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ABSTRACT 

In this work, we present a software application that runs as a plug-

in over the OptFlux Metabolic Engineering platform allowing the 

topological analysis of metabolic networks. The major aim of this 

tool is to allow the interconnection between phenotype simulation 

tasks (using algorithms such as Flux Balance Analysis) and 

topological analysis of the same networks. The provided methods 

include node degree and degree distributions, shortest path 

analysis, clustering coefficients and several node rankers 

(betweenness and closeness centrality, hubs and authorities, etc). 

Also, it allows the creation of sub-networks through several 

filters, including some based on the results of phenotype 

simulation. 

Categories and Subject Descriptors 
J.3 [Computer Applications]: Life and Medical Sciences - 
Biology and Genetics.  

General Terms 
Algorithms, design. 

Keywords 
Metabolic networks, Network topology analysis, Metabolic 
engineering, Graph algorithms, Open-source software. 

 

1. INTRODUCTION 
 

Over the last few years, the field of Metabolic Engineering (ME), 

dealing with the design of strains with enhanced production 

capabilities of desired compounds, has grown considerably given 

the growing demands of the white Biotechnology industry [1]. In 

this area, there have been recent important advances in the 

development of genome-scale mathematical models of 

metabolism for a growing number of microorganisms. These have 

been used for phenotype simulation (using methods such as Flux 

Balance Analysis) [2]) and also to address strain optimization 

tasks [3]. 

 

To make these methods usable by a larger audience, recently the 

authors’ research group has proposed OptFlux 

(http://www.optflux.org) [4], an open-source software platform 

that uses mathematical models to simulate and optimize the 

behavior of microorganisms. Its main objective is to be a 

reference platform for research in ME. It incorporates strain 

optimization methods, allowing to find in silico mutant strains of 

microorganisms with enhanced capabilities, regarding an user 

defined objective function, involving the production of a 

compound of industrial interest. It also enables other 

functionalities such as several phenotype simulation methods, 

both for wild type and mutant strains (e.g. Flux Balance 

Analysis), Metabolic Flux Analysis, flux variability analysis and 

Elementary Modes analysis. All these features are freely provided 

in a user-friendly environment that can also be easily extended, 

given its modular plug-in based architecture. 

A distinct approach to the analysis of metabolism takes 

stoichiometric models, which are composed by the metabolites, 

reactions and their stoichiometry and reversibility, and represents 

these biological systems as networks or graphs. This path has led 

to the discovery that metabolic networks share a similar 

architecture with other complex networks, indicating that similar 

laws may govern most complex networks in nature. This also 

allows the expertise from large and well-mapped non-biological 

systems to be used to characterize the intricate interwoven 

relationships that govern cellular functions [5].  

 

As a result from this effort, and among many other results, 

metabolic networks have been characterized as highly connected 

networks that exhibit scale-free degree distributions [6], display 

the small-world property [7] and exhibit a high degree of 

modularity [8].  

 

Although some interesting results have been obtained both by the 

model-based and network-based methods aforementioned, these 

strategies have largely remained independent. The area of 
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pathway analysis, including the calculation and analysis of 

Elementary Flux Modes [9] provides a bridge between network 

topology and metabolic models, but given its complexity, it 

cannot be applied to genome-scale models. 

 

In this work, we aim to provide software tools to bridge this gap 

by providing within the OptFlux ME platform a number of tools 

that allow the analysis of the topological features of networks 

created from the same metabolic models that can be used to 

perform phenotype simulation and strain optimization. Given 

OptFlux's plug-in based architecture, which allows the extension 

of its functionality through the inclusion of plug-ins, the logical 

way to add network creation and analysis capabilities was though 

the development of a plug-in, named TopologyNetworkAnalyser 

for OptFlux, or briefly TNA4OptFlux. 

 

The paper is organized as follows: in the next section we 

introduce some important concepts on metabolic networks and 

their topological analysis; next, in section 3 we describe the main 

functionalities of the proposed tool; in section 4, we present a case 

study and some of the results obtained; we finish with some 

conclusions and further work. 

2. METABOLIC NETWORKS 
 

2.1 Definitions 
The metabolism is essentially a linked series of chemical 

reactions, which function to synthesize building blocks for usable 

cellular components and to extract energy and reducing power 

from the cellular environment [10]. The metabolic reactions are in 

turn catalyzed by the enzymes produced by the organisms, 

allowing living beings to adapt to changing conditions, which is 

one of the sources of life’s adaptability. 

 

The system formed by an organism's cellular reactions and the 

metabolites produced/ consumed by those reactions is organized 

as a highly complex network called the metabolic network. Due to 

their high complexity and the fact that often only part of the 

metabolism is known, it is not unusual for biological networks 

used in research to only contain part of the metabolism. As it was 

mentioned before, metabolic networks share a similar architecture 

with other complex networks, and as such, methods developed for 

the analysis of complex networks can be used to obtain 

information about an organism's metabolism. 

 

There are several variants of metabolic networks, being the most 

important the following:  

(i) directed graphs composed by two types of nodes 

(called bipartite graphs): metabolites and reactions, 

where edges represent the consumption or 

production of metabolites by reactions;  

(ii) directed or undirected graphs where nodes 

represent the metabolites and edges represent the 

reactions that consume or produce those 

metabolites;  

(iii) directed or undirected graphs where nodes 

represent reactions and edges stand for metabolites 

that are shared by two reactions.  

 

2.2 Topological Analysis 
In this section, we present some of the main metrics for 

topological analysis used on several types of complex networks 

that can also be applied to metabolic networks. 

2.2.1 Degree and degree distribution 
Of all the network metrics in graph theory, the most basic one is 

probably the node degree. The degree of a vertex is simply the 

number of edges that connect with it. This metric is used in 

different operations of graph analysis and in the calculation of 

more complex metrics. One of its applications is to evaluate the 

importance of each node, assuming that more important nodes 

will have higher degrees. Thus, a ranking can be performed, 

ordering the nodes by descendent degree.  

 

In directed graphs, a distinction can be made between the 

incoming degree, or indegree, that is the number of edges that end 

in the vertex and the outcoming degree, or outdegree, that is the 

number of edges that start in the vertex. 

 

Another important metric related to the degree is the degree 

distribution of a network. This metric is particularly useful since 

many properties of a network can be determined by the law 

followed by its degree distribution. For instance, the discovery 

that metabolic networks follow a power law led to the discovery 

that these networks are scale-free [6]. 

2.2.2 Shortest paths 
Another important functionality in topological analysis is the 

calculation of the shortest paths between pairs of nodes in the 

graph. In metabolic networks, this is simply the number of nodes 

needed to reach the destiny node from a origin node. It should be 

noted that in the case a certain node is not reachable from another, 

the shortest path does not exist (or it is considered as infinity). 

This case is quite common in directed networks. 

 

For the whole network, it is possible to calculate all shortest paths 

between all pairs of nodes (sometimes called the shortest path 

spectrum). It is also possible to calculate the mean over all these 

values (the mean path length). This last measure can be used to 

check if the network has the small world property. 

2.2.3 Betweenness Centrality 
Centrality metrics are very often used for the analysis of social 

networks, being designed to rank the nodes according to their 

position in the network and interpreted as the prominence of 

nodes embedded in a social structure [11]. However, the utility of 



centrality measures is not limited to social networks since they 

have proven to be very useful in the analysis of citation networks, 

computer networks and also biological networks [12]. 

The betweenness centrality (BC) is one of the widest used 
centrality metrics, calculated according with the number of 
shortest paths between pairs of nodes in the network that pass 
through the target node, using the following formula to calculate 
the between centrality of node n: 

��(�) =  � 	st(�)
	st�
�
� ∈ �

 

where 	st is the number of shortest paths from the vertices s and t 
and 	st(�) is the number of those vertices that pass though the 
vertex n. 

 

This metric was initially developed to analyze networks where 

there is an exchange of information between the nodes through the 

edges. In this case, the BC is, in some sense, a measure of the 

influence a node has over the spread of information through the 

network [12]. 

2.2.4 Closeness Centrality  
Similarly to the BC, the closeness centrality (CC) is also a 

measure of node importance in the network. It specifies which 

nodes have the shortest paths to all others [13], or in some 

variations, such as the one used in this work, it evaluates the 

nodes based in the shortest paths to all reachable nodes. The CC 

for a node n is calculated as follows: 

��(�) =  1
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where d(n,t) is the shortest path between the vertices n and t and V 

is a group composed by all nodes connected to n. 

 

It should be noted that nodes that do not have any neighbors do 

not have a centrality value since in that case ∑  �(�, �)� ∈ �  will 

equal zero. 

2.2.5 HITS 
The hubs-and-authorities (also known as Hyperlink-Induced 

Topic Search or HITS) algorithm differs from the other ranking 

metrics presented before, in that it calculates two ranks for each 

node: hubness and authority. HITS was originally developed to 

rate Web pages based on their content, spliting the pages 

evaluated into the ones with good content on a given topic, called 

authorities, and directory-like pages with many hyperlinks to 

pages on the topic, called hubs [14]. Despite smilingly unrelated 

to metabolic networks, web page analysis algorithms are 

sometimes used to analyze biological networks (e.g. PageRank 

centrality is used in regulatory networks [15]). 

 

HITS is more complex than BC or CC, since the way it calculates 

the values of hubness and authority cannot be explained by a 

simple formula, being instead necessary to understand the 

algorithm. It is a recursive algorithm in which all nodes initially 

have the same values of hubness and authority; in each iteration 

these values are recalculated based in their neighbors until they 

converge [14]. 

2.2.6 Clustering Coefficient 
In many networks, nodes tend be organized in strongly connected 

clusters and metabolic networks are not an exception. A measure 

of the clustering level of a given node is given by the clustering 

coefficient. The clustering coefficient for a node n – C(n) - is 

calculated by the expression: 

�(�) =  2�
��(�� − 1) 

 

where e is the number of edges that connect the node to its 

neighboring nodes and ki the number of its neighbors.  

 

In a compound-reaction network (bipartite graph), reaction nodes 

are connected only with compound nodes and compound nodes 

are only connected with reaction nodes. This means that a node 

and its neighbors will never share neighbors. The clustering 

coefficient is, in this case, 0 for all nodes. So, in metabolic 

networks, this metric only makes sense in reaction-reaction or 

metabolite-metabolite networks. 

3. THE TNA4OPTFLUX PLUGIN 
 

In this work, we present the TNA4OptFlux plug-in for the 

OptFlux platform. As previously mentioned, the main aim of this 

plug-in is to make available a number of topological analysis 

tools, within the OptFlux platform which is devoted to ME tasks.  

 

The plug-in is freely available in the project’s web site 

(http://www.optflux.org). Some documentation is also provided in 

the form of a set of “How To’s” that explain how to use the main 

features of the tool. 

 

In this section, we will firstly mention the topological analysis 

algorithms provided. Afterwards, we will address some features 

regarding the integration of topological analysis with some of the 

ME features from OptFlux, namely phenotype simulation. This 

section will conclude with some remarks regarding the plug-in 

implementation. 

3.1 Main functionalities 
 

This plug-in creates metabolic networks by extracting the 

necessary data from the mathematical model contained in an 

OptFlux project and then organizing the data in a graph. The 

network created is then associated with the same project from 

where the model was created. The plug-in allows the creation of 

any type of network from the ones described in section 2.1.  



 

Once a network is created, it is possible to use the provided 

analysis tools on it. These functionalities consist on the 

calculation of all metrics that were presented in Section 2.2: node 

degrees, degree distribution, node rankers (BC, CC and HITS), 

shortest paths and clustering coefficients. Each of these features 

will be detailed next. Also, in Figure 1, a typical workflow of 

network analysis is depicted, with some screenshots of the 

application. 

 

Since this plug-in was built over the main OptFlux platform, it 

shares some of its basic principles regarding the user interaction. 

Therefore, all data are organized in a clipboard where all results 

are stored when an operation is run, organized in an hierarchy of 

data types. To view these results, the user clicks the object and the 

views are displayed in the main area. Several views might exist 

for the same object, accessible through different tabs. 

3.1.1 Node degrees and degree distribution 
The plug-in calculates the node in and out degrees when each 

network is created. These are available in the nodes view of the 

network object. Also, it is possible to calculate both the in and the 

out degree distribution histograms running the respective 

operation from the menu. 

 

3.1.2 Shortest paths analysis  
Shortest path analysis in TNA4OptFlux can be launched by 

running the respective operation from the menu, which calculates 

the shortest paths between all pairs of nodes in the network. This 

creates an object with the results, that can be afterwards viewed. 

Also, some metrics for the whole network are calculated: the 

shortest path spectrum and the mean path length. Also, this 

operation display information about the network’s connectivity. 

 

When viewing the results, the user can selects among a group of 

four different panels, each one for the visualization of different 

kinds of data. The first two panels, called shortest path view and 

reversed path view, both have a list of all nodes in the network 

and show for each node the number of connected nodes and the 

average shortest path length distances. They differ, however, since 

the first shows the average path distance from the nodes listed to 

the nodes they connect to and the later shows the average path 

distance using the listed nodes as a destiny. It should be noted that 

in an undirected graph both views have identical data. The third 

panel, path view, is used to determine the shortest path between 

two nodes of the network. Unlike the first two views this one 

prints the nodes present in a specific shortest path. Finally, the last 

panel shows all nodes that a selected node is connected to and 

their distance. 

3.1.3 Ranking algorithms 
The plug-in allows the nodes to be ranked according to three 

different algorithms: betweenness centrality, closeness centrality 

and HITS. The resulting view shows the ordered ranking of the 

nodes by the selected criteria. 

 

3.1.4 Clustering 
The plug-in also allows the user to calculate the clustering 
coefficient for all nodes in the network and ranks the nodes 
according to this criterion. Also, considering the whole network, 
the user can calculate the average clustering coefficient and also 
the function ACC(k)  that gives the average clustering coefficient 
for all nodes with degree equal to k. 

 

3.2 Network filters and the integration with 

OptFlux 
 

There are some situations when it may be useful to separate part 

of the network and analyze that sub-network as an independent 

graph. With that in mind, the possibility of creating sub-networks 

was included in TNA4OptFlux. Also, this was the strategy used to 

make most interconnections between OptFlux and the network 

topology features implemented in this plug-in. 

 

The simplest criterion for the creation of a sub-network is to 

identify parts of the network that have no connection between 

themselves and treat them as separate networks. The plug-in 

includes an option to identify connected sub-graphs (components) 

within the whole network. Optionally, the user can create a sub-

network based on a selected component. 

 

Other alternatives for the creation of sub-networks are based in 

the removal of nodes based in their degree or their ranking value 

calculated using one of the previously proposed algorithms 

(naturally, the ranking algorithms have to be run for the network 

in question first). This is a useful functionality since the analysis 

of metabolic networks is typically conducted over a network 

where currency metabolites (that are used in many reactions of the 

network as carriers of electrons and functional groups) are 

removed.  

 

It may be useful to remove these compounds for the analysis of 

the network because of three main reasons: (i) these compounds 

may provide a false robustness to the network. For instance, if an 

essential reaction is removed, it is expected that the metabolic 

network will be fragmented; however, the presence of these 

highly connected nodes means that the network will still be intact 

despite the fact that, from a biological point of view, that is not 

meaningful; (ii) some ranking metrics that are used to find the 

compounds that are more important in the network are dominated 

by these compounds, and (iii) the great number of edges that these 

nodes have results in a significant increase of the processing time 

that it is necessary to analyze the network. 

 

 



 

Figure  1

  

 

 

1. Workflow for the network analysis in TNA4OptFlux 

 

 

 



In TNA4OptFlux, the nodes to be removed can also be selected 

manually by the user from a list. Since metabolic networks tend to 

have a great number of nodes, this method is only recommended 

in the case where the number of nodes is small or to make some 

minor "tweaks" in a sub-network created by other means. 

 

Also, sub-networks are used to create interesting links between 

topology analysis and phenotype simulation methods. These 

methods allow the calculation of flux values for each reaction in 

the network. Thus, the user can define a filter that removes 

reaction nodes based in their flux value in a selected OptFlux 

simulation. This allows the comparison among several different 

results obtained for different environmental conditions (e.g. 

different carbon sources, aerobic/ anaerobic conditions) or genetic 

modifications (e.g. gene deletions). This option allows to filter the 

original network, creating networks where only the reactions 

active in these simulations are active (flux higher than a user-

defined value). 

 

Since, in some situations, it might be necessary to combine 

several of the filtering options described above, in order to create 

a desired sub-network, the plug-in has a wizard that allows the 

combination of several of the previous alternatives in a user 

friendly way. 

3.3 Implementation issues 
 

The whole OptFlux platform, including the TNA4OptFlux plug-in, 

is implemented using the Java programming language. Most of 

the design options (e.g. the use of the Model-View-Control 

paradigm), user interactions principles and basic libraries are 

described in the paper where the OptFlux platform is presented 

[5]. For the implementation of the topological analysis tools, the 

JUNG library (http://jung.sourceforge.net) was used. 

 

4. CASE STUDY AND RESULTS 
 

4.1 Case study  
In order to show the usefulness of the plug-in, a case study was 

designed. The model selected for this study is a genome-scale 

metabolic model of the bacterium Escherichia coli [16]. This 

model was used to create four distinct networks. Those were 

analyzed with all tools of the plug-in. All networks are bipartite 

graphs that contain both compound and reaction nodes. The 

objective of this analysis was not to obtain new results but rather 

to show the capabilities of NetworkAnalyzer. 

 

The first network (net 1) was obtained by creating it directly from 

the OptFlux project containing the model without using any filter. 

For the creation of the second network (net 2), the process was the 

following: firstly, a simulation of the wild type strain (typical 

growth medium) was run using the Flux Balance Analysis 

algorithm in OptFlux; afterwards, the sub-network functionalities 

were used (over net 1) to create a sub-network where the nodes 

that corresponded to reactions that had a flux value of zero in the 

simulation were removed. The rationale underlying this process is 

that reactions with a zero flux are not used by the organisms in the 

conditions of the simulation.  

 

The currency metabolites, such as H+ and ATP were removed 

from both net 1 and net 2, in this way creating net 3 and net 4. The 

full list of removed metabolites is provided in Table 1, together 

with their name on the SBML model used in the study. 

Table 1. Compound nodes removed in net 3 e 4 

Compound Node Id 

Hydrogen M_h_b, M_h_c, M_h_e 

Water M_h2o_b, M_h2o_c, M_h2o_e 

Phosphate M_pi_b, M_pi_c, M_pi_e 

ATP M_atp_c 

Nicotinamide adenine 
dinucleotide reduced 

M_nadph_c 

Nicotinamide adenine 
dinucleotide  

M_nad_b, M_nad_c, M_nad_e 

ADP M_adp_c 

Diphosphate M_ppi_c 

Nicotinamide adenine 
dinucleotide phosphate 

M_nadp_c 

Nicotinamide adenine 
dinucleotide phosphate 
reduced 

M_nadph_c 

AMP 
M_amp_b, M_amp_c, 
M_amp_e 

Coenzyme A M_coa_c 

 

 

4.2 Results - Ranking Metrics  

4.2.1 Betweenness Centrality 
Since the value of BC of a node is directly proportional to the 
number of shortest paths it is part of in a metabolic network 
created, there should be two kinds of nodes with a high value: 

1. Metabolite nodes that are produced and consumed in a 
great number of reactions. It should be noted that for a 
node to have a high BC it has to be both produced and 
consumed by a number greater than average of 
reactions.  

2. Reaction nodes that produce and consume the 
compounds mentioned in the previous point. Again 
reactions have to both consume and produce the high 
BC compounds. Reversible reactions will have a higher 
average BC. 

 

As expected in nets 1 and 2 most of the nodes with higher BC 

either make part of the list presented in Table 1 or are reactions 



that produce and consume these metabolites (results for net 1 are 

shown in Table 2; results for net 2 are not shown since they are 

very similar). While results of this kind validate our assertion 

about the BC, they are hardly surprising.  

 

The results obtained with nets 3 and 4 (Tables 3 and 4) were more 

interesting as they represent compounds or reactions that, 

although being relevant to the metabolism, are not necessarily 

involved with currency metabolites. Relevant examples include 

pyruvate and glutamate that are known to play major roles in 

metabolism. Further analysis might include checking the 

importance for the survival of the organism of reactions found to 

have a high betweenness in these networks. 

 

Table 2. Nodes with higher betweenness centralities in net 1 

Type Node Id Betweenness 

compound H 2459889 

compound H2O 930881 

compound ATP 429191 

compound Phosphate 354293 

compound H (external) 319376 

compound ADP 180546 

compound Pyruvate 162282 

compound NAD 128833 

compound Diphosphate 126864 

reaction ATPS4r 108972 

 

Table 3. Nodes with higher betweenness centralities in net 3 

Type Node Id Betweenness 

compound Pyruvate 793787 

compound L-Glutamate 571072 

compound CO2 448784 

compound NH4 406818 

compound 2-oxoglutarate 351565 

compound Acetyl-CoA 324292 

compound 
Glyceraldehyde-3-
phosphate 

282511 

reaction ALATA_L 265103 

compound Phosphoenolpyruvate 255559 

reaction ASPTA 226139 

 

 

 

Table 4. Nodes with higher betweenness centralities in net 3 

Type Node Id Betweenness 

compound L_glutamate 95733,9 

compound CO2 74757,51 

compound 2_oxoglutarate 61596,76 

reaction ASPTA 52741 

compound L_aspartate 49804 

compound 
Glyceraldehyde_3_
phosphate 

37129 

compound UDP 36437 

reaction CTPS2 34110 

compound L-Glutamine 33601 

reaction GLNS 33567 

 

4.2.2 Closeness Centrality 
Because of the fact that metabolic networks are highly connected 

most nodes with a high centrality are nodes that have few 

neighbors which in turn also have very few neighbors. In other 

words, nodes with high closeness in the networks analyzed tend to 

be connected to few other nodes and paths to the connected nodes 

tend be small. 

 

Nodes with a high closeness in nets 1 and 3 (Tables 5 and 7) are 

reactions that produce compounds that are not used by other 

reactions (these may be excretions of E. coli or substances that are 

used in reactions that have not been included in the metabolic 

networks) or compounds that are only used by a few reactions that 

do not produce any other compounds or that produce compounds 

that are not used in any reaction. 

 

Regarding net 2, the results (Table 6) are quite different from the 

previously mentioned ones. Taking a closer look, it seems that this 

network does not have any nodes with the properties associated 

with a high closeness. Indeed, since only the part of the network 

that has a non-zero flux value under a steady-state condition has 

been kept in net 2, it makes sense that those poorly connected or 

even deadends of the network have all been removed. It is well 

known that network gaps or deadends cannot have a flux under 

steady-state conditions. The fact that net 4 already shows higher 

centrality values is probably related with the fact that some 

additional nodes have been removed after the simulation, which 

could again create deadends or gaps in the network. These results 

indicate that closeness centrality could be a good measure of the 

existence of deadends in a given network and approaches to 

evaluate a new network, for example, a genome-scale model 

under development, based on this metric should be further 

explored. 

 

 

 



Table 5. Nodes with higher closeness centralities in net 1 

Type Node Id Centrality 

reaction UDPGALM 1 

compound Trimethylamine 0,75 

compound 1-5-Diaminopentane 0,75 

compound Dimethyl sulfide 0,75 

compound gamma-butyrobetaine 0,75 

compound AMP 0,75 

 

Table 6. Nodes with higher closeness centralities in net 2 

Type Node Id Centrality 

compound H 0,31316 

reaction ATPS4r 0,30149 

compound ATP 0,29065 

compound H2O 0,28730 

reaction GLUDy 0,28377 

reaction ACCOACr 0,27485 

 

Table 7. Nodes with higher closeness centralities in net 3 

Type Node Id Centrality 

reaction DHPTDCs 1 

compound Lipopolysaccharide 1 

compound 
Adenosine-3-5-
bisphosphate 

1 

reaction SPMDAT2 1 

compound 
P1-P5-Bis-5-
adenosyl-
pentaphosphate 

1 

reaction TDPDRR 1 

compound Dephospho_CoA 1 

reaction UDPGD 1 

reaction SPMDAT1 1 

reaction PACCOAL 1 

compound L-leucine 1 

 

4.2.3 HITS 
HITS is the most complex of the metrics supported by 

TNA4OptFlux. As such, the analysis of the results of the 

algorithm is the hardest. For nets 1 and 3 (Tables 8 and 9), all the 

authorities of the network were compounds and all hubs were 

reaction, in these networks (net 2 is not shown since the results 

were similar to net 1). The split between authorities/compounds 

and hubs/reaction was absolute, as there were no compounds with 

a significant value of hubbness or reactions with a significant 

value of authority. After carefully looking at the results, it was 

evident that in nets 1, 2 and 3 the compounds with a higher 

authority were important compounds for the metabolism, such as 

ATP and hydrogen, and the reactions with higher hubbness were 

the ones that produced these compounds, especially those that 

produced multiple ones. In this case, it seems that HITS can be 

used as a “double” metrics that is capable of evaluating both 

reactions and compounds differentially. 

 

In net 4 the characteristics of the nodes are reversed, with 

reactions being the higher authorities of the network and 

compounds the better hubs. The separation between compound 

and reaction nodes is also more tenuous than in the other nets, 

since there are nodes in this network that have a values of 

authority very close to hubbness values. We are still unsure on the 

reason of the reversion in the classifications on this network and 

further analysis will be necessary before drawing any conclusions. 

Table 8. Analysis with HITS for net 1 

Authorities Authority Hubs Hubbness 

H 0,862764 ATPS4r 0,079358 

ADP 0,351190 DBTSr 0,073056 

Phosphate 0,284655 ACCOACr 0,072651 

H (external) 0,130022 PRASCS 0,072413 

NADH 0,090845 Biomass 0,072339 

Diphosphate 0,074197 PRAGSr 0,072160 

ATP 0,055968 ALAALAr 0,071904 

AMP 0,043742 CBPS 0,070658 

NAD 0,043403 CTPS2 0,070560 

H2O 0,040823 PRFGS 0,070426 

 

Table 9. Analysis with HITS for net 3 

Authorities Authority Hubs Hubbness 

CO2 0.934896 KAS14 0.145308 

NH4 0.184248 UGLYCH 0.144774 

Pyruvate 0.182570 GLYCL 0.144469 

Acyl carrier 
Protein 

0.175768 SADH 0.144388 

Ubiquinol 8 0.048900 KAS16 0.143718 

L-glutamate 0.045672 C181SN 0.143332 

2-
Oxoglutarate 

0.041802 C140SN 0.143332 

L-alanine 0.040432 C161SN 0.143332 

Acetoacetyl-
ACP 

0.034058 C141SN 0.143332 

Succinate 0.028756 C160SN 0.143332 

 

 

 



Table 10. Analysis with HITS for net 4 

Authorities Authority Hubs Hubbness 

Biomass 0.925803 L-glutamate 0.316219 

ASPTA 0.095323 L-aspartate 0.190471 

ALATA_L 0.090570 Acetyl-CoA 0.186644 

VALTA 0.089285 L-glutamine 0.172212 

PHETA1 0.088518 GTP 0.168417 

TYRTA 0.088518 UTP 0.158907 

ILETA 0.088518 L-alanine 0.158077 

ACGS 0.074688 L-serine 0.155988 

GLUDy 0.068496 CTP 0.155107 

 

4.3 Degree Distribution 
We calculated the degree distribution of the four networks. To 

facilitate the visualization of the results we present plots of the 

histograms both for the indegree and outdegree (blue for indegree, 

red for outdegree). In Figures 2 and 3 we show the results of net 1 

and 4 (nets 2 and 3 behave similarly; not shown). We can check 

the scale-free nature of the networks, both in their original 

configuration and when only the active reactions in the wild type 

are considered. 

 

Figure  2. Degree distribution plots for net 1. 

 

 

Figure  3. Degree distribution plots for net 4. 

4.4 Shortest Path Analyses 
In this analysis, the shortest path metric was used to calculate the 

distance between the node that corresponds to Glucose-6-

phosphate (main substrate after its entrance in the cell) and the 

reaction that produces biomass (one of the final aims of 

metabolism). To get a better idea of the possible ways that these 

nodes are connected, the shortest path between the Glucose-6-

phosphate node and the nodes that correspond to all compounds 

consumed by the reaction were also calculated. The purpose is to 

evaluate the distance between the substrate and the different 

building blocks that are made from it.  

Table 11. Shortest path form the Glucose-6-phosphate to the 

biomass reaction in nets 1 e 2 

Path 

Compound: D-Glucose_6_phosphate 

Reaction: G6PDH2r 

Compound: NADP 

Reaction: Biomass 

 

For nets 1 and 2 the shortest path between the nodes had a length 

of four (Table 11). However, these paths pass through the node 

that corresponds to NADP, a currency compound that is involved 

in many reactions (45 in this model, to be exact) which means that 

this path may not be very significant. The result obtained with the 

filtered networks (nets 3 and 4) is probably more useful (Table 

12).  

Table 12. Shortest path form the Glucose-6-phosphate to the 

biomass reaction in nets 1 e 2 

Compound 

Compound: D-Glucose-6-phosphate 

Reaction: PGMT 

Compound: D-Glucose-1-phosphate 

Reaction: GALU 

Compound: UTP 

Reaction: Biomass 

 

5. CONCLUSIONS AND FURTHER WORK 

 

The plug-in described in this work still lacks some of the analysis 

capabilities that a few network analysis applications possess, such 

as Pajek [17] or Vison [18]. In this project, we decided de 

emphasize the communication between the plug-in and the main 

OptFlux application. With the provided tool, an user can easily 

run a create a project in OptFlux and then create a network 

without having to worry with converting the data into a format 

supported by a networking application. Furthermore, if the user 



runs a simulation it can gain further insights into the parts of the 

model that are used in the simulation through the creation of a 

sub-network. 

 

As far as the authors are aware, the only application that supports 

a combination of tools similar to the ones provided by OptFlux 

combined with TNA4OptFlux is CellNetAnalyzer [19]. However, 

the topological analysis tools provided by this application are 

quite limited and the interactions between FBA simulations and 

topological analysis is not direct. Furthermore, CellNetAnalyzer is 

based on MatLab, a commercial platform, while our approach is 

to provide software freely available and fully open-source.  

 

However, the plug-in is still under development and there are 

some points that should be improved in the future. The current 

version only supports a few ranking metrics, something we aim to 

correct in new releases with the inclusion of new algorithms. The 

connection between the plug-in and OptFlux is probably the main 

feature. Currently this data exchange consists only in the creation 

of new networks and when it is used to filter the nodes of the sub-

networks. Other interactions will be explored in the future. 

 

Finally we believe that it might be useful to be able to export the 

networks into formats supported by the most commonly used 

applications in network visualization. 
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