aspects of the model dynamics are captured by the transition proba-
bilities. In the presence of right censoring, these can be estimated by the Aalen-
Johansen product limit estimator (Aalen and Johansen (1978)) provided the sys-
tem is Markovian. However, as demonstrated by Meira-Machado et al (2006),
the Aalen-Johansen estimator is inconsistent when the Markov assumption does
not hold. They also illustrate through a real data example that the Markovianity
cannot be taken for granted in practice. Meira-Machado et al (2006) and Amorim
et al (2011) provide alternative nonparametric estimators specific to the three-state
illness-death model that are consistent even without the Markov assumption.

In this paper, we revisit the problem of estimation of the transition probabil-
ities of an irreversible, possibly non-Markov illness-death model. However, unlike
the previous attempts, we are interested in a regression setup where we estimate
these probabilities given a continuous covariate that could either be a baseline
covariate or a current covariate that is observed for an individual before the indi-
vidual makes a particular transition of interest. There has been little research on
the estimation of conditional transition probabilities. Dabrowska and Lee (1996)
introduce an averaged Beran’s conditional estimate to yield a consistent estimate
of the transition probabilities. The authors consider a vector of sojourn times in
past states as the covariate. Dabrowska and Ho (2000) introduce graphical tests
based on confidence procedures for the difference between transition probabili-
ties evaluated over distinct covariate values. Arjas and Eerola (1993) considered
graphical representations of conditional hazards and conditional survival for pre-
diction purposes. However, none of these approaches lead to flexible estimates for
the conditional transition probabilities as those provided in plots shown in Section
4. Our methodology is motivated by the colon cancer data set originally investi-
gated by Moertel et al (1990) and subsequently reanalyzed by Lin et al (1999) to
study the joint distribution of gap times between enrolment (curative surgery),
the disease recurrence and death. These data can also be viewed as arising from a
three-state illness-death model where “recurrence” can be modeled as the interme-
diate illness state. We are interested in the effect of a covariate (age at surgery, or
number of lymph nodes with detectable cancer), on the probabilities of transitions
between the states. Standard regression models in this setup (besides imposing
Markovianity) usually rely on a parametric specification of the covariate effects
on Markovity transition intensity functions; the resulting estimates of the covari-
ate effects on transition probabilities are prone to model misspecifications errors.
Therefore, flexible robust effects of the covariates on the transition probabilities
as those depicted in Figures 3 and 4 (Section 4) can not be estimated through
standard techniques.

In this paper, we provide two competing nonparametric regression estimators
of the transition probability matrix of a three-state progressive illness-death model.
Both estimators are valid under mild regularity conditions even when the system
is non-Markov or conditionally non-Markov. In both estimators, local smoothing
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is done by introducing kernel weights that are either based on a local constant
(i.e. Nadaraya-Watson) or a local linear regression. Right censoring is handled
by appropriate reweighting of the chosen summands and the differences between
the two estimators are somewhat subtle in this regard. The first estimator only
put mass on observations that are completely uncensored (i.e., fully observed till
death) whereas the second estimator jumps on observations that were uncensored
till a given time. Extensive simulation studies are provided comparing the two
estimators.

The rest of the paper is organized as follows. Section 2 introduces the formal
notations and the two estimators. Section 3 describes the simulation setup and the
findings of a number of simulation experiments. An illustrative real data applica-
tion is provided in Section 4. The main body of the paper ends with a discussion
section (Section 5). Additional simulation results are presented in the Appendix.

2 Conditional Transition Probabilities

2.1 Notation and Preliminaries

A multi-state model is a stochastic process (Y (t), t ∈ T ) with a finite state space,
where Y (t) represents the state occupied by the process at time t. In this paper we
consider the progressive illness-death model depicted in Figure 1 and we assume
that all subjects are in state 1 at time t = 0. This model is encountered in many
medical studies (cancer studies, transplantations, etc) where State 1 is some initial
stage of the disease (e.g. healthy, disease-free, etc), State 2 is some intermediate
stage of the disease (e.g. alive with local recurrence, certain stage of a disease,
transplantation, etc) and State 3 is an absorbing state (e.g. dead) which all subjects
are expected to reach eventually. For this model the transitions allowed are 1→ 2,
1→ 3 and 2→ 3. This means that an individual may visit State 2 or going directly
to State 3 without visiting State 2.

For two states i, j and two time points s < t, introduce the so-called transition
probabilities

pij(s, t) = P (Y (t) = j|Y (s) = i) .

In the illness-death model we only need to estimate three different transition
probabilities: p11(s, t), p12(s, t) and p22(s, t). The two other transition probabil-
ities (p13(s, t) and p23(s, t)) can be obtained from these ones since p13(s, t) =
1− p11(s, t)− p12(s, t) and p23(s, t) = 1− p22(s, t).

In the framework of the progressive illness-death model, we may consider three
random variables T12, T13 and T23, that represent the potential transition times
from one state to another one. According to this notation, subjects not visiting
state 2 will reach the absorbing state at time T13. This time will be T12 + T23 if
he/she passes through state 2 before, where the variables T12 and T23 are recorded
successively, rather than simultaneously. In this model we have two competing
transitions leaving state 1. Therefore, we denote by ρ = I(T12 ≤ T13) the indicator
of visiting state 2 at some time, Z = T12 ∧ T13 the sojourn time in state 1, and
T = Z + ρT23 the total survival time of the process.
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Figure 2: Illness-death model. 

 More examples of multi-state models can be found in books by Andersen et al. 

(1993) and Hougaard (2000), or in papers by Putter et al. (2007) and Andersen and 

Perme (2008).   

 Despite its potential, multi-state modeling is not used by practitioners as 

frequently as other survival analysis techniques. It is our belief that lack of knowledge 

of available software and non-implementation of the new methodologies in user-

friendly software are probably responsible for this neglect. One important contribution 

to this issue was given by the R/S-PLUS survival package. Thanks to this package, 

survival analysis is no longer limited to Kaplan-Meier curves and simple Cox models. 

Indeed, this package enables users to implement the methods introduced by Therneau 

and Grambsch (2000) for modeling multi-state survival data. In R (R Development Core 

Team 2008), multi-state regression can also be performed using the msm package 

(continuous-time Markov and hidden Markov multi-state models), the changeLOS 

package (Wrangler et al. 2006) implements the Aalen–Johansen estimator for general 

multi-state models, and the etm package has recently enabled the transition matrix to be 

computed, along with a covariance estimator.   

 This paper describes the R-based p3state.msm package's capabilities for 

analyzing survival data from an illness-death model. It extends existing semi-parametric 

regression capabilities included in many statistical software programs, such as R, S-

PLUS, SAS, etc. Moreover, p3state.msm enables several quantities of interest to be 

estimated, such as transition probabilities, bivariate distribution function, etc. In 

Fig. 1 Illness-death model

Let C be the univariate censoring variable and put Z̃ = Z∧C and T̃ = T∧C for
the censored versions of Z and T . Then, let ∆1 = I(Z ≤ C) and ∆ = I(T ≤ C)
denote the respective censoring indicators. Note that ρ is observed only when
∆1 = 1.

In this work we are interested in estimating the conditional transition proba-
bilities: p11(s, t | X), p12(s, t | X), and p22(s, t | X) that can be computed for any
times s and t, s < t but conditional on some covariate value which we denote by X.
Following the notation introduced above, the conditional transition probabilities
are written as

p11(s, t | X) =
1− P (Z ≤ t | X)

1− P (Z ≤ s | X)
, p12(s, t | X) =

P (s < Z ≤ t, T > t | X)

1− P (Z ≤ s | X)

and p22(s, t | X) =
P (Z ≤ s, T > t | X)

P (Z ≤ s, T > s | X)
.

(1)

Now, the conditional transition probability p11(s, t | X) and the denominator of
p12(s, t | X) only involve the conditional distribution of Z given X. This con-
ditional distribution can be estimated nonparametrically following Beran (1981).
The remaining quantities involve conditional expectations of particular transfor-
mations of the pair (Z, T ) given X, S (ϕ | X) := E [ϕ (Z, T ) | X] which can not be
estimated so simply. Moreover, the transition probabilities will be hard to estimate
in the right tail where censoring effects are stronger. Because of this we also use
alternative expressions for the conditional transition probabilities p12(s, t | X) and
p22(s, t | X):

p12(s, t | X) =
P (s < Z ≤ t | X)− P (s < Z ≤ t, T ≤ t | X)

1− P (Z ≤ s | X)
,

p22(s, t | X) =
P (Z ≤ s | X)− P (Z ≤ s, T ≤ t | X)

P (Z ≤ s | X)− P (T ≤ s | X)
.

(2)

Transition probability estimators, without any covariate, based on equations
(2) are implemented in the R based package p3state.msm (Meira-Machado and
Roca-Pardiñas (2011)).

As mentioned in Section 1 we will provide two competing nonparametric re-
gression estimators for the transition probabilities. The first set of estimators we
propose is based on equations (2) while the second set of estimators can only be
implemented using the expressions given in equations (1). This will be clarified
later while introducing the estimators.
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In sum, we need to estimate the following conditional expectations: S (ξs | X),

S (ψs,t | X), S
(
ψ̃s,t | X

)
, S (ϕs,t | X) and S (ϕ̃s,t | X), where ξs(u, v) = I(u ≤ s),

ψs,t(u, v) = I(s < u ≤ t, v ≤ t), ψ̃s,t(u, v) = I(u ≤ s, v ≤ t), ϕs,t(u, v) = I(s <
u ≤ t, v > t) and ϕ̃s,t(u, v) = I(u ≤ s, v > t).

In the following subsection, we discuss how these conditional expectations can

be estimated from the data
{(
Z̃i, T̃i,∆1i,∆i,∆1iρi, Xi

)
, 1 ≤ i ≤ n

}
, which are

assumed to form a random sample of the vector
(
Z̃, T̃ ,∆1,∆,∆1ρ,X

)
. We will

estimate these quantities assuming that the censoring variable C is independent
of (Z, T ) given X. Note that this assumption does not exclude the possibility
of induced dependent censoring (i.e., C is unconditionally dependent on (Z, T )).
Markovianity will not be assumed.

2.2 The Estimators

In this section, we will introduce two estimators for the conditional transition
probabilities, phj(s, t | X), in an illness-death model. As mentioned in Section
2.1, this can be done via estimating the general conditional expectations such as
E [ϕ (Z, T ) | X = x]. To estimate these quantities we may use kernel smoothing
techniques by calculating a local average of the ϕ(Z, T ). This can be written as∑i=n
i=1 W1i(x)ϕ(Zi, Ti) where W1i(x) is a weight function which corresponds to ei-

ther a Nadaraya-Watson (Nadaraya (1965),Watson (1964)) estimator or a local lin-
ear estimator. In our case, we have to estimate f(x; s, t) = E [ψs,t (Z, T ) | X = x],

g(x; s, t) = E
[
ψ̃s,t (Z, T ) | X = x

]
, f̃(x; s, t) = E [ϕs,t (Z, T ) | X = x], g̃(x; s, t) =

E [ϕ̃s,t (Z, T ) | X = x] and h(x; s) = E[ξs (Z) | X = x].
To handle right censoring, both estimators employ the inverse probability of

censoring weighting (Lin et al (1999); Satten and Datta (2001)). To that end we
need to estimate the distribution function of C given X, GX . The estimation of
the conditional distribution function of the response, given the covariate under
random censoring has been considered in many papers. This topic was introduced
by Beran (1981) and was further studied by several authors (see e.g. papers by
Dabrowska (1987), Akritas (1994); Van Keilegom et al (2001) and Van Keilegom
(2004)). Recently, Beran’s estimator has been extended to regression of state occu-
pation probabilities of a multi-state model by Mostajabi and Datta (2012). Beran’s
estimator of Gx is given by

Ĝx(t) = 1−
∏

Ti≤t,∆i=0

[
1−

W0i(x, an)∑n
j=1 I(Tj ≥ Ti)W0j(x, an)

]
(3)

with

W0i(x, an) =
K0 ((x−Xi)/an)∑n
j=1 K0 ((x−Xj)/an)

; (4)

here W0i(x, an) are the Nadaraya-Watson (NW) weights, K0 is a known proba-
bility density function (the kernel function) and an is a sequence of bandwidths.
This estimator reduces to the well-known Kaplan-Meier (Kaplan and Meier (1958))
estimator if a constant weight is used instead of the NW weights.
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In order to introduce our estimators note that, assuming that the support
of the conditional distribution of T is contained in that of C given X, we have
E[ψ(Z, T ) | X] = E[ψ(Z̃, T̃ )∆/(1−GX(T̃−)) | X)]. We propose to replace GX by
its Beran’s estimator ĜX and use NW or local linear weights to estimate f(x; s, t),
by

f̂(x; s, t) =
n∑
i=1

W1i(x, bn)
ψs,t(Z̃i, T̃i)∆i

1− ĜXi
(T̃−
i )

=
n∑
i=1

W1i(x, bn)
I(s < Z̃i ≤ t, T̃i ≤ t)∆i

1− ĜXi
(T̃−
i )

where W1i(x, bn) are the NW weights as in (4) but with a possibly different band-
width bn and kernel K1, or using local linear weight,

W1i(x, bn) =
K1 ((x−Xi)/bn) [Sn,2(x)− (x−Xi)Sn,1(x)]∑n
j=1K1 ((x−Xj)/bn) [Sn,2 − (x−Xj)Sn,1(x)]

with Sn,l(x) =
∑n
i=1K1((x − Xi)/bn)(x − Xi)

l, l = 0, 1, 2 and where bn is a
sequence of bandwidths and K1 is a known kernel function.

Similarly, we can use Nadaraya-Watson estimators or local linear estimators
to estimate g(x; s, t) and h(x; s) i.e.

ĝ(x; s, t) =
n∑
i=1

W1i(x, bn)
ψ̃s,t(Z̃i, T̃i)∆i

1− ĜXi
(T̃−
i )

=
n∑
i=1

W1i(x, bn)
I(Z̃i ≤ s, T̃i ≤ t)∆i

1− ĜXi
(T̃−
i )

and

ĥ(x; s) =
n∑
i=1

W1i(x, cn)
ξs(Z̃i)∆1i

1− ĤXi
(Z̃−
i )

=
n∑
i=1

W1i(x, cn)
I(Z̃i ≤ s)∆1i

1− ĤXi
(Z̃−
i )

where ĤX stands for the Beran estimator of the conditional distribution of C1

(the censoring variable of the sojourn time in State 1) given X based on the

(Z̃i, 1−∆1i)’s. Finally, we may introduce Inverse Probability Censoring Weighted
estimators (IPCW) for the conditional transition probabilities, as follows:

p̂11(x; s, t) = p̂11(s, t | X = x) =
ĥ(x; t)

ĥ(x; s)
, (5)

p̂12(x; s, t) = p̂12(s, t | X = x) =
ĥ(x; t)− ĥ(x; s)− f̂(x; s, t)

ĥ(x; s)
, (6)

p̂22(x; s, t) = p̂22(s, t | X = x) =
ĝ(x; s, t)

ĝ(x; s, s)
. (7)

Alternatively, by noting that E[ϕs,t(Z, T ) | X] = E[I(Z ≤ s, T > t) | X] =
E[I(Z ≤ s, T > t)I(C > t)/(1 − GX(t−)) | X], a different set of estimators
may be introduced. This approach has been used previously by Lin et al (1999)
to estimate the bivariate distribution for censored gap times. In our setup, this
alternative estimators of the transition probabilities are given by



Conditional Transition Probabilities in a non-Markov Illness-death Model 7

f̃(x; s, t) =
n∑
i=1

W1i(x, bn)
I(s < Z̃i ≤ t, T̃i > t)

1− ĜXi
(t−)

,

g̃(x; s, t) =
n∑
i=1

W1i(x, bn)
I(Z̃i ≤ s, T̃i > t)

1− ĜXi
(t−)

,

and

h̃(x; s) =
n∑
i=1

W1i(x, cn)
I(Z̃i ≥ s)∆1i

1− ĤXi
(s−)

.

These lead to Lin type estimator of conditional transition probabilities by
replacing f̂ , ĝ, and ĥ in (5)-(7) by f̃ , g̃ and h̃, respectively.

Theoretical investigation such as consistency and further asymptotics can be
pursued following established paths of studying the bias and the variance terms
of various pieces of the estimators. More focused in practical issues, the finite-
sample performance of IPCW estimators and the alternative LIN-based estimators
is investigated by simulations in the following section.

3 Simulation Study

In this section, we carry out and extensive simulation study to investigate the be-
havior of the proposed estimators for finite sample sizes. More specifically, the esti-
mators p̂11 (x; s, t), p̂12 (x; s, t), p̂22 (x; s, t), p̃11 (x; s, t), p̃12 (x; s, t) and p̃22 (x; s, t)
introduced in Section 2 are considered.

To simulate the data in the illness-death model, we follow closely the work
described by Amorim et al (2011), but include covariate effects. We separately
consider the subjects passing through State 2 at some time (that is, those cases
with ρ = 1), and those who directly go to the absorbing State 3 (ρ = 0). For
the first subgroup of individuals (ρ = 1), the successive gap times (Z, T − Z) are
simulated according to the bivariate distribution

F12(x, y) = F1(x)F2(y) [1 + θ {1− F1(x)} {1− F2(y)}]

where the marginal distribution functions F1 and F2 are exponential with rate
parameter 1. This corresponds to the so-called Farlie-Gumbel-Morgenstern copula,
where the single parameter θ controls for the amount of dependency between the
gap times. The parameter θ was set to 1, corresponding to 0.25 correlation between
Z and T − Z. For the second subgroup of individuals (ρ = 0), the value of Z is
simulated according to an exponential with rate parameter 1. To include covariate
effects, the sojourn time in state 1, Z, was forced to depend on the X. In summary,
the simulation procedure is as follows:

Step 1. Draw ρ ∼ Ber(p) where p controls the proportion of subjects passing
through State 2.



8 Lúıs Meira-Machado et al.

Step 2. If ρ = 1 then:
(2.1) V1 ∼ U (0, 1) , V2 ∼ U (0, 1) and X ∼ U (0, 1) are independently gener-

ated;
(2.2) U1 = V1, A = (2U1 − 1)− 1, B = (1− (2U1 − 1))2 + 4V2 (2U1 − 1)

(2.3) U2 = 2V2/
(√

B −A
)

(2.4) Z = ln (1/ (1− U1)) and λ(X) = 0.6X + 0.4
(2.5) Z(X) = Z/λ(X), T = ln (1/ (1− U2)) + Z(X)
If ρ = 0 then Z = Z(X).

In our simulation we consider p = 0.7. To allow for dependent censoring, C|X =
x is generated from an exponential distribution with rate λ(x) = 0.15+0.35x. This
induces a censoring percentage on T of about 42%. We considered as (s, t) pairs
four different points, corresponding to the different combinations of the quantiles
0.2, 0.4, 0.6 and 0.8 of the exponential distribution with rate 1.

In Figure 2, we plot the IPCW and LIN-based conditional transition proba-
bilities, by fixing s = 0.2231 and considering two possible values for the covariate
information (corresponding to the first and third quartiles, respectively). The re-
sults, which are estimators averaged along 1,000 Monte Carlo trials of size n = 100,
show that (a) IPCW-type and LIN-based estimators are close to each other, and
that (b) the transition probabilities greatly depend on covariate information, par-
ticularly p11(x; 0.2231, t) and p12(x; 0.2231, t) (not so clear for p22(x; 0.2231, t)).
This influence of the covariate can be also seen from the simulation steps de-
scribed above: larger values of X are associated to smaller sojourn times in state
1 and, consequently, to a smaller survival (T ).

A main aim of this simulation study is to investigate the comparative perfor-
mance of the two proposed estimators (IPCW and LIN-based). For measuring the
estimators’ performance, we computed the integrated mean square error (IMSE)
of the estimators. For each simulated setting we derived the analytic expression of
pij(x; s, t) so the MSE of the estimator could be computed. K = 1000 Monte Carlo
trials were generated, with two different sample sizes n = 100 and n = 200. Let
p̂kij(x; s, t) denote the estimated conditional transition probability based on the kth
generated data set. For each fixed (x, s, t) we computed the pointwise estimates of
the MSE as:

M̂SE(p̂ij(x; s, t)) =
1

K

K∑
k=1

[p̂kij(x; s, t)− pij(x; s, t)]2. (8)

To summarize the results we fixed the values of (s, t) using several quantiles
(the same pairs as those used in the paper by Lin et al (1999)) and we calculated
the IMSE as

̂IMSE =
∑
xl

M̂SE(p̂ij(xl; s, t))× δ (9)

where xl denotes a set of grid points for the covariate, going from 0 to 1 with
step δ = 0.025. The results are displayed in Tables 1 to 3. To compute the con-
ditional transition probabilities p̂ij(x; s, t) and p̃ij(x; s, t) we have used a common
bandwidth selector and Gaussian kernels. To this end we have used the dpik func-
tion which is available from the R KernSmooth package. This is the data based
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bandwidth selector of Wand and Jones (1997). We also performed additional sim-
ulations using other bandwidth selectors; for example, the plug-in bandwidth of
Altman and Leger (1995), ALbw, available from the R kerdiest package, was also
used. This alternative bandwidth did not provide better results (not shown). In
addition, we have seen that, by choosing the ‘optimal’ bandwidth from a sequence
of fixed bandwidths the results would not change much when compared with those
attained with the dpik function. For the computation of W1(x; bn) we have used
Nadaraya-Watson (NW) and local linear weights (for the weights W0 of the Be-
ran’s estimator we simply used NW). Since the results for NW weights were always
superior (results not shown) to those based on local linear weights, we only pro-
vide here the results corresponding to the former. Additional simulation results
are provided in the Appendix.

When using NW weights the two estimators (IPCW and LIN-based) for
p11(x; s, t) are equal and, therefore, in Table 1 we only give one set of results.
In general, both methods provide good results with IMSE values which decrease
with an increasing sample size. It is also seen that the estimation of the transition
probabilities is performed with less accuracy as s and t grow but for p22(x; s, t), for
which the smallest values of IMSE are obtained for large s and t. Results shown
in Table 2 suggest that the IPCW method leads to better results for p12(x; s, t)
while neither one seems to be uniformly the best for estimating p22(x; s, t) (Ta-
ble 3). The IPCW method obtains better results for estimating p22(x; s, t) for all
pairs (s, t) but for t = 1.6094 and s < 0.9163 where censoring effects are stronger.
LIN-based method deals more efficiently at those points.

t 0.5108 0.9163 1.6094
s

n=100 0.2231 4.1895 7.1066 8.1987
0.5108 — 6.8274 10.7996
0.9163 — — 15.1051

n=200 0.2231 2.8102 4.7099 5.5501
0.5108 — 4.8029 7.3873
0.9163 — — 9.9158

Table 1 IMSE (×1000) of the estimated transition probabilities p̂11(x; s, t) along 1,000 trials
for different sample sizes

4 Example of an Application

To illustrate our estimators we consider a well known data set from a colon cancer
study which is freely available as part of the R survival package (Moertel et al
(1990)).

These are data from one of the first successful trials of adjuvant chemotherapy
for colon cancer. From the total of 929 patients, affected by colon cancer, that
underwent a curative surgery for colorectal cancer, 468 developed a recurrence
and among these 414 died. 38 patients died without recurrence. The remaining
423 patients contributed with censored survival times. For each individual, an
indicator of his/her final vital status (censored or not), the survival times (time to
recurrence, time to death) from the entry of the patient in the study (in days), and
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Fig. 2 Conditional transition probabilities Phj(s, t;X) based on simulated data. IPCW
method (left hand-side) and LIN-based method (right hand-side)
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t 0.5108 0.9163 1.6094
s

n=100 IPCW 0.2231 2.6486 4.3377 5.8970
LIN-based 2.7429 4.6313 6.2518
IPCW 0.5108 — 4.4952 7.7858
LIN-based — 4.7285 8.2572
IPCW 0.9163 — — 10.1581
LIN-based — — 10.6292

n=200 IPCW 0.2231 1.6855 2.8087 3.8764
LIN-based 1.7269 2.9663 4.0430
IPCW 0.5108 — 3.0378 5.1289
LIN-based — 3.2022 5.4715
IPCW 0.9163 — — 6.7937
LIN-based — — 7.0697

Table 2 IMSE (×1000) of the estimated transition probabilities p̂12(x; s, t) along 1,000 trials
for different sample sizes

t 0.5108 0.9163 1.6094
s

n=100 IPCW 0.2231 80.6841 75.8523 53.3070
LIN-based 85.6907 76.9551 32.9987
IPCW 0.5108 — 58.0651 47.9647
LIN-based — 62.4197 47.3690
IPCW 0.9163 — — 58.4868
LIN-based — — 59.7247

n=200 IPCW 0.2231 56.5257 54.6998 36.4748
LIN-based 60.3715 57.4587 28.3083
IPCW 0.5108 — 40.2206 33.0083
LIN-based — 42.5663 31.7394
IPCW 0.9163 — — 41.6085
LIN-based — — 42.5566

Table 3 IMSE (×1000) of the estimated transition probabilities p̂22(x; s, t) along 1,000 trials
for different sample sizes

a vector of covariates including age (in years), nodes (number of lymph nodes with
detectable cancer) and recurrence (coded as 1 = yes; 0 = no) were recorded. The
covariate recurrence is a time-dependent covariate which can be used to identify an
intermediate event in an illness-death model with states “Alive and disease-free”,
“Alive with recurrence” and “dead”.

Using a Cox proportional hazards model, we verified that the transition rate
from state 2 to state 3 is affected by the time spent in the previous state (p-value
< 0.001). This allowed us to conclude that the Markov assumption may be un-
satisfactory for the colon cancer data set and that, consequently, Aalen-Johansen
type estimators should not be used. In this section we will present estimated tran-
sition probabilities conditionally on current or past covariate measures such as age
or nodes (minimum = 0 and maximum = 13). These estimators were calculated
using the IPCW method and/or LIN-based procedures as explained above. Both
approaches do not assume the process to be Markovian, allowing for dependent
censoring and flexible (i.e. nonparametric) covariate effects otherwise.

Figures 3 and 4 depict respectively the IPCW estimates of p11(x; 379, 1000) and
p12(x; 379, 1000) as functions of the covariate age together with a 95% pointwise
confidence bands based on simple bootstrap which resamples each datum with
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Fig. 3 Evolution of the transition probability p11(379, 1000) along the covariate age with 95%
bootstrap confidence bands. Colon cancer data.

probability 1/n. In both plots it is seen that these curves are not constant; the
effects of age depicted in these plots, which are purely nonparametric, indicate
the real influence of this covariate in the survival prognosis. In fact, it would not
be possible to include an horizontal line within the confidence bands of Figure 4,
suggesting a significative influence of age on survival. More specifically, patients
near forties have a larger probability of recurrence than older patients. This is in
agreement with Figure 5 where it is shown, among other things, that 40 years
old patients have a higher probability of recurrence than patients with 68 years
(bottom-left plot). In Figure 6 we present similar plots for the covariate nodes,
revealing that this covariate has also a real impact on the conditional transition
probabilities.

Figures 7 and 8 report the results corresponding to the LIN-based estimator.
Roughly speaking, conclusions from these plots are similar to those obtained from
Figures 5 and 6, but with more jump points at large values of t. However, a
particular problem of LIN-based estimator is appreciated at the bottom-left plots
of Figures 7 and 8, because the displayed curves for p22(x; s, t) are not monotone
decreasing in t and, therefore, they are not admissible. This is a consequence of
the specific reweighting of the data which is used in this approach, which may lead
to problems of interpretation at the right tail of the distribution. Similar problems
were found in Lin-estimator of the bivariate distribution function. The problem
with Lin’s estimator (Lin et al (1999)) is that isn’t a proper bivariate distribution,
in the sense that it doesn’t attaches positive mass to each pair of recorded gap
times. A proper estimator for the conditional transition probability p22(x; s, t) can
be obtained when s is fixed. This is obtained by keeping the estimator constant
until it starts decreasing again. However, it is difficult to deal with the general
situation for any times s and t, s ≤ t. Such issues do not arise with the IPCW
method.
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Fig. 4 Evolution of the transition probability p12(379, 1000) along the covariate age with 95%
bootstrap confidence bands (IPCW method). Colon cancer data.

5 Conclusions and final remarks

There have been several recent contributions for the estimation of the transition
probabilities in the context of multi-state models. However, most of the approaches
assume independent censoring and do not account for the influence of covariates.
In this paper we have proposed two estimation methods for the transition proba-
bilities given a continuous covariate. Both methods are based on local smoothing
which is introduced using regression weights. Two different schemes of inverse
censoring probability reweighting have been used to deal with right censoring. In
one approach, the corresponding estimator (reweighting) is based on observations
that are fully observed till death (IPCW estimator), whereas the other estima-
tor is based on observations that were uncensored till a given time (LIN-based
estimator).

The methods implemented in this paper can be computationally demanding.
In particular, the use of bootstrap resampling techniques are time-consuming pro-
cesses because it is necessary to estimate the model a great number of times. From
the point of view of computational time cost, the LIN-based estimator is the best
among the two estimators without any covariate while both have similar compu-
tational time cost when accounting the influence of covariates. To obtain the point
estimation and the bootstrap confidence bands, we developed an R based package
called TPmsm which among other estimators implements the two methods (with
and without covariates) implemented in this paper. This package is available from
(http://cran.r-project.org/web/packages/TPmsm/) and provides both numerical
and graphical output for all methods with considerably fast computing, even with
large sample sizes.

We have investigated the performance of the estimators through simulations,
showing that they are valid even when the system is non-Markov or condition-
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Fig. 5 Conditional transition probabilities for the colon cancer data (IPCW method) for
age = 40 and age = 68.
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Fig. 6 Conditional transition probabilities for the colon cancer data (IPCW method) for
nodes = 1 and nodes = 4.



16 Lúıs Meira-Machado et al.

0 500 1000 1500 2000 2500 3000

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Time

p1
1(

s=
60

,t;
x)

Age = 40
Age = 68

0 500 1000 1500 2000 2500 3000

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Time
p1

2(
s=

60
,t;

x)

Age = 40
Age = 68

0 500 1000 1500 2000 2500 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

p2
2(

s=
60

,t;
x)

Age = 40
Age = 68

500 1000 1500 2000 2500 3000

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Time

p1
1(

s=
37

9,
t;x

)

Age = 40
Age = 68

500 1000 1500 2000 2500 3000

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Time

p1
2(

s=
37

9,
t;x

)

Age = 40
Age = 68

500 1000 1500 2000 2500 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

p2
2(

s=
37

9,
t;x

)

Age = 40
Age = 68

Fig. 7 Conditional transition probabilities for the colon cancer data (LIN-based method) for
age = 40 and age = 68.
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Fig. 8 Conditional transition probabilities for the colon cancer data (LIN-based method) for
nodes = 1 and nodes = 4.
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ally non-Markov. Simulation results show that the general performance difference
between the two methods is quite small, and both methods perform quite well.
Results also show that the IPCW method leads to better results for the conditional
transition probability p12(s, t | X) while neither one seems to be uniformly the best
for estimating p22(s, t | X). We have also illustrated the proposed methodology us-
ing real data. The analysis of the real data revealed that one of the two approaches
(LIN-based one) has the drawback of occasionally providing non-monotone curves
for transition probabilities which are indeed monotone and, therefore, its practical
use could be less recommended. Some modification of the LIN-based estimator
can be implemented to produce proper estimators of the conditional transition
probabilities, specially, p22(s, t|X). This can be obtained for a fixed s by keeping
the estimator constant until it starts decreasing again. However, it is difficult to
deal with the general situation for any times s and t, s ≤ t.

As we demonstrate, these estimates provide useful data summaries and will
typically be evaluated at values of the covariate that are well inside the range
of the covariate distribution. If for some applications it becomes necessary to
evaluate such conditional estimators at a covariate value that is on the boundary
of the covariate distribution, one could easily modify them by using a modified
Beran’s estimator either using a one sided kernel or by some other boundary kernel
regression method (Kyung-Joon and Schucany (1998)) to obtain a better estimate.

An interesting open question is if this idea can be generalized (and how) to
more complex multi-state models; this is left to future research. Another issue is the
application of the proposed methods to multiple covariates. Although this could
be formally done, the practical performance of the estimators heavily depend on
the dimensionality. We note however that the proposed methods can accommodate
discrete covariates in addition to a continuous one by splitting the sample for each
level of the covariate and repeating the described procedures for each subsample.
The presence of a moderate or large set of factors could recommend the application
of some semiparametric technique to avoid the curse of dimensionality. Feasible
solutions to this problem will be explored in the future.

Acknowledgements This research was financed by FEDER Funds through Programa Op-
eracional Factores de Competitividade COMPETE and by Portuguese Funds through FCT
- Fundação para a Ciência e a Tecnologia, within Projects Est-C/MAT/UI0013/2011 and
PTDC/MAT/104879/2008. We also acknowledge financial support from the project Grants
MTM2008-03129 and MTM2011-23204 (FEDER support included) of the Spanish Ministerio
de Ciencia e Innovación and 10PXIB300068PR of the Xunta de Galicia. Partial support from
a grant from the US National Security Agency (H98230-11-1-0168) is greatly appreciated. We
thank the reviewers and the AE for their constructive comments.

Appendix: Additional simulation results
In this section we give the additional simulation results for the two estima-

tors (IPCW and LIN-based) using local linear weights instead of NW weights.
The results were obtained using the dpik function which is available from the R

KernSmooth package. See Tables 4 to 6 below. Results for independent censoring
were also obtained (not shown), leading to similar conclusions to those shown in
Section 3 and in this Appendix.
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t 0.5108 0.9163 1.6094
s

n=100 IPCW 0.2231 4.6502 7.9205 9.2364
LIN-based 4.7995 8.0749 9.3405
IPCW 0.5108 — 7.7655 12.2793
LIN-based — 8.6041 12.3998
IPCW 0.9163 — — 17.5301
LIN-based — — 17.6816

n=200 IPCW 0.2231 3.3500 5.6123 6.8104
LIN-based 3.5076 5.7783 6.9609
IPCW 0.5108 — 5.7970 9.1641
LIN-based — 5.9530 9.3326
IPCW 0.9163 — — 12.5984
LIN-based — — 12.9697

Table 4 IMSE (×1000) of the estimated transition probabilities p̂11(x; s, t) along 1,000 trials
for different sample sizes. Estimates based on the local linear estimators.

t 0.5108 0.9163 1.6094
s

n=100 IPCW 0.2231 2.9452 4.8950 6.6629
LIN-based 3.0569 5.2002 7.0611
IPCW 0.5108 — 5.0906 8.7010
LIN-based — 5.5323 10.8614
IPCW 0.9163 — — 11.7334
LIN-based — — 12.2587

n=200 IPCW 0.2231 2.0465 3.3456 4.7253
LIN-based 2.0914 3.5387 4.9551
IPCW 0.5108 — 3.6667 6.1847
LIN-based — 3.8777 6.6768
IPCW 0.9163 — — 8.3759
LIN-based — — 9.1652

Table 5 IMSE (×1000) of the estimated transition probabilities p̂12(x; s, t) along 1,000 trials
for different sample sizes. Estimates based on the local linear estimators.

t 0.5108 0.9163 1.6094
s

n=100 IPCW 0.2231 85.9702 81.9559 59.0274
LIN-based 91.5632 81.1756 34.1622
IPCW 0.5108 — 63.7464 53.9567
LIN-based — 68.2274 50.5756
IPCW 0.9163 — — 64.2243
LIN-based — — 65.0858

n=200 IPCW 0.2231 64.5395 63.1126 44.4921
LIN-based 68.7074 64.0163 30.5495
IPCW 0.5108 — 47.7855 41.1531
LIN-based — 50.0397 36.5208
IPCW 0.9163 — — 49.3859
LIN-based — — 49.8701

Table 6 IMSE (×1000) of the estimated transition probabilities p̂22(x; s, t) along 1,000 trials
for different sample sizes. Estimates based on the local linear estimators.
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