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Article history: Overconsumption of sugar-sweetened beverages may increase the risk of health problems and so, the
Received 16 June 2014 evaluation of their glycemic load and fructose-intolerance level is essential since it may allow establishing
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Available online 13 August 2014 tongue was used to accurately classify beverages according to glycemic load (low, medium or high load) as

wellto theiradequacy for people suffering from fructose malabsorption syndrome (tolerable or not): 100% of
correct classifications (leave-one-out cross-validation) using linear discriminant models based on
potentiomentric signals selected by a meta-heuristic simulated annealing algorithm. These results may
be partially explained by the electronic tongue’s capability to mimic the human sweetness perception and
total acid flavor of beverages, which can be related with glycemic load and fructose-intolerance index.
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Electronic tongue Finally, the E-tongue was also applied to quantify, accurately, healthy and sensory indexes using multiple
Linear discriminant analysis linear regression models (leave-one-out cross-validation: Raq;>0.99) in the following dynamic ranges:
Simulated annealing algorithm 4.7 < glycemic load <30; 0.4 < fructose intolerance index <1.5; 32 <sweetness perception < 155;

1.3 < total acid flavor, gL~ ! <8.3; and, 5.8 < well-balanced flavor < 74. So, the proposed electronic tongue
could be used as a practical, fast, low-cost and green tool for beverage’s healthy and sensory evaluation.
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1. Introduction

The consumption of sugar-sweetened carbonated beverages
(soft-drinks) and fruit beverages (e.g., nectars and juices) has
experienced an increase since the 1980s. Soft-drinks, nectars and
juices, among other requirements, must have a minimum
percentage of added juice of 6-16%, 25-50% and equal to
100%, respectively [1]. These non-alcoholic beverages are highly
appreciated due to their sensory attributes. Human perception of
beverage’s specific flavors, balanced global flavor and sweetness
are enhanced by sugars and organic acids contents, as well as by
their equilibrium [2-5]. Besides, consumers also attributed to
these beverages, especially to nectars and juices, healthy
characteristics, being viewed as a source of essential nutrients
(e.g., vitamins) and antioxidants. However, their overconsump-
tion may increase the risk of health problems due to the high
sugar content. Indeed, temporal studies have shown a close
correlation between the upsurge in obesity and rising levels of
the consumption of these beverages [6]. Also, diets rich in free or
total fructose (considering its presence in other carbohydrates)
can be highly prejudicial, inducing obesity, diabetes, dyslipide-
mia and insulin resistance [7]. This is of special relevance for
people suffering from fructose intolerance, which may be
partially prevented with the simultaneous ingestion of glucose
[8], being envisaged a glucose/fructose ratio equal or greater
than one.

So, from both consumer’s and producer’s point of view, it is of
huge importance to evaluate healthy and sensory attributes by
means of easily understandable indexes. Among the healthy
indexes used in association studies of diet and chronic diseases [9]
two are common: the glycemic load (GL), which quantifies the
overall glycemic effect of a portion of food [79-12] and the
fructose-intolerance (FI) index, mainly for people suffering from
fructose malabsorption [8]. In fact, these indexes can be more
useful nutritional concepts than the chemical classification of
carbohydrates, since they may allow a better understanding of the
relation between physiologic effects of carbohydrate-rich foods
and health [10]. Among the sensory indexes the following are used
as consumer’s beverage acceptability or overall taste indicator: the
total acid flavor, the sweetness index concept, used to assess fruit
beverage sweetness as sucrose equivalent [13-15] and the well-
balanced flavor index, evaluated from the ratio between total
sugars and total acids contents [2-4].

These indexes are influenced by the nature and source of
carbohydrates and organic acids present in beverages and may be
calculated from their contents, usually obtained experimentally by
liquid chromatography based techniques [15-18]. These
approaches, although accurate, are time-consuming, expensive,
require qualified technical human resources and, usually, are not
ambient friendly.

So, in the last years, fast, cost-effective and green electrochem-
ical devices have been developed and applied, as alternative
analytical techniques, for food matrices qualitative and/or
quantitative analysis. The broad range of applicability of electronic
tongues (E-tongue) within the food field, including direct analysis
(e.g., milk, fruit-beverages, beer, wine) [19-22] or after sample pre-
treatment steps, such as dilution or extraction procedures
(e.g., olive oils, honey and cereal-based solid foods) [23-27],
may be attributed to the capability of these devices in recognizing
and measuring basic taste compounds (e.g., acid, bitter, salty,
sweet and umami) that has been previously demonstrated for
multi-sensor systems based on lipid polymeric membranes
[22,28-30]. In some cases, sample pre-treatment, like dilution,
dissolution and/or extraction with a hydro-ethanolic solvent, is
useful either to obtain a liquid sample, to minimize viscosity issues
or to obtain a conductive solution, rich in tastant-related

substances that can be recognized and measured by the
E-tongue. Lipid/polymer membranes containing hydrophobic
and hydrophilic groups, can be positively or negatively charged
enabling the establishment of electrical interactions with electro-
lyte sourness tastants (e.g., organic acids) [31] or may allow
electrostatic or hydrophobic interactions at the oil/water interface
with sweet nonelectrolytes (e.g., sugars) [29,32].

Concerning non-alcoholic beverages evaluation, potentiomet-
ric E-tongues coupled with appropriate multivariate techniques
have been successfully applied for discriminating different brands
of apple juices [19] or orange juices [33-36]. Recently, a
potentiometric E-tongue was used for semi-quantitative classifi-
cation of fruit juices with different levels of added juice [37,38]
and to quantify glucose and fructose contents in those beverages
[38]. A potentiometric E-tongue was also applied as a sweetener
recognition and taste predictor in coke soft-drinks [39]. More
recently, an E-nose combined with a potentiometric E-tongue was
reported for improving fruit juice recognition [40]. Most of these
works report the classification of non-alcoholic beverages
according to brand, beverage type or fruit flavor but, until now,
none has focused on beverage classification according to healthy
indexes.

In the present work, healthy and sensory indexes were
calculated using experimental data regarding sugars and organic
acids concentrations in beverages [18]. Based on GL or FI levels,
beverages were split into 3 groups (low, medium or high GL) or
2 groups (Flindex greater or lower than one, i.e., tolerable or not for
people sensitive to fructose), independently of the beverage flavor,
brand or commercial classification. The potential application of a
potentiometric E-tongue to semi-quantitatively classify beverages
according to healthy ratios (GL and FI index) was evaluated. Also
the E-tongue’s performance for quantifying both healthy and
sensory indexes was investigated. For that, qualitative and
quantitative chemometric tools were applied namely, linear
discriminant analysis (LDA) and multiple linear regression (MLR)
linear models, both coupled with a meta-heuristic simulated
annealing variable selection algorithm. Also, possible linear
correlations between healthy and sensory attributes were further
assessed using the linear Pearson correlation coefficient
(R-Pearson).

2. Materials and methods
2.1. Materials

2.1.1. Samples

Thirty commercial beverages samples (15 carbonated soft-drinks,
13 fruit-nectars and 2 fruit-juices) acquired in Braganca city
(Portugal) were analyzed and their sugars (glucose, fructose and
sucrose) and organic acids (ascorbic, citric and malic acids) contents
were determined experimentally as previously reported [18].
Beverages were from different brands, several fruit flavors
(e.g., orange, apple, pineapple, passion fruit, mango, red fruits
and/or mixed fruits) and with added juice content ranging from 6 to
100% (according to label information).

2.1.2. Reagents

All the reagents used for HPLC analysis were of analytical grade
and used as purchased: orthophosphoric acid, sucrose and ascorbic
acid (Panreac); fructose, glucose, malic acid and acetic acid (Fluka);
citric acid monohydrate (Fisher Scientific); and, tartaric acid
(Riedel-deHaén). Regarding E-tongue, the reagents, from
Fluka, were also of analytical grade and used as acquired:
octadecylamine, oleyl alcohol, methyltrioctylammonium chloride
and oleic acid as additives; bis(1-butylpentyl) adipate,
dibutylsebacate, 2-nitrophenyl-octyl-ether, tris(2-ethylhexyl)
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phosphate, dioctyl phenylphosphonate as plasticizers; and, poly
(vinyl chloride) polymer (PVC).

2.2. Apparatus

2.2.1. HPLC equipment

In this study, a HPLC Varian ProStar equipped with a 220 pump
(Varian, Inc.), a 7725i Rheodyne manual injector, provided with a
20 pL loop, a 7981 Jones Chromatography column oven, with a UV
detector (Varian, model 9050) coupled to a RI detector (Varian,
model RI-4), previously developed and in-house validated [ 18] was
used to simultaneously separate and quantify the main organic
acids (ascorbic, citric and malic acids, by UV at 210 nm) and sugars
(glucose, fructose and sucrose, by RI) contained in the beverage
samples. The compounds separation was achieved using a
thermostated (45°C) Supelcogel C-610H size-exclusion column
(SEC: C-610H model, 30 cm x 7.8 mm id), using an isocratic elution,
with a mobile phase free of organic solvents (0.1% orthophosphoric
acid aqueous solution).

2.2.2. Electronic tongue device

The E-tongue consisted of two print-screen potentiometric
arrays, each one with 20 chemical sensors, with different cross-
sensitivity lipidic membranes (3% of lipidic additive, 65% of
plasticizer and 32% of PVC). In this study, a drop-by-drop technique
was applied to prepare each membrane. Type of sensors and relative
compositions were chosen based on a previous work [22] since,
globally, they enable good signal stability in time (%RSD < 5%) and
repeatability (0.5% < %RSD < 15%) towards the basic standard taste
compounds (e.g., sweet, acid, bitter, salty and umami). Further
details on membrane composition of each sensor can be found in
Sousa et al. [24]. Lipid/polymer membranes were used since they
contain hydrophobic and hydrophilic groups allowing the interac-
tion with several taste materials via electrostatic or hydrophobic
interactions [41] being reported the existence of an electrical
response in the presence of nonelectrolytes and electrolytes tastant
substances[29-32], namely sugars and charged sweet compounds. A
multi-sensor device was used since it is described that, in
potentiometric principle, it could be difficult to evaluate sweetness
with a single electrode, due to the nonelectrolyte or charged
characteristics of sweet-responsive substances[30]. Each sensor was
identified with a code with a letter S (for sensor), followed by the
number of the array (1 or 2), followed by the number of the
membrane (1-20, corresponding to different combinations of
plasticizer and additive used) [23,24]. So, the E-tongue comprised
20 sensors and their respective replicas which, although with the
same composition, may have minor differences in the electrical
response towards a specific sample, since inhomogeneous mem-
branes may be obtained by the drop-by-drop technique used.

A multiplexer Agilent Data Acquisition Switch Unit model
349700A, controlled with the Agilent BenchLink Data Logger
software installed on a PC, was used to record the potentiometric
signals, that may vary from —1.0V to +1.0 V, from the 40 sensors set-
up (20 sensors in duplicate), which were measured against an
Ag/AgCl reference electrode (Crison, 5241). Samples were analyzed
directly with the exception of soft-drinks, which needed to be
degassed in an ultrasonic bath (Elma Transsonic 460/H, during
5min). To minimize potentiometric signals drift magnitude, all
samples were evaluated in the same day in a maximum period time
of 8 h (each analysis included a 10 min period for signal stabilization
before recording the final signals profile followed by a new analysis
after a cleaning step with deionized water and sample preparation,
performed in 3-5 min). Duplicate sensors were used since it has been
reported that the inclusion of repeated sensors in multivariate
analysis can improve model performance [42] namely due to the
slight variations of the membrane composition and physical

properties (transparency and porosity) that may occur when a
drop-by-drop technique is used for membrane preparation [23,24].

2.3. Procedures

2.3.1. Sugars and organic acids levels in beverage samples

The main sugars and organic acids in the beverage samples
studied were identified and determined using external calibration
curves reported by Sequeira [18], using a HPLC in-house validated
method, that reported the following contents: 10gL~! < glucose
<58gL; 13gL ' < fructose <85gL™1; 0gL' <sucrose
<77gL™'; 1gL'<citric acid<9gL™!; 0gL !<malic acid
<5gL'; 0gL ! <ascorbic acid <0.4gL~!. The chromatographic
method had good linearity (R>0.999), adequate detection and
quantification limits (0.020-0.091gL~" and 0.060-0.28 gL, for
sugars and organic acids, respectively), satisfactory instrumental
precision (percentage relative standard deviation: 0.3% < %RSD
< 3%and 0.2% < %RSD < 6%, for intra- and inter-days repeatabilities,
respectively); acceptable repeatability and intermediate precision
of the method (0.3% < %RSD < 2% and 0.2% < %RSD < 5%, respec-
tively); and, acceptable method accuracy (percentage relative error:
RE% < 5%).

2.3.2. Healthy indexes of beverages: calculation using HPLC data and
beverages grouping

Beverages samples were splitaccording tothe GLlevelsor Flindex
(either free or available ratios). Concerning GL values, 3 groups were
proposed: low (LGL: GL < 11), medium (MGL: 11 <GL < 20) or high
(HGL: GL>20) glycemic load. Regarding the FI index and the
envisaged value for minimizing fructose malabsorption, 2 groups
were defined: beverages tolerable or not for people sensitive to
fructose (TOL: Flindex >1; NTOL: Fl index <1, respectively). Healthy
indexes were calculated using sugars composition data [ 18] for each
beverage studied, according to:

(i) For GL data calculation a serving size (SS) of 330 mL was set
(considering the mean SS values of beverages reported by
Latulippe and Skoog [43]), and the carbohydrate composition
data multiplied by the mean glycemic index (GI) of each pure
sugar (Glgucose=99 £7; Glrructose=19 £2; Glsycrose =68 +5)
compiled by Foster-Powell et al. [10]:

Glsucrose * [Sucrose, g L] + Glgiucose % [Glucose, g L7

+ Glpructose % [Fructose, g Li]}

oL = 100
x (SS, L) (1)

(ii) The FI index was evaluated by the glucose-to-fructose free
concentration ratio [8] and by the glucose-to-fructose total
concentration ratio, assuming that each sucrose molecule may
be transformed into one molecule of fructose and another of
glucose [43]; since free fructose and fructose in sucrose may
have different metabolic effects [44]:

[Glucose, g L]

2
[Fructose, g L7 2)

F[Free =

[Glucose, g L™'] + [Sucrose, g L™') x MW¢iucose/MWsycrose

Flrotal = ] ]
[Fructose, g L™ '] + [Sucrose, g L™"] x MWgryctose/MWsycrose

3)
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2.3.3. Sensory indexes of beverages: calculation using HPLC data

For each beverage studied, sensory indexes were also calculated
from the sugars and organic acids contents reported by Sequeira
[18], with the aim of finding possible relations with the established
groups defined based on the healthy indexes previously evaluated.
The following sensory attributes were calculated:

(i) The sweetness perception (SWP) index of each beverage, an
estimate of total human sweetness perception, was calculated
as sucrose equivalent based on the amount and relative
sweetness (RS) of each individual sugar (RSsycrose=1.00;
RSGiucose =0.74; RSkructose = ]73) [13_15]

SWP = RSsucrose X [SUCI‘OS& g L_l] + RSqucose
x [Glucose, g L_1] + RSkructose x [Fructose, g L’l] (4)

(ii) The total acid flavor (TAgavor) Was calculated using the organic
acids data composition [18] of each beverage:

TAfiavor = [Ascorbic acid, g L™",] + [Malic acid, g L™"]
+ [Citric acid, g L") (5)

(iii) The beverage well-balanced flavor (WBEayor) index, evaluated
by the ratio between total sugars and total organic acids
[2-4]:

[Sucrose, g L™'] + [Glucose, g L’l] + [Fructose, g L]

WBFlavor = TA, '
Flavor

(6)

2.4. Statistical analysis

Linear discriminant analysis (LDA) was applied, as a supervised
learning technique, to classify the 30 beverage samples according
to the groups emerging from each calculated healthy index (GL or
FI index). A meta-heuristic variable selection technique,
the simulated annealing (SA) algorithm, was applied to the
E-tongue potentiometric sensor signals to select the most
informative sensors subsets (i.e., independent variables), by
eliminating redundant variables and increasing the accuracy of
the classification model prediction. To minimize the risk of
overoptimistic correct classification predictive performance, a
leave-one-out cross-validation (LOO-CV) procedure was used. This
strategy has been recently applied with success by the research
team [23,24]. So, SA algorithm was allowed to selected sub-sets
containing between 2 and 29 sensors (which must be lower than
the number of samples under study), being chosen the sub-set that
enable the maximum correct predictive classification performance
with the minimum number of sensors. Furthermore, bivariate
correlations between calculated sensory data (sweetness percep-
tion index, well-balanced flavor index and total acid flavor) and the
group centroids of each discriminant glycemic load cluster,
obtained from the potentiometric E-tongue signals, were evaluat-
ed using the R-Pearson correlation coefficient, aiming to explain
the potential of the E-tongue device in classifying beverages
according to healthy indexes.

Finally, the use of multiple linear regression (MLR) models for
quantifying both healthy (GL and FI levels) and sensory

(sweetness perception index, well-balanced flavor index and
total acid flavor) attributes of the studied beverages, based on the
independent signals of the 40 potentiometric sensors contained
in the E-tongue, was studied. Possible correlations among these
indexes, since all of them are calculated using sugars and/or
organic acids composition data, were also assessed using
R-Pearson correlation coefficient. To obtain MLR models with
the best predictive performances, sub-sets of 2-29 sensors (of the
40 available, assuming that sensor replicas can be treated as
independent variables) were selected applying, once again, the SA
algorithm. The most informative sub-set of sensors was select
aiming to obtain a model with the minimum number of sensors
and, an adjusted correlation coefficient (R,q;) greater than 0.99 for
the linear relation between indexes values estimated with
E-tongue data versus indexes values calculated from experimental
chromatographic data. To minimize the risk of overoptimistic
results a LOO-CV procedure was also adopted. The acceptance of
the E-tongue method as an alternative methodology for healthy
and sensory indexes quantification was further evaluated. The
predicted values, estimated by the MLR model using E-tongue
signals, were compared with those calculated (Eqs. (1)—(6)) from
the sugar composition data determined by HPLC, which was
considered the reference procedure, by testing if the slope and
intercept values for LOO-CV procedure were equal to the
theoretical expected values (one and zero, respectively), from a
statistical point of view [38].

All statistical data analysis was performed using the Subselect
[45,46] and MASS [47] packages of the open source statistical
program R (version 2.15.1), at 5% of significance level.

3. Results and discussion

3.1. Sensory and healthy indexes calculation using sugars and organic
acids HPLC profiles

Healthy (GL and FI indexes) and sensory (SWP, TAgavor and
WBravor indexes) attributes were calculated for each beverage
sample (using the equations given in sub-Sections 2.3.2 and 2.3.3)
and are shown in Table 1. Each calculated index showed values
with high variability but, with no evident correlation with the
sample’s content of added juice (R-Pearson < 0.70).

Based on the calculated healthy indexes values, samples were
grouped according to GL levels or FI ratios. For GL, 3 groups have
been established (low, medium and high glycemic load) taking into
account the GL values calculated for each beverage (GL<11;
11 < GL < 20; and GL > 20, respectively). Low medium and high GL
groups contained 10, 7 and 13 samples, respectively. For the latter,
beverages were split into 2 groups depending if FI index values
were lower or greater than one (NTOL=24 and TOL=6 samples,
respectively). All the supervised groups included samples of
carbonated soft-drinks and fruit-beverages, from different brands
and fruit flavors.

It should be noticed that GL values calculated in this work
(4 <GL<30) are in accordance with the mean GL values compiled
by Foster-Powell et al. [10] for soft-drinks (7 <GL<40) and
fruit-beverages (4 <GL < 24).

Linear correlations between these indexes were evaluated
through the calculation of R-Pearson coefficient. The results show
that some of these indexes are linearly correlated (P-values
< 0.0001). A high positive linear correlation was obtained between
SWP index and GL (R-Pearson =0.92) demonstrating that sweeter
beverages had greater GL values. On contrary, low linear correla-
tions were found between TAg;ayor and WBEjayor (R-Pearson = —0.71);
WBFEavor and GL (R-Pearson=0.67); and WBgj4,or and SWP index
(R-Pearson =0.59).



Table 1
Beverage samples analyzed: label information, calculated healthy and sensory indexes.

9¢

Sample no. Main fruits in the composition Label information Healthy indexes calculated from HPLC data Sensory indexes calculated from HPLC data

Beverage type® Minimum juice % GL°  GLgroup Fleeindex® Flpoe index? Flgroup SWPindex® WBpayorindex' TApiavor index (gL~1)2

1 Orange, mango Nectar 45 7.89 LGL 0.70 0.80 NTOL 50.4 8.03 5.16
2 Orange, apple, passion-fruit Nectar 50 738 LGL 0.51 0.60 NTOL 57.4 9.76 4.48
3 Orange Nectar 50 8.07 LGL 0.86 0.90 NTOL 48.5 6.17 6.63
4 Strawberry, apple Nectar 45 479 LGL 0.53 0.54 NTOL 41.8 5.83 5.21
5 Orange, carrot, mango Nectar 50 8.83 LGL 0.63 0.73 NTOL 59.8 8.80 5.48
6 Peach Nectar 50 234 HGL 1.10 1.03 TOL 115.2 26.9 4.02
7 Carrot, mango, tomato, apple, passion, kiwi, lemon Soft-drink 25 16,6 MGL 0.57 0.61 NTOL 132.7 39.2 2.55
8 Mango Nectar 30 214 HGL 0.74 0.88 NTOL 119.3 36.4 2.90
9 Apple Juice 100 170 MGL 0.43 0.48 NTOL 154.9 18.5 6.04
10 Red fruits Nectar 40 5.76 LGL 0.87 0.87 NTOL 39.2 7.33 4.22
11 Orange Juice 100 179 MGL 0.83 0.89 NTOL 105.8 10.9 8.22
12 Pineapple, coconut Nectar 43 101 LGL 1.01 1.01 TOL 57.3 13.8 3.60
13 Pear Nectar 50 161 MGL 0.44 0.71 NTOL 102.0 62.8 1.36
14 Grape and pomegranate fruits and green tea Soft-drink 20 4.73 LGL 0.87 0.87 NTOL 323 6.95 3.65
15 Orange, apple, pineapple, mango, apricot Soft-drink 20 224 HGL 0.87 0.94 NTOL 123.0 31.9 342
16 Pineapple, apple, orange, banana Soft-drink 20 240 HGL 0.88 0.96 NTOL 125.1 335 3.38
17 Apple, orange, pineapple, mango, guava, banana Soft-drink 20 224 HGL 0.84 0.90 NTOL 132.8 328 3.44
18 Strawberry Soft-drink 14 192 MGL 0.90 0.94 NTOL 111.0 389 245
19 Orange, pineapple, passion-fruit, apricot, guava, mango, banana Soft-drink 20 20.8 HGL 0.84 0.90 NTOL 1213 275 3.79
20 Pineapple Soft-drink 20 231 HGL 0.88 0.95 NTOL 1221 46.6 2.37
21 Orange Soft-drink 20 22.6 HGL 0.83 0.94 NTOL 118.9 275 3.92
22 Orange Soft-drink 10 194 MGL 1.40 123 TOL 96.6 46.5 1.90
23 Pineapple Soft-drink 8 223 HGL 118 111 TOL 117.6 74.0 1.42
24 Orange Soft-drink 8 22.6 HGL 1.50 132 TOL 1114 50.5 2.02
25 Orange Soft-drink 1 102 MGL 0.88 0.94 NTOL 56.4 18.0 2.76
26 Pineapple Soft-drink 6 23.8 HGL 1.29 1.26 TOL 129.3 61.7 1.81
27 Tropical fruits Soft-drink 12 133 MGL 0.82 0.87 NTOL 82.6 18.0 3.81
28 Carrot, mango, tomato, apple, passion-fruit, kiwi, lemon Nectar 32 30.0 HGL 0.64 0.70 NTOL 217.5 43.2 3.91
29 Passion-fruit Nectar 25 276 HGL 0.90 0.96 NTOL 146.5 17.5 7.56
30 Strawberry, apple Nectar 45 490 LGL 0.58 0.61 NTOL 39.6 16.0 1.83

Zb—z€ (¥10Z) 88 p1dY p2RUIYD DIBAIDUY /D 32 SDIT DT

LGL: low glycemic load, MGL: medium glycemic load, HGL: high glycemic load.
TOL and NTOL: tolerable or not for people sensitive to fructose.
@ Beverage classification according to legal regulations [1].
GL: glycemic load, calculated using Eq. (1).
Flgee index: free fructose-intolerance index, calculated using Eq. (2).
Flyotar index: total fructose-intolerance index, calculated using Eq. (3).
¢ SWP index: sweetness perception index, calculated using Eq. (4).
f WBgavor index: well-balanced flavor index, calculated using Eq. (6).
& TApavor: total acid flavor, calculated using Eq. (5).

o n o
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3.2. E-tongue signals profiles of beverage samples

The capability of the E-tongue to differentiate fruit-beverages
with different healthy and sensory attributes, calculated using
sugars and organic acids concentrations was evaluated. Regarding,
sugars, this potential may be attributed to the different electrical
response that is expected when potentiometric sensors, containing
lipid/polymer membranes, are applied in aqueous solutions with
different contents and chemical structures of sweet-tasting sugars
(usually, monosaccharides show a lower electric response com-
pared with disaccharides), although the underlying mechanism is
not yet known [32]. Indeed, even if glucose, fructose and sucrose
are nonelectrolytes, it has been suggested that the presence of two
adjacent hydroxyl groups in a sugar molecule and the distance
between them may lead to an electrical interaction between the
surface of the lipid/polymeric membrane and the sugar molecules
(for the same concentration, greater number of hydroxyl groups
will generate a strongest electric response) [32]. This interaction
would be similar to that described, based on studies concerning the
structure-activity relationships, between hydroxyl groups in
sweet-tasting sugars and the human sweet taste receptor [32].
In fact, literature [29,32,48,49] reports that the electric response of
potentiometric E-tongue to sugars may be due to the interaction on
the surface of the lipid/polymer membrane (at the oil/water
interface), either derived from the establishment of hydrogen
bonds or due to the presence of some mediating electrolyte
substances, between carboxyl or phosphate groups in the
lipid/polymer membrane and the two vicinal hydroxyl groups of
the sugar molecules. The response of the potentiometric E-tongue
towards the organic acids present in the fruit beverages, may be
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electrically interact with the lipid/polymer membrane and after
being adsorbed induce a change in the membrane potential
[30,31].

The analysis of each beverage sample provided 40 potentiomet-
ric signals (20 different sensor membranes used in duplicate:
S$1:1-S1:20 and S2:1-S2:20). Fig. 1 shows the potentiometric
signal’s box plots for each sensor and each type of beverage studied
(soft-drinks and fruit-beverages), for all the assays carried out. As
can be seen from Fig. 1, sensors made with the same plasticizer and
different additive compounds (e.g., S1:5-51:8) have differences in
signal intensities. This behavior could be attributed to the different
functional groups of the additive compounds (amines, alcohol, acid
and ammonium), leading to differences in the electrical or
electrostatic interactions between the polymeric membrane and
the target molecules (organic acids and sugars, respectively),
resulting in different absorption ratios of each substance into the
polymeric membrane. Similarly, differences between signals were
observed for sensors made from different plasticizers (different
functional groups) with the same additive (e.g., S1:1, S1:5, S1:9,
S1:13 and S1:17). Also, in general, when the same sensor was
applied to different types of beverages, differences were observed
in the signal intensities although the overall signal profile of the
device showed a similar tendency. In few cases, comparable signals
were recorded by the same sensor and different beverage types,
which may be due to similar total sugar and/or organic acids
contents of different types of beverages, resulting in an equivalent
sensor response towards the global taste perception. Finally, as
reported previously [23,24], minor signal differences were also
observed for sensor replicates. In fact, the device was homemade
and the membrane formation accomplished using a drop-by-drop

explained since these molecules, which are electrolytes, technique, where only temperature and time of drying were
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Fig. 1. Potentiometric E-tongue signal box-plots for the 15 soft-drinks and 15 fruit-beverages analysed.
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controlled, which could result in sensor duplicates with inhomo-
geneous thickness due to minor differences of solvent’s evapora-
tion rate and so with possible variations of the related physical
properties (e.g., transparency and porosity). So, repeatability
assays in time, were performed by analyzing a fruit-nectar sample,
randomly selected (sample no. 3). The results showed satisfactory
signal stability for all the sensors, when the sample was
continuously analyzed during 3-h (maximum percentage variabil-
ity between the initial and final recorded signals lower than 4.8%,
corresponding to a potential variation of 4mV) as well as
satisfactory signal repeatability when one beverage sample was
analyzed 5 times in the same day (sensor’s signal intra-day
variability: 0.2% < %RSD < 4.6%) for all the sensors of the two
arrays. Globally, signals intensities varied from +0.06V to +0.20V
for all sensors included in the E-tongue, avoiding the need of data
scaling. Due to the narrow range of signals intensities, a robust
variable selection procedure should be implemented to select the
most relevant signals sub-sets for establishing powerful predictive
LDA models.

3.3. E-tongue qualitative beverage’s evaluation

3.3.1. Discrimination of beverages based on glycemic load levels

The possibility of using the proposed electrochemical device to
classify beverages with different GL levels was evaluated. For that,
a LDA-SA procedure was applied to potentiometric signals
recorded during beverages analysis with an E-tongue. A linear
multivariate model, with 2 discriminant functions (explaining
100% of data variability), using a sub-set of 16 sensors (S1:1-S1:5,
$1:8,S51:9, S1:12, S1:17, S1:19, S2:1, S2:4, S2:10, S2:13, S2:14 and
S2:17) was established. This sub-set of sensors indicates that
replicas were used corroborating the findings reported by Correia
et al. [42], which showed that including repeated sensors may
improve the performance of multivariate models. This sensors
sub-set also showed that all plasticizers and additives contributed
to the E-tongue performance. Bis(1-butylpentyl) adipate and tris
(2-ethyl-hexyl) phosphate plasticizers were the most and the less
used, respectively, although based on the results of Toyota et al.
[32], it was expected that the latter plasticizer had a higher
influence since it contains a phosphate group, which is capable of
producing a sweet-compound response. On the other hand,
octadecylamine and oleyl alcohol were the additives that allowed
obtaining a more precise fingerprint of each beverage showing a
higher contribution for the E-tongue discrimination potential.
This finding was expected since their related functional groups
(amine and alcohol, respectively) may enhance the electrostatic
interaction with sugar’s vicinal hydroxyl groups [29]. The
proposed model enabled 100% of correct classification prediction
using LOO-CV procedure, as can be inferred by Fig. 2. The 1st
discriminant function allows separating the 3 pre-defined GL
groups, namely the LGL samples (negative quadrant) from MGL
and HGL samples (positive quadrant). These results demonstrate
the potential of the E-tongue plus LDA-SA as an effective
methodology for discriminating and semi-quantitatively assess
GL levels of beverages.

Also, R-Pearson correlation coefficients were evaluated trying
to verify the existence of linear correlations between the spatial
distribution of the mean group centroids (for the 1st discriminant
function) of the GL groups (group centroids: LGL < MGL < HGL) and
the amount of added juice and the sensory indexes (SWP index,
WBEavor I'atio and TAgavor). The results showed that no statistically
significant correlation could be established with the amount of
added juice (R-Pearson=-0.58: P-value=0.2223), meaning that
there is not a straightforward correlation between GL level and
amount of added juice, and so this information, usually present in
beverage’s labels is not sufficient to infer about GL levels and their
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Fig. 2. Classification of beverages based on three semi-quantitative glycemic load
levels using the two first LDA functions (explain 100% of the total variance) based on
the best E-tongue sensor signal sub-set (16 sensors) selected using the SA meta-
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E-tongue sensor signal sub-set (12 sensors) selected using the SA meta-heuristic
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for people sensitive to fructose (NTOL: FI index <1).
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possible negative impact in consumer’s health. On the contrary,
significant correlations were found for beverages sensory attrib-
utes. A positive correlation was observed with beverage global
sweetness, assessed using SWP index (R-Pearson=0.9973:
P-value < 0.0001) and WBFEjayor ratio (R-Pearson=0.9946: P-value
< 0.0001) showing that beverages with high GL levels are sweeter.
A negative correlation (R-Pearson = —0.9906: P-value = 0.0001) was
noticed with the TAg.vor index, showing that beverages with lower
GL levels were more acid. Finally, these results also show that the
good performance of the E-tongue, in classifying beverage samples
according to their GL levels, may be mainly attributed to the ability
of the device in mimic the human perception of two basic taste
standards: sweet and acid.

3.3.2. Discrimination of beverages based on fructose-intolerance levels

Beverages samples, independently of brand, amount of added
juice or fruit flavor, were also split into 2 groups, depending if the FI
index was greater (TOL group, 6 samples) or lower than one (NTOL
group, 24 samples). This ratio may be used for classifying
beverages as tolerable or not for people suffering from fructose
malabsorption syndrome. A multivariate linear classification
model was obtained, by applying a LDA-SA method to the
40 potentiometric signals recorded by the E-tongue device. A
model with one linear discriminant function (which explained
100% of the data variability), based on the signals from 12 sensors
(S1:4, S1:6, S1:8, S1:10, S1:12, S1:14, S1:17, S2:3, S2:12-S2:14 and
S2:20), selected by applying the SA algorithm, was established
allowing to classify beverages samples according to their FI index,

namely if they could be classified as tolerable or not for people
sensitive to fructose. The selected sensors sub-set demonstrated
again that all plasticizers and additives were useful and could
characterize properly the different beverages according to the
different FI indexes. In this case, 2-nitrophenyl-octylether and tris
(2-ethyl-hexyl) phosphate plasticizers coupled with oleyl alcohol
and oleic acid additives seemed to be the combinations that
enabled a more reliable differentiation of the studied beverages.
The preferential use of phosphate based plasticizer is in accordance
with the literature since it is reported that if the lipid/polymer
membrane contains phosphate groups, its electrostatic interaction
towards sugars is stronger [32]. The model enabled 100% of correct
predictive classification using a LOO-CV procedure (Fig. 3). Again, it
was demonstrated that the proposed E-tongue could be used as a
practical tool for evaluating the FI index of soft-drinks and fruit-
beverages, which could be easily implemented at industrial level.
Again, this good performance may be attributed to the capability of
the E-tongue in mimicking sweet and acid basic taste standards.
Indeed, beverages with FI index higher than one (TOL group) are
sweeter and with higher WBg.,or Values than beverages with FI
index lower than one (NTOL group), containing the latter group
higher levels of TApavor.

3.4. E-tongue quantitative evaluation of health and sensory indexes of
beverages

Previously, Dias et al. [38] showed that potentiometric signal
profiles of juices could be also used, together with appropriate

Table 2
Multiple linear regression parameters for LOO-CV procedure for healthy and sensory indexes.

Healthy indexes*® No. of sensors in MLR model Model parameters Leave-one-out cross-validation Radj

GL 19° Slope 0.994 0.9940
Slope CI" [0.952, 1.035]
Intercept 0.0765
Intercept CI' [-0.682, 0.836]

Flgree 21°¢ Slope 1.010 0.9966
Slope CI" [0.978, 1.042]
Intercept ) —0.00923
Intercept CI' [-0.0372, 0.0187]

Flrotal 214 Slope 0.989 0.9946
Slope CI" [0.950, 1.028]
Intercept 0.00855
Intercept CI' [-0.0266, 0.0437]

Sensory indexes® No. of sensors in MLR model Model parameters Leave-one-out cross-validation Radj

SWP 21°¢ Slope 0.994 0.9982
Slope CI" [0.971, 1.017]
Intercept 0.417
Intercept CI' [—2.054, 2.887]

WBEjavor 22f Slope 0.990 0.9960
Slope CI [0.956, 1.023]
Intercept ) 0.304
Intercept CI' [-0.831, 1.439]

TAHavor 19% Slope 0.982 0.9918
Slope CI" [0.934, 1.030]
Intercept 0.0808
Intercept CI' [-0.119, 0.281]

2 GL: glycemic load; Flge. index: free fructose-intolerance index; Flyotay index: total fructose intolerance index; SWP index: sweetness perception index; WBg,yor index:
well-balanced flavor index; TAp.vor: total acid flavor.

b $1:3, S1:4, S1:8, S1:9, $1:13, S1:16-S1:19, S2:1, S2:3, S2:4, S2:6, S2:8, S2:9, S2:13-S2:15, S2:18.

€ S1:1, S1:3, S1:5, S1:6, S1:12, S1:13, S1:15, S1:17-S1:19, S2:1, S2:4-S2:6, S2:9-S2:11, S2:13, S2:16, S2:18, S2:19.
4 51:1, S1:3-51:8, S1:10-S1:12, S1:14, S1:16, S2:2, S2:4, S2:6-S2:8, $2:10, S2:14, S2:17, S2:19.

€ S1:2, S1:3, S1:4, S1:6, S1:8, S1:9, S1:14, S1:15, S1:17, S1:18, S2:1, S2:2-52:4, S2:6, S2:8, S2:9, S2:13-52:15, S2:20.
f'51:1, S1:2, S1:6, S1:8-51:11, $1:16-51:20, S2:1, S2:6, S2:7, $2:12-52:17, $2:19.

& S1:3, S1:5, S1:11, S1:13-51:18, S1:20, S2:1, S2:6-S2:9, S2:14, S2:16, S2:17, S2:19.
" Slope CI: slope’s 95% confidence interval.

I Intercept CI: intercept’s 95% confidence interval.
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multivariate linear models, to estimate glucose and fructose
concentrations, suggesting that E-tongues could have a wider set of
applications. In this work, for the first time, signals profiles of an
E-tongue were used to establish MLR models for evaluating healthy
(GL and FI index) and sensory (SWP, WBEjayor and TAgjavor indexes)
of soft-drinks and fruit-beverages.

MLR models were established for each calculated index using
the potentiometric signals recorded by the E-tongue. Sub-sets of
sensors, from 2 to 29 signals of the 40 sensors available
(20 different sensors and replicas), with a suitable predictive
ability, were selected aiming to obtain a LOO-CV adjusted
correlation coefficient (R.qj) higher than 0.99 and the lowest
number of sensors (i.e., independent variables). The regression
results for the LOO-CV for each index are listed in Table 2. The
MLR models established had a satisfactory fitting predictive
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performance, with LOO-CV adjusted correlation coefficients
higher than 0.99, allowing explaining at least 98% of data
variability. The slope and intercept values, as well as the
respective 95% confidence intervals, support the good predictive
accuracy of the MLR models. Indeed, from the previous results it
is possible to conclude that there is no statistical evidence, at 5%
of significance level, that the slope and intercept values of each
regression line are different from theoretical expected values
(slope equal to one; intercept equal to zero). This conclusion may
lead to the acceptance of E-tongue plus LDA-SA as a possible
quantification procedure for healthy and sensory indexes
evaluation in soft-drinks and fruit-beverages. The overall,
satisfactory results are gathered in Fig. 4. This figure shows the
comparison between healthy or sensory index calculated by the
MLR models, established using the E-tongue data, and the indexes
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Fig. 4. Comparison between healthy or sensory indexes estimated and predicted by the MLR models, established using the E-tongue data, and the indexes values calculated
using sugars and organic acids concentrations, determined experimentally by HPLC: solid marker - estimated values by the MLR model; outlined marker - predicted value
obtained by the LOO-CV procedure.
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values calculated using sugars and organic acids concentrations,
determined experimentally by HPLC.

4. Conclusions

In this work it was demonstrated, for the first time, that a
potentiometric E-tongue coupled with a LDA-SA procedure could
be used as a practical tool to successfully classify carbonated soft-
drinks and fruit beverages, from different brands, flavor and types,
according to different levels of glycemic load or fructose-
intolerance index. Moreover, the E-tongue based methodology
was able to accurately quantify beverage’s healthy and sensory
indexes. So, the proposed electrochemical methodology may be
used as a practical alternative analytical tool reducing the use of
time-consuming and more expensive analytical techniques. These
good performances of the electronic tongue may potentiate the
development of electrochemical devices and future application
within food healthy indexes evaluation, namely those that may be
correlated to taste indicators. Nevertheless, it should be remarked,
that the mechanism of electrostatic interactions between the
lipid/polymer membranes and the sugar target molecules is not
fully understood, implying the need of further studies.
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