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A methodology for a quantitative interpretation of DGGE

with the help of mathematical modelling: application in

biohydrogen production
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Alcina Pereira, Alain Rapaport and Gonzalo Ruiz-Filippi
ABSTRACT
Molecular biology techniques provide valuable insights in the investigation of microbial dynamics and

evolution. Denaturing gradient gel electrophoresis (DGGE) analysis is one of the most popular

methods which have been used in bioprocess assessment. Most of the anaerobic digestion models

consider several microbial populations as state variables. However, the difficulty of measuring

individual species concentrations may cause inaccurate model predictions. The integration of

microbial data and ecosystem modelling is currently a challenging issue for improved system control.

A novel procedure that combines common experimental measurements, DGGE, and image analysis

is presented in this study in order to provide a preliminary estimation of the actual concentration of

the dominant bacterial ribotypes in a bioreactor, for further use as a variable in mathematical

modelling of the bioprocess. This approach was applied during the start-up of a continuous anaerobic

bioreactor for hydrogen production. The experimental concentration data were used for determining

the kinetic parameters of each species, by using a multi-species chemostat-model. The model was

able to reproduce the global trend of substrate and biomass concentrations during the reactor start-

up, and predicted in an acceptable way the evolution of each ribotype concentration, depicting

properly specific ribotype selection and extinction.
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INTRODUCTION
In engineered ecosystems, characterised by closely related
biotic and abiotic components, there is still a striking need
for a better understanding of the relationship between pro-

cess function and ecosystem characteristics in terms of
density, diversity, structure and activity (Briones & Raskin
; Dumont et al. ). During the last two decades, mol-
ecular biology techniques (MBT) have been increasingly used

as a tool for opening the black box of biological reactors and
getting insight into communities development, selection and
adaptation (Cabrol & Malhautier ). Denaturing gradient

gel electrophoresis (DGGE) and fluorescent in situ hybridis-
ation (FISH) with DNA probes are among the most
employed non-culture-based MBT (Sanz & Köchling ).

DGGE is applied for the analysis of whole bacterial
community structure and allows the separation of small
polymerase chain reaction (PCR) products, commonly up
to 400 bp. The separation of the DNA fragments is achieved
as a function of their different GþC content and distri-

bution. Consequently, the fingerprinting pattern is built
according to the melting behaviour of the sequences along
a linear denaturing gradient (Fromin et al. ).

Anaerobic digestion (AD) is a widely accepted technology

for producing biogas as well as for stabilising solid organic
waste. Methane is the most common gas obtained in the AD
process. However, increasing importance, and thereby

research effort, has been given to the hydrogen production,
which is an intermediate of the whole process. In the context
of AD, the use of MBT is particularly attractive and relevant

as it enables overpassing the microorganism’s isolation and
identification of difficulties inherent to the complexity of the
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AD process such as syntrophic interactions, low growth rates,

unknown growth requirements and obligate anaerobic con-
ditions (Ramirez & Steyer ). In the case of biohydrogen
production, several MBT have been applied to gain insight in

the process, among which the DGGE stands out (Li et al.
). For example, the DGGE enabled to identify the domi-
nant bacterial populations involved in the biohydrogen
production process under various operating conditions (Mar-

iakakis et al. ) and to consistently link the variation of
hydrogen production rate and the succession of dominant bac-
teria during the fermentation process (Huang et al. ).

Several mathematical models have been developed,
implemented and validated in AD systems (Donoso-Bravo
et al. ). Most of the models consider several microbial

population as state variables, however the specific species
concentration are unknown variables due to difficulties in
performing measurements. This issue may trigger some
identification problems since some parameters cannot be

determined independently (Bernard et al. ; Noykova
et al. ), and may cause some inaccurate model predic-
tions (Batstone et al. ).

The integration of microbial data and ecosystem model-
ling is currently a challenging issue for improved system
control (Harmand et al. ). Among the attempts to inte-

grate both approaches, Dumont et al. () proposed a
generic method coupling fingerprinting and mathematical
tools to achieve the functional assigning of bacteria detected

in microbial consortia involved in a nitrification bioprocess.
A dynamic model of the biomass concentration of each
functional community was designed from the available
measurements on nitrifying performance.

The aim of this study is to develop and validate a
simple procedure to convert a typical DGGE fingerprinting
in a quantitative measurement of the individual bacterial

ribotypes concentration in a bioreactor, for further use as
a variable in mathematical modelling. This approach was
applied during the start-up of an anaerobic reactor

aiming to produce hydrogen, where significant changes of
the population characteristics are expected to take place.
METHODS

Experimental set-up

A glass-made reactor operating as a continuous stirred tank
reactor (CSTR) of 2 Lwas used for the experiment. The reactor

was connected to auxiliary equipment for pH control, influent
feeding and effluent draw off and media agitation The system
was maintained at 37 WC by using a heated jacket built into

the reactor. A hydraulic retention time of 12 hwas set for popu-
lation selection of hydrogen producing bacteria glucose (5 g L�1)
was used as the sole carbon source (Tapia-Venegas et al. ).
The biogas production was measured by liquid displacement,
and the composition of biogaswasmeasured by gas chromato-
graphy, using GC Perkin Elmer Clarus 500, with nitrogen as
the carrier. Biomass concentration was measured by volatile

suspended solids (VSS) through gravimetric method.

16S rDNA PCR-DGGE fingerprinting

Aliquots of well-homogenised biomass samples (120 mL)
were taken from the CSTR every day during the first 7 days

of operation. After centrifugation at 10.000 rpm for 10 min,
total genomic DNA was extracted from biomass sample
pellet using Powersoil DNA Isolation Kit, MO BIO Labora-

tories Inc. (Carlsbad, CA, USA), according to the supplier’s
instructions. DNA extraction was verified by 1.2%-agarose
gel electrophoresis. The V6 to V8 region of bacterial 16S
rRNA genes was amplified by PCR using the primers

U968-f (50-ACC GCG AAG AAC CTT AC-30) and L1401-r
(50-CGG TGT GTA CAA GAC CC-30) (Nübel et al. ). A
40-base GC clamp was attached to the primer U968-f at the

50 end (Muyzer et al. ). PCR amplification was carried
out in 50 μL reactionmixture with 1.25 U TaqDNAPolymer-
ase (Life Technologies, Carlsbad, CA, USA), 3 mM MgCl2,

200 nM each primer, 200 μM dNTP and 1 μl template DNA,
in a GeneAmp 9700 thermocycler (Life Technologies, Carls-
bad, CA, USA) through 35 cycles of denaturation at 95 WC
(30 s), hybridisation at 52 WC (40 s) and elongation at 72 WC

(90 s). Correct size PCR amplification was verified by 1%-
agarose gel electrophoresis. PCR products were separated
by DGGE on a 8% polyacrylamide gel with a linear gradient

ranging from 30 to 60%, according to the protocol of Muyzer
et al. (). Denaturing solutions were prepared on the basis
of a 100%-denaturing solution containing 7M urea and 40%

formamide. The migration was carried out for 16 h at 85 V
and 60 WC, in 0.5X TAE buffer, using the DCode System
(Bio-Rad Laboratories Inc., Hercules, CA, USA). Gels were

stained with silver nitrate as described by Sanguinetti et al.
() and scanned at 400 dpi in an Epson Perfection V750
PRO (Epson, USA).

Estimation of operational taxonomic units (OTUs)
concentration

DGGE gel was analysed by the program Image J (National
Institute of Health, USA). Each DGGE profile was
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converted in a densitometric curve where each band was

represented by a peak of given width and intensity. The
area under each of the detected peaks (above the cut-off
threshold of 2% of total area) was computed using an algor-

ithm built in Scilab. According to the classical DGGE
postulate, a single band was related to a single sequence,
called ribotype or OTU, and the ratio between the area of
the peak and the total area of the pattern (rather than the

peak height) was assumed to be an estimator of the ribo-
type relative abundance in the community (Loisel et al.
). These were the main assumptions of this study and

their limits will be discussed later on. Then, by knowing
the total biomass density for each sample (measured as
VSS), the concentration of each ribotype could be

estimated.
Mathematical model

Mathematical model with several species groups: model
description

A simple species-based chemostat model was developed,

based on four main hypotheses:

1. Each species has the same substrate-biomass yield coeffi-

cient (y).
2. Interactions between species only result from the compe-

tition for the common substrate.

3. Each specific growth rate is a function of the substrate
only (independently of the presence of the other species).

4. The Monod functions have been chosen to represent the
microbial growth rate.

Under these assumptions, we consider the classical
multi-species chemostat model (Equations (1) and (2)):

dXi

dt
¼ μi(S)Xi �DXi (1)

dS
dt

¼ 1
y

Xn

i¼1
μi(S)Xi �D(Sin � S) (2)

where Xi represents the concentration of the species i, S is
the substrate concentration in the reactor, D is the dilution
rate, Sin is the concentration of the substrate in the influent
and n represents the total number of species. Each function

μi is represented by the form (Equation (3)):

μ(S) ¼ μmaxs
SþK0 (3)
where μmax is the maximum specific growth rate and K is the

affinity constant.
Mathematical model with several species groups: model
identification

Estimating separately the yield coefficient and the maximum
growth rates is quite complicated since these parameters are
highly correlated (Batstone ). Therefore the experimen-

tal data (concentration of the species, substrate
concentration, dilution rate) were fitted to this model, to
identify the parameter y and the pairs μi

max and Ki for

each species i, using a least squares method. First of all
the coefficient y has been estimated with the measurement
of the total biomass X and substrate S, as the following dyna-

mical property is satisfied (Equation (4)):

dZ
dt

¼ D(ySin � Z) (4)

where the variable Z is defined as (Equation (5)):

Z ¼
X

i
Xi þ yS (5)

The variable Z represents a reaction invariant (total bio-

mass) which is independent of the kinetics (Bastin &
Dochain ).
RESULTS AND DISCUSSION

Evolution of reactor performance and community
structure

Figure 1 shows the biogas composition evolution during the
first 7 days of operation as well as the DGGE profiles of

the bacterial community during the first 7 days. As expected,
the gas composition was changing throughout the first week
of operation. The CH4 production faded away after the

fourth day, indicating the washout of the methanogens (con-
firmed by the negative PCR of archaeal 16S RNA genes, data
not shown), while the H2 content rose up to reach a stable
value of 60% at day 5, suggesting the enrichment/selection

of hydrogen production biomass population. The CO2 con-
tent stabilised around 40% after a continuous decrease
from the initial 70%. The evolution of gas composition

may be related to the evolution of the community structure
in the reactor.



Figure 1 | (a) Gas composition evolution during the first 7 days of operation. Grey diamond: hydrogen; black squares: methane; white triangles: carbon dioxide. (b) DGGE pattern of

bacterial 16S rDNA during the first week of operation. The bands are identified from X1 to X7.
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The evolution of the bacterial community structure is

reflected in the DGGE pattern (Figure 1(b)). Based on
densitometric peak areas, the seven most intense bands
were selected and each was assumed to correspond to a

single ribotype (X1 to X7) whose concentration was esti-
mated on the basis of DGGE band relative intensity and
the total biomass concentration (Figure 2). According to

this quantitative interpretation of the DGGE fingerprint,
there was a clear selection for X3 ribotype, whose relative
abundance exhibited the highest increase during the
evaluation period (from day 4 onwards). The correlation

between the increase of hydrogen production and the
increase of X3-abundance suggests that this specific ribo-
type might be related to hydrogen production. Despite
Figure 2 | Concentration estimation of the seven dominant bacterial ribotypes from the

total measured biomass and DGGE band intensities, during the first 7 days of

reactor operation.
the decrease of relative abundance of X4 ribotype on

days 4, 5 and 6, it can be inferred that it also participates
in the hydrogen production, the latter being more abun-
dant in day 7.

VSS has been used as a rough approximation of the total
biomass concentration inside a reactor (Bernard et al. ;
Lopez & Borzacconi ). However, and apart from being

a quite uncertain-content measure, it can only be used when
wastewater are being treated but not with solid wastes,
otherwise the particulate component of the substrate itself
are counted as biomass.

Nevertheless, it is important to point out that our
quantitative interpretation of DGGE profile is based on
an assumption which can be subjected to conceptual

limits and potential methodological biases, both implying
that one DGGE band does not always correspond to one
single ribotype and that relative band intensity is not

always related to ribotype concentration. Conceptually, a
single species can harbor multiple operon copies, either
with different sequences (resulting in multiple bands) or
with the same sequence (resulting in different band inten-

sity than species with single operon copy). It has to be
also assumed that each cell has the same dry weight. In
addition, methodological biases can be introduced at var-

ious steps of the experiment: selective DNA extraction,
preferential PCR amplification, DGGE detection limit
and saturation (impairing the detection of minority

species), and DGGE co-migration (resulting in an artifac-
tual unique band for several different species) (Muyzer &
Smalla ). The qualitative, rather than quantitative

nature of such molecular tools is an important concern
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for relating microbiological data to process modelling

(Harmand et al. ). However DGGE still remains con-
venient to compare the dynamics of major populations in
a large number of samples undergoing the same methodo-

logical treatment and, as previously reported, DGGE
fingerprintings can be revisited by simulation and used
as a tool to measure microbial diversity (Loisel et al.
).

Model parameter determination and calibration

For parameter identification purposes, and taking into
account the experimental data, only the three dominant

ribotypes were considered: X2, X3 and X4. All the other
ribotypes were pooled in a sole group (X*). Figure 3(a) pre-
sents the chemostat-model fit with the actual experimental

data of total biomass and substrate concentration, from
which the yield coefficient (y) could be estimated from
Equation (4). Knowing that the applied dilution rate was

2 d�1 and the glucose concentration of the inlet was
5 g L�1, the estimated value of the biomass-substrate
yield was 0.3 gBiomass gGlucose

�1 . As observed, the model is

able to reproduce the global trend of both the substrate
and the biomass concentration during this initial period
of the reactor operation. The yield obtained in this continu-
ous study is higher than those reported in batch conditions

(Fernández et al. ; Infantes et al. ). Kinetic par-
ameters obtained in batch conditions are usually lower
than those obtained in continuous mode, with similar

inoculum and substrate, which is explained by the different
dynamics that occurs in both operation modes (Batstone
et al. ).
Figure 3 | (a) Evolution of substrate concentration (squares) and biomass concentration (diam

during the first 7 days of reactor operation.
Figure 3(b) presents the multi-species chemostat-

model fit for each ribotype concentration, from which
the individual growth parameters could be identified
from Equations (1) and (2) (see Table 1). The X4 ribotype

was the most abundant during the first 3 days but its
abundance decreased after day 4. Its kinetic parameters
(high affinity constant) are characteristic of a slow compe-
titor (Table 1). X4 was quickly out-competed by X3 whose

abundance increased from day 4 and became dominant
from day 5. The X2 ribotype is never in an advantaged
position compared to the others. The model predicted in

an acceptable way the evolution of each ribotype concen-
tration. Selection of X3 ribotype observed on DGGE
profiles may be explained by its growth advantage over

possible competitors, conferred by a significantly higher
substrate affinity (lower K constant) compared with X4

and X2. In regard to the parameters values (Table 1), in
general the μ1

max obtained in this study are higher than

the ones reported using the same substrate in batch con-
ditions (Fernández et al. ). Ks values are in
agreement with those found using the same substrate

(Sharma & Li ). However the X3 parameters values
are similar to a study by Nath et al. (), reported for
E. clocae, a bacterium that can produce hydrogen at a

substantially high rate (the maximum specific growth
rate was 0.398 h�1 and Ks 5.5 gL�1 with glucose).

However, due to the small amount of samples, these

results can only be considered as a preliminary evaluation
of the application of the procedure in model identification.
It is also necessary to identify dominant ribotypes as repre-
sentative species and to use the pure cultures to validate

the kinetic constants obtained and to take into consideration
onds) during the first 7 days of reactor operation. (b) Evolution of ribotype concentrations



Table 1 | Estimation of maximal growth rate (μmax) and affinity constant (Ks) of the four

main groups of ribotypes identified from DGGE profiles

Ribotype

Parameters

μmax (h�1) Ks (g L�1)

X* 0.225 5.5

X2 0.68 18

X3 0.45 5.8

X4 0.45 10
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that the behaviour of a species can be different from the be-

haviour of a whole.
CONCLUSION

A novel procedure that combines common experimental
measurements and molecular biology technique, in this
case the DGGE, with image analysis allow us to count

with a quantitative approximation of the most important
microbial species of a hydrogen bioreactor. The proposed
method has allowed fitting the results with a simple chemo-

stat model based on the assumptions that each species has
the substrate yield and their specific growth rate follow a
Monod function. Because the growth curves that have

been identified intersect (more precisely, the set of non-
dominant species is expected to be less efficient under
larger dilution rate), further experimental investigations

with other dilution rates and more measurements are
necessary to validate thoroughly the assumptions.
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