

Centre of Biological Engineering

University of Minho School of Engineering

UTILIZATION OF DAIRY INDUSTRY BY-PRODUCTS AS SUBSTRATES TO ENHANCE THE PRODUCTIVITY OF MICROALGAE PRODUCTION SYSTEMS

Author* FERNANDES, BRUNO. Supervisors: Vicente, António; Teixeira, José. * brunofernandes@deb.uminho.pt

Accumulate high amounts of lipids and starch, used to produce biodiesel and bioethanol. → Mitigation of approximately 500 kg of CO₂ per 400 kg of microalgal biomass

Traditional growth techniques, presents several drawbacks, with consequent limitation on algal productivity.

By-product derived from cheese making process, which major components are lactose, proteins and lipids.

Polluting waste stream - To make 1 kg of cheese, 10 L of whey is generated

Biological treatment by conventional aerobic process is very expensive

Aim

Evaluate the possibility of using cheese whey (CW) or cheese whey hydrolysate (CWH) as carbon source for mixotrophic culture of *Chlorella vulgaris.*

Methods

The experiment consisted of 3 conditions, summarized in Table 1, each one performed in duplicate. All assays were performed in batch system, in 0.5 L flasks containing 400 mL of medium at 30 °C and the pH was kept around 7.5.

Table 1 - Summary of culture conditions and respective carbon source

Growth Conditions	Carbon Source
Photoautotrophic	CO ₂
Mixotrophic _{CW}	CO ₂ + Cheese whey ⁽¹⁾
Mixotrophic _{CWH}	CO ₂ + Cheese whey hydrolysate ⁽²⁾

⁽¹⁾ Equivalent to 10 g L⁻¹ lactose

(2) Equivalent to 5 g L⁻¹ glucose + 5 g L⁻¹ galactose

All the cultures were aerated with CO_2 -enriched air (2% v/v CO_2) at a rate of 0.4 vvm and illuminated with continuous light (70 mmol m⁻² s⁻¹).

The productivity of each cell in terms of different components (starch and lipids) was calculated using the equation:

$P_{Component} = P_{max} \times F_{component}$

where $\mathsf{P}_{\mathsf{component}}$ is the productivity of *Chlorella vulgaris* in term of one of the components in study (starch, lipids and proteins), $\mathsf{P}_{\mathsf{max}}$ is the maximum biomass productivity and $\mathsf{F}_{\mathsf{component}}$ is the fraction of component (w w⁻¹) in the cell.

Results

Table 2 – Growth parameters for *Chlorella vulgaris* cultivated photoautotrophically and mixotrophically, with different carbon sources

	Growth Parameters ¹			
Growth Conditions	$\mu_{max}(d^{-1})$	X _{max} (g L ⁻¹)	P _{max} (g L ⁻¹ d ⁻¹)	
Photoautotrophic	0.13 ± 0.04 a	1.22 ± 0.12 a	0.103 ± 0.022 a	
Mixotrophic _{CW}	0.13 ± 0.04 a	1.98 ± 0.43 b	0.316 ± 0.101 b	
Mixotrophic _{CWH}	0.42 ± 0.16 a	3.58 ± 0.12 c	0.739 ± 0.035 c	

¹ μ_{max} = max. specific growth rate (d⁻¹); X_{max} = max. biomass concentration (g L⁻¹); P_{max} = max. biomass productivity (g L⁻¹ d⁻¹).

 Table 3 – Consumption of the different organic carbon sources during mixotrophic growth of Chlorella vulgaris

	Organic Carbon Source Consumption (%)			
Growth Conditions	Glucose	Galactose	Lactose	
Mixotrophic _{CW}	-	-	59.0 ± 9.8	
Mixotrophic _{CWH}	100 ± 0.0	96.0 ± 0.2	-	

150,00 0,00 Photoautotrophic Mixotrophic (CW) Mixotrophic (CWH)

Figure 1 – Comparison of lipid productivity between photoautotrophic and mixotrophic growth of *Chlorella vulgaris*

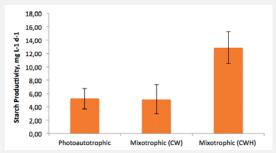


Figure 2 – Comparison of starch productivity between photoautotrophic and mixotrophic growth of *Chlorella vulgaris*

Conclusions

Biomass productivity and, inherently, the lipid and starch productivity was stimulated by CW and CWH, suggesting that this industrial byproduct could be used as a low-cost supplement for the mixotrophic growth of *Chlorella vulgaris*.

Acknowledgements

This work was supported by Fundação para a Ciência e a Tecnologia through B. Fernandes grant SFRH/BD/44724/2008 and G. Dragone grant SFRH/BPD/44935/2008.

Uma Escola a Reinventar o Futuro - Semana da Escola de Engenharia - 20 a 26 de Outubro de 2011

 $P_{Component} = F$ where $P_{component}$ is the productivity