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Abstract.
We have theoretically studied dynamics of the two-dimensional electron system (2DES)

placed in a strong laterally non-uniform magnetic field, which appears due to ferromagnetic film
on the top of heterostructure. It is shown that lateral inhomogeneity of a strong magnetic field
allows itself “magnetic gradient” or special magnetic-edge magnetoplasmons. This mechanism is
different from usual “density gradient” edge magnetoplasmons. We have solved self-consistently
Poisson equation for non-uniform density distribution of the 2DES for realistic heterostructure
together with hydrodynamic equation of 2D Fermi liquid. As a result eigen value problem has
been obtained that corresponds to the motion of charge density wave perpendicular to magnetic
gradient. It is shown that for non-monotonic distribution of magnetic field “magnetic gradient”
magnetoplasmons may move in both directions. To solve eigen value problem we have compared
two types of numerical approaches: first is grid method that diagonalizes large Hermitian matrix
and second is semi-analytical approach that expand each eigen mode on the set of orthogonal
functions.
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Edge magnetoplasmons (EMPs) have been studied for 2DES subjected to a lateral confining
potential and a strong homogeneos magnetic fiels [1, 2, 3, 4, 5]. The EMPs appear due to a
strong change of the stationary local electron density at the edge of the channel that induces
a strong modulation of the local magnetoconductivity [1, 3, 5] and can be charactarized also
as “density gradient” EMPs [6]. Recently [6] the chiral modes in 2DES induced by the lateral
inhomogeneity of a strong magnetic field and named magnetic-edge magnetoplasmons (MEMPs),
or “magnetic gradient” edge magnetoplasmons, have been studied. They are localized in a
vicinity of magnetic-edge, i.e., the region of magnetic field inhomogeneity. Here we present new
results on MEMPs. In particular, for conditions when modulation of the magnetic field, within
2DES, is not very small in comparison with a finite external spatially homogeneous magnetic
field; here purely symmetric or antisimmetric MEMPs will be absent.

We consider homogeneous 2DES, localized within z = 0 plane, that is embedded in GaAs
based sample, with the dielectric constant ε, that occupies a half-space z < d. In addition,
2DES is subjected to a strong laterally inhomogeneos magnetic field B(y) = B(y)ẑ, which
appears due to ferromagnetic semi-infinite film of a finite thickness ηd. This film is located at
y < 0, d(1 + η) > z > d. Fig. 1 presents a model geometry under discussion; the x-axis points
out of the figure plane. A finite external spatially homogeneous magnetic field Bext = Bextẑ is
applied as well; Bext > 0. We assume that the surface of heterostructure crystal, at z = d, has
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pined potential [7], or covered by a very thin (of the thichness ≪ d) homogeneous nonmagnetic-
metallic gate. In addition, we assume that at z = 0 plane the ions jellium background of the
constant area density nI is located. Following Ref. [6], we assume that magnetic field B(y) is
a smooth function of y, with the characteristic scale ∆y and the static electron density is well
approximated by nI .

Figure 1. 2DES, at z = 0, is embedded in
heterostructure, z < d. Potential at z = d is pined.
Ferromagnetic semi-infinite film (y < 0, d < z <
d(1 + η)) induces inhomogeneity of magnetic field
within 2DES.

Following [6], for the low-frequency and the long-wavelength conditions, the current density
induced by a wave can be calculated in the quasi-static approximation as

jx(y) = σxx(y)Ex(y)− σ0
yx(y)Ey(y), jy(y) = σyy(y)Ey(y) + σ0

yx(y)Ex(y), (1)

where we have suppressed the exponential factor exp[−i(ωt − kxx)] and common arguments
ω, kx in jµ(y), Eµ(y). Dissipation is neglected, assuming a clean 2DES and sufficiently low
temperatures T [6].

For our setup, shown in Fig. 1, we assume that magnetic moment of the ferromagnetic
semi-infinite film is constant, M0 = M0ẑ. Then readily it follows [8, 6] that

B(y) = Bext − 2M0{arctan(Y )− arctan(Y/(1 + η))}, (2)

where Y = y/d. We assume that B0 > 0 and M0/Bext ≤ 1.

Figure 2. Dimensionless phase velocity for six most fast symmetric MEMPs, for 2M0/Bext ≪ 1,
as function of η. MEMPs of both positive and negative chirality are present.
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Figure 3. Dimensionless phase velocity for six most fast antisymmetric MEMPs, for
2M0/Bext ≪ 1, as function of η. MEMPs of both positive and negative chirality are present.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

-0.5

0.0

 

 W
a

For B(y) given by Eq. (2), using Eq. (1), the Poisson equation and the continuity equation,
we obtain the integral equation for the wave charge density ρ(ω, kx, Y ) as

ω

kx
ρ(ω, kx, Y )− 2|e|cnI

εB0
g0(Y )f0(Y )

∫ ∞

−∞
dY ′ρ(ω, kx, Y

′)R(0)
g (|Y − Y ′|; kxd) = 0, (3)

where B0 = B2
ext/(4M0), exact dimensionless gradient B(y) along y is given by

g0(Y ) = { (1 + η)−1

1 + Y 2/(1 + η)2
− 1

1 + Y 2
}. (4)

and prefactor

f0(Y ) = {1− 2M0

Bext
[arctan(Y )− arctan(

Y

1 + η
)]}−2. (5)

In R
(0)
g (|Y − Y ′|; kxd) we took the screening of the Coulomb potential by the equipotential

surface at z = d into account, namely:

R(0)
g (|Y − Y ′|; kxd) = K0(|kxd||Y − Y ′|)−K0(|kxd|

√
(Y − Y ′)2 + 4), (6)

where K0(x) is the modified Bessel function. We assume that kxd ≪ 1. Eqs. (3)-(6) show that
at kx → 0 the magnetic edge waves have acoustic type of dispersion.

To solve equation (3) numerically, we use two methods. The first one is a grid approximation,
where we use uniform grid with step ∆Y = 0.02 with span Y ∈[−19, 19]. As a result, equation (3)
is approximated by large Hermitian matrix and eigen values of this matrix correspond to eigen
values of equation (3). The drawback of this approach is that it is not an accurate approximation
of equation (3) at Y → ±∞.
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Figure 4. Spatial profiles, at η = 1, for three fastest symmetric MEMPs are plotted by the
solid curve, for Ws = −1.175255, the dashed curve, for Ws = −0.265200, and the dotted curve,
for Ws = 0.196089. The dot-dot-dashed curve plots g0(Y ).

Another way to solve equation (3) numerically is to introduce a new variableX = 2
π arctan(Y )

that varies from −1 to 1 while Y changes from −∞ to ∞. In Eq. (4) as function of X the
left hand side we will denote as g0(X), to simplify notations. First, we consider the limit
M0/Bext ≪ 1 where we approximate 1/B(Y ) as

1

B(y)
≈ 1

Bext
− 1

2B0
{arctan(Y/(1 + η))− arctan(Y )}, (7)

in this approximation prefactor f0(Y ) = 1. In Ref. [6] it is shown that Eq. (3) at f0(Y ) = 1
has a complete set of solutions can be presented as the set of symmetric solutions and the set
of antisymmetric solutions.

Then the symmetric solutions of Eq. (3) are given as [6]

ρs(ω, kx;X) = g0(X)
∞∑
k=0

ask(ω, kx)

[
cos(kπX)− 1

2
δk,0

]
, (8)

and they are defined by the system of linear homogeneous equations

Wasn −
∞∑
k=0

rsn,ka
s
k = 0, (9)

where n = 0, 1, 2, ...; δk,0 is the symbol Kroneckera, the matrix elements

rsn,k =
π

2

∫ 1

−1
dX cos(nπX)

∫ 1

−1
dX ′R(0)

g (| tan(π
2
X)− tan(

π

2
X ′)|, |kxd|)

×
[

1 + η

1 + η(2 + η) cos2(πX ′/2)
− 1

] [
cos(kπX ′)− 1

2
δk,0

]
, (10)
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W = ω
kx

εB0
2|e|cnI

is the dimensionless wave velocity and its sign corresponds to a sign of the chirality

or of the phase velocity. On Fig. 2 we plot dimensionless phase velocity Ws as function of η for
six most fast symmetric MEMPs calculated from Eq. (9). In Fig. 2 it is seen that |Ws| of the
most fast MEMP with the negative chirality is much larger than Ws of the most fast MEMP
with the positive chirality.
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Figure 5. Spatial profiles, at η = 1, for three fastest antisymmetric MEMPs are plotted: by
the solid curve, for Ws = −0.418959, the dashed curve, for Ws = −0.189269, and the dotted
curve, for Ws = 0.185154. The dot-dot-dashed curve plots g0(Y ).

The antisymmetric solutions of Eq. (3) are given as

ρa(ω, kx;X) = g0(X)
∞∑
k=1

aak(ω, kx) sin(kπX), (11)

and they are defined by the system of linear homogeneous equations

Waan −
∞∑
k=1

ran,ka
a
k = 0, (12)

where n = 1, 2, 3, ...; the matrix elements

ran,k =
π

2

∫ 1

−1
dX sin(nπX)

∫ 1

−1
dX ′R(0)

g (| tan(π
2
X)− tan(

π

2
X ′)|, |kxd|)

×
[

1 + η

1 + η(2 + η) cos2(πX ′/2)
− 1

]
sin(kπX ′). (13)

Eq. (9) and Eq. (12) have infinite set of positive and negative eigen values, however, physically
only a finite number of these modes, with largest |W |, meet assumed conditions as slower modes
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have the characteristic scale of the spatial structure along y of the order of magnetic length or
smaller. On Fig. 3 we plot dimensionless phase velocity Wa as function of η for six most fast
antisymmetric MEMPs calculated from Eq. (12). In Fig. 3 it is seen that |Wa| of the most fast
MEMP with the negative chirality is essentially larger than Wa of the most fast MEMP with the
positive chirality. From Figs. 2, 3 it follows that the fastest mode is the fundamental symmetric
MEMP which has negative chirality (as well as the sign of velocity) and only two nodes that
coincide with the nodes of g0(Y ). The latter is a common factor for obtained density profiles
Eqs. (8), (11).

In Fig. 4, using Eqs. (8)-(9), and Fig. 5, by using Eqs. (11)-(12), we plot charge density
profiles of three fastest symmetric and antisymmetric modes for η = 1; g0(Y ) is also shown. It is
seen that for the modes with the negative chirality the wave charge density is strongly localized
within the region of negative g0(Y ), i.e, −1.75 ≤ Y ≤ 1.75. In addition, in Figs. 4, 5 the charge
density of the MEMPs with the positive chirality, is more localized within the region of positive
g0(Y ), at |Y | > 1.75.
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Figure 6. Dimensionless phase velocities for four most fast MEMPs with negative chirality and
four most fast MEMPs with positive chirality as function of 2M0/Bext, for η = 1, calculated
from Eqs. (17). With full circles, triangles, squares, and upside-down triangles we show
results for pertinent MEMPs calculated by another numerical approach, where equation (3)
was approximated by the grid with step ∆Y = 0.02 on finite domain [-19,19].

If exact form of f0(Y ) is taken into account, Eq. (3) readily reduces to the integral equation
for the wave charge density ρ(ω, kx, X) as

Wρ(ω, kx, X)− g0(X)f0(X)

∫ 1

−1

(π/2)dX ′

cos2(πX ′/2)
ρ(ω, kx, X

′)R(0)
g (| tan(π

2
X)− tan(

π

2
X ′)|; kxd) = 0,

(14)
where factor

f0(X) = {1− 2M0

Bext
[
π

2
X − arctan(

1

1 + η
tan(

π

2
X))]}−2. (15)
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From Eq. (14) it follows that its solutions are not either symmetric or antisymmetric, so we
look for its solutions in the form

ρ(ω, kx;X) = g0(X)f0(X){
∞∑
k=0

ak(ω, kx)

[
cos(kπX)− 1

2
δk,0

]
+

∞∑
l=1

bl(ω, kx) sin(lπX)}. (16)

Then Eq. (14) is reduced to the system of linear homogeneous equations

Wan − {
∞∑

k1=0

ra,1n,k1
ak1 +

∞∑
k2=0

rb,1n,k2
bk2} = 0, Wbm − {

∞∑
k3=0

ra,2m,k3
ak3 +

∞∑
k4=0

rb,2m,k4
bk4} = 0, (17)

where n, k1, k3 = 0, 1, 2, 3, ... and m, k2, k4 = 1, 2, 3, ...; the matrix elements

ra,1n,k =
π

2

∫ 1

−1
dX cos(nπX)

∫ 1

−1
dX ′R(0)

g (| tan(π
2
X)− tan(

π

2
X ′)|, |kxd|)

×f0(X
′)

[
1 + η

1 + η(2 + η) cos2(πX ′/2)
− 1

] [
cos(kπX ′)− 1

2
δk,0

]
, (18)

rb,1n,k =
π

2

∫ 1

−1
dX cos(nπX)

∫ 1

−1
dX ′R(0)

g (| tan(π
2
X)− tan(

π

2
X ′)|, |kxd|)

×f0(X
′)

[
1 + η

1 + η(2 + η) cos2(πX ′/2)
− 1

]
sin(kπX ′), (19)

ra,2m,k =
π

2

∫ 1

−1
dX sin(mπX)

∫ 1

−1
dX ′R(0)

g (| tan(π
2
X)− tan(

π

2
X ′)|, |kxd|)

×f0(X
′)

[
1 + η

1 + η(2 + η) cos2(πX ′/2)
− 1

] [
cos(kπX ′)− 1

2
δk,0

]
, (20)

rb,2m,k =
π

2

∫ 1

−1
dX sin(mπX)

∫ 1

−1
dX ′R(0)

g (| tan(π
2
X)− tan(

π

2
X ′)|, |kxd|)

×f0(X
′)

[
1 + η

1 + η(2 + η) cos2(πX ′/2)
− 1

]
sin(kπX ′). (21)

Using Eqs. (17), in Fig. 6 for η = 1 we plot dimensionless phase velocities for four most fast
MEMPs with negative chirality and four most fast MEMPs with positive chirality as function
of 2M0/Bext. Here the values of W for 2M0/Bext → 0 coincide with the results obtained from
Eqs. (9), (12).

To conclude, it has been shown that lateral inhomogeneous magnetic field allows the existence
of the “magnetic gradient” or special magnetic-edge magnetoplasmons due to complex lateral
structure of magnetic field distribution. We have obtained the eigen value problem that
corresponds to the motion of charge density wave perpendicular to magnetic gradient. At
low wave vector kx magnetoplasmons have acoustic type dispersion, ω ∝ kx. For non-monotonic
distribution of magnetic field “magnetic gradient” magnetoplasmon may move in both directions.
To solve eigen value problem we have used two types of numerical approaches: first is the grid
method that diagonalizes large Hermitian matrix and second is semi-analytical approach that
expand each eigen mode on the set of orthogonal functions. The latter approach needs less
computing time and provides better accuracy for fastest positive and negative modes. However,
the grid method is more universal and gives reasonable accuracy for larger amounts of fastest
modes.
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