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Bovine lactoferrin (bLF) was shown to efficiently inhibit the growth of MCF-7, T-47D, MDA-MB-231 and
Hs578T breast cancer cells in a concentration-dependent manner. However, apoptosis was only induced
in MCF-7 cells, which was associated with the mitochondria membrane depolarisation and a decrease of
Bcl-2 levels. bLF led to the cycle arrest of MCF-7 cells at G1/GO phase, as well as a significant decrease in
the expression of CDC25c. The possibility that the observed anticancer effects could be due to the high
exogenous bLF concentrations in the culture media was excluded. Moreover, bLF was shown to restrain
the colony formation of MCF-7 cells, although it promoted cell migration. This later effect was unspecific
and related to the presence of a high protein concentration in the culture or medium. The results
gathered in this work provide valuable insights for the evaluation and further study of the potential of

bLF in cancer therapy.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Due to safety concerns on the use of pharmaceuticals, as well as
their regulatory limitations, dietary agents are becoming attractive
alternatives as cancer chemo-preventive agents (Korhonen &
Pihlanto, 2006; Wakabayashi, Yamauchi, & Takase, 2006). Some
dietary agents, such as selenium (Yamada et al., 2008), vitamin D
and green tea polyphenols have been described as interesting
chemo-preventive agents for prostate cancer (Syed, Khan, Afaq, &
Mukhtar, 2007).

Lactoferrin (LF), a milk-derived glycoprotein, is widely distrib-
uted in several secretion fluids of mammalian cells, being
extremely abundant in milk (Kappeler, Ackermann, Farah, & Puhan,
1999). This protein has been assigned with multiple biological
functions, including antibacterial, antiviral, antifungal and immune
regulatory activities (Adlerova, Bartoskova, & Faldyna, 2008;
Wakabayashi et al, 2006). Iron chelation by LF is generally
believed to be responsible for these functions, especially for the
antibacterial effect (Jenssen & Hancock, 2009). More interestingly,
it has been found that down-regulation of the LF gene could be
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associated with higher incidence of breast cancers (Furmanski, Li,
Fortuna, Swamy, & Das, 1989). On the other hand, the exogenous
supply of LF and its variants were reported to efficiently inhibit the
cancer growth both in vitro and in vivo (Damiens et al., 1999; Xu
et al., 2010; Yamada et al., 2008).

Despite its great potential, the mechanisms underlying the LF
and its variants cytotoxicity against cancer cells are still relatively
unknown. The genetically-induced overexpression of human lac-
toferrin (hLF) in MCF-7 cells was reported to promote cellular
apoptotic activities (Liao, Du, & Lonnerdal, 2010). Also, recombi-
nation adenovirus-mediated hLF cDNA led to cell cycle arrest and
stimulated apoptosis in MCF-7 cells associated with a decrease of
Bcl-2 (Wang et al., 2012). Furthermore, the restoration of delta-
lactoferrin (ALF) in HEK 293 cells resulted in cell cycle arrest and
growth retardation (Breton et al., 2004). Importantly, exogenous
hLF could efficiently inhibit in vitro the growth of cancer cells and
induce cell cycle arrest at G1 phase (Yamada et al., 2008; Zhou et al.,
2008). This effect occurred through a p53-independent pathway,
and the key G1 regulatory proteins played an important role in the
process (Yamada et al., 2008). Additionally, bovine lactoferrin (bLF)
was found to induce apoptosis of SGC-7901 human stomach cancer
cells by inhibiting the Akt activation and regulating its downstream
signals (Xu et al., 2010).
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However, hLF-induced apoptosis in PC12 cells (rat pheochro-
mocytoma cells) was observed to be associated with a decrease in
the expression of the phosphorylated extracellular-signal-
regulated kinase 1/2 (ERK1/2) and Bcl-2 (Lin, Chiou, Chen, & Kuo,
2005). In addition, hLF was reported to induce apoptosis of Jurkat
T cells via the regulation of c-Jun N-terminal kinase (JNK) activity
(Lee et al., 2009). Furthermore, the main bLF-derived peptide, lac-
toferricin (LfcinB), also showed similar effects as its parent protein.
Nevertheless, LfcinB inhibited the proliferation of cancer cells
mainly by activating apoptosis-inducing pathways (Furlong, Mader,
& Hoskin, 2006; Onishi, Roy, Juneja, Watanabe, & Tamai, 2008; Roy,
Kuwabara, Hara, Watanabe, & Tamai, 2002; Sakai, Banno, Kato,
Nozawa, & Kawaguchi, 2005). JNK/SAPK (stress-activated protein
kinase) activation, down-regulation of Bcl-2, mitochondria swelling
and release of cytochrome c were believed to be the mechanisms
underlying the LfcinB cytotoxicity against cancer cells (Mader,
Salsman, Conrad, & Hoskin, 2005; Sakai et al., 2005).

All these in vitro reports suggest that the mechanisms behind LF
and LfcinB cytotoxicity against cancer cells are greatly dependent
on the cell type (Duarte, Nicolau, Teixeira, & Rodrigues, 2011;
Furlong et al., 2006; Lin et al., 2005; Xu et al., 2010). Additionally,
the potential of LF for application in cancer therapy was further
confirmed in vivo. In those experiments, the anticancer effect of LF
was shown to be mainly exerted through activation of both the
innate and adaptive immune responses, as well as through the
stimulation of the proliferation and differentiation of T helper cells
(Th) into type 1 helper cell (Th1) or type 2 helper cell (Th2) phe-
notypes, which release tumour-killing cytokines (tumour necrosis
factors (TNF), interferon-y (IFN-v), caspase-1 and interleukin-18
(IL-18)) in the intestine and tumour (De la Rosa, Yang, Tewary,
Varadhachary, & Oppenheim, 2008; Fischer, Debbabi, Dubarry,
Boyaka, & Tome, 2006; Kuhara, Yamauchi, & Iwatsuki, 2012).

Considering the established correlation between LF and breast
cancer, in the present work we studied the bLF cytotoxicity against
several breast cancer cells and proposed the possible mechanisms
involved in such anticancer effect. Evidence provided by the in vitro
experiments will be of great value towards a future clinical use of
bLF in chemoprevention and cancer therapy.

2. Materials and methods
2.1. Cell lines and lactoferrin

T-47D and MDA-MB-231 breast cancer cell lines were kindly
provided by IPATIMUP and Medical School of University of Porto
(Portugal), respectively. Hs578T cells were donated by the Life and
Health Sciences Research Institute, University of Minho (Portugal).
MCF-7 was bought from the American Type Culture Collection. The
cells were cultured at 37 °C in a humidified incubator with a 5% CO,
atmosphere in 1-glutamine-containing DMEM medium (Biochrom
AG, Berlin, Germany) supplemented with 10% foetal bovine serum
(FBS) (Biochrom AG) and 100 U mL~! penicillin/streptomycin
(Sigma—Aldrich, Steinheim, Germany). Bovine lactoferrin was
purchased from DMV (Veghel, The Netherlands). The protein purity
is about 80% with 3.5% moisture and 21% iron-saturated according
to the manufacturer.

2.2. Effects on cell growth and death

Trypan blue staining was used to estimate cell growth and cell
death induced by the bLF treatment. Breast cancer cells (MCF-7, T-
47D, MDA-MB-231 and Hs578T) were seeded in 24-well plates
overnight. Afterwards, bLF at several concentrations (12.5 um,
50 pm, 125 pm and 175 um) was added to each well. After a 48 h of
treatment, both floating and attached cells were collected and

resuspended in medium to obtain an adequate cell concentration. A
50 pL volume of suspended cells were mixed with 50 uL of trypan
blue 0.04% (w/v) (Sigma—Aldrich) and were incubated for 5 min
before counting viable and non-viable cells using a haemocy-
tometer under a light microscope. The cells able to exclude trypan
blue (viable cells) and stained in blue (dead cells) were used to
estimate cell growth. The control (without bLF treatment) was set
as 100%. Cell viability was expressed in percentage and calculated
according to the following equation: Number of viable cells/total
number of cells x 100.

2.3. Nuclear condensation assay

The ability of bLF to induce cell death by apoptosis was esti-
mated by the nuclear condensation assay as previously described
(Dias, Duarte, Lima, Proenca, & Pereira-Wilson, 2013). In brief,
cells at exponential phase were collected and seeded in 6-well
plates. After 24 h of incubation, the cells were treated for 72 h
with bLF at several concentrations (12.5 pm, 50 pum, 125 um and
175 pm). Then, both floating and attached cells were collected,
fixed and attached to a polylysine-treated slide using a Shandon
Cytospin 4 (Thermo Scientific, Waltham, MA, USA). Nuclei were
stained with Hoechst (5 pg mL~!) fluorescent dye for 10 min in
the dark and observed under a fluorescent microscope (Olympus
[X71, Hamburg, Germany). The apoptosis rate was calculated as
the number of cells presenting nuclear condensation divided by
the total number of cells (stained in blue) from a count higher
than 400 cells per slide.

2.4. Annexin V/propidium iodide (PI) staining

Annexin V/PI staining was also used to estimate cell death by
apoptosis. MCF-7 cells were seeded in 6-well plates for 24 h. Sub-
sequently, cells were treated with 12.5 pm, 50 pm, 125 um and 175 um
of bLF. After 48 h of bLF treatment, the cells were collected and
washed twice with ice-cold PBS and resuspended in 1x Binding
Buffer (0.01 m Hepes, pH 7.4, 0.14 m NaCl, 2.5 m CaCl,) to get a final
cell concentration of 1 x 10° cells mL~1. A 100 pL volume of each
sample was then stained with 5 pL FITC Annexin V (BD Pharmingen,
Franklin Lakes, NJ, USA) and 10 pL PI (50 pg mL™'). After a 15 min
incubation at room temperature, cells were then analysed by flow
cytometry using a Coulter Epics XL flow cytometer (Beckman
Coulter Inc., Miami, FL, USA).

2.5. Cell cycle analysis

MCF-7 cells were seeded on 100 mm petri dish and cultured for
24 h. Fresh medium with 12.5 pm, 50 pum, 125 pm and 175 pm of bLF
was added to the cells and incubated for 24 h. In the end, the cells
were collected and processed for cell cycle analysis as previously
described (Dias at al., 2013).

2.6. Mitochondrial membrane potential assay

MCEF-7 cells were incubated with different concentrations of bLF
(12.5 pum, 50 pm, 125 uv and 175 um) for 2 h, 24 h and 48 h. A positive
control was included, containing carbonyl cyanide 3-
chlorophenylhydrazone (CCCP, Sigma—Aldrich) at a 50 pm and
incubated for 30 min at 37 °C before cell collection. Subsequently,
cells were resuspended in 1 mL of warm-PBS, and 10 pL of 200 pm
JC-1 (Molecular Probes, Life Technologies, Eugene, OR, USA) was
added to each sample and incubated for 15 min under cell culture
conditions. At last, the samples were analysed by flow cytometry
(Beckman Coulter Inc.).
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2.7. Histone extraction

MCF-7 cells were incubated with 12.5 um and 125 pm bLF for 1 h,
6 h and 12 h. Incubation of cells with 50 um etoposide was used as
positive control for DNA damage. Cells were collected and washed
with ice-cold PBS. Next, cells were resuspended in Triton Extraction
Buffer (TEB: PBS with 0.5% Triton X-100 (v/v), 2 mm phenyl-
methylsulfonyl fluoride, 0.02% (w/v) NaN3) at a cell density of
1 x 107 cells mL™". The cell suspension was left on ice for 10 min
with gentle stirring; nuclei were centrifuged at 6500 x g for 10 min
at 4 °C and washed once with half volume of TEB. Subsequently, the
nuclei pellet was resuspended in 0.2 N HCl at a density of 4 x 107
nuclei mL~! to perform an acid extraction of histones overnight at
4 °C. After centrifugation, the supernatant containing histone
protein was used for further analysis. The histone protein extracts
were quantified using the Bradford reagent from Sigma—Aldrich
and analysed by western blot. The antibody against phospho-
histone H2A.X (Ser139, clone JBW301) was bought from Milli-
pore, while anti-f-actin was from Sigma—Aldrich.

2.8. Western blot assay

MCE-7 cells were seeded in 6-well pates 24 h before incubating
cells with bLF at the concentrations of 12.5 pum, 50 pm, 125 pm and
175 um for 48 h. After cell washing with PBS, total protein was
extracted using RIPA (Radio-Immunoprecipitation Assay) buffer.
Protein from the samples were loaded onto a 10% SDS-PAGE gel and
transferred into PVDF membranes (GE Healthcare, Buck-
inghamshire, UK). Immunoreactive bands were detected using the
Immobilon solutions (Millipore, Billerica, MA, USA) under a
chemiluminescence detection system, the ChemiDoc XRS (Bio-Rad
Laboratories, Inc.). Band area intensity was quantified using the
Quantity One software from Bio-Rad. B-Actin was used as loading
control. The antibodies anti-CDC25c, anti-Bcl-2 and anti-p53 were
acquired from Santa Cruz Biotechnology (Santa Cruz, CA, USA).

2.9. Colony formation assay

MCF-7 cells were trypsinised and pipetted repeatedly to
disperse them until single cells account for 95% of the total number
of cells. Next, the cells were counted and then seeded in 6-well-
plates to a concentration of 1 x 10 cells per well and incubated for
24 h. Subsequently, the cells were treated with bLF at several
concentrations (12.5 um, 50 um, 125 pm and 175 pm), while DMEM
without FBS was used as a positive control. After 24 h incubation
with bLF, the media in all wells was replaced with fresh media
(DMEM with 10% FBS). After 7—10 days, the cells were fixed with
70% methanol for 15 min and air dried. Giemsa was used to stain
cells for 10 min and was subsequently washed carefully with water.
Colonies containing at least 50 cells were counted. Colony forma-
tion was calculated as the ratio between the number of colonies in
the experimental samples and the number of colonies in the con-
trol sample.

2.10. Migration assay

The bottom of 6-well plates was marked with 5—10 straight
lines with 0.2 cm interval among the lines. Subsequently, 5 x 10°
MCF-7 cells per well were seeded in 6-well plates for growing until
cell confluence reached over 85%. Then, a scratch wound across
each well of the 6-well plates was made using a pipette tip. Next,
cells were washed twice with PBS and FBS-free DMEM containing
175 pum bLF or BSA was added. Cells were photographed at the exact
same point (marked with straight line) in the 6-well plates after 0 h,
6 h, 12 h and 24 h. The cell migration ratio was calculated by

comparing the wound area at the different time points with the
wound area at 0 h in each group.

2.11. Statistical analysis

Statistical significance of the experimental results was deter-
mined by the Student's t test. For p-values below 0.05 the differ-
ences between experimental groups were considered significant.

3. Results
3.1. Lactoferrin inhibits the growth of breast cancer cells

To test whether bLF was able to inhibit the growth of the breast
cancer cells, the trypan blue staining method was firstly used since
it provides information on growth inhibitory activities and total cell
death. Considering the total number of cells in each well, we
observed that bLF significantly inhibited the growth of breast
cancer cells after 48 h of treatment in a concentration-dependent
manner (Fig. 1). The magnitude of growth inhibition was identical
in all cell lines, which indicates that this effect is not cell type
specific. Cell growth inhibition reached about 70%—80% for an
exposure to 175 pum bLE. For these conditions, in the case of the
Hs578T cell line, cell death increased about 30% as compared with
non-treated cells. However, few dead cells were observed in the
experiments conducted with the other cell lines (data not shown).
These results suggest that the inhibitory effect of bLF is mostly
associated with the inhibition of cell proliferation.

3.2. Lactoferrin selectively induces apoptosis in MCF-7 cells

Based on the observation that some cell death occurred in the
experiments with Hs578T cells, we then performed a nuclear
condensation assay to estimate the potential induction of
apoptosis. However, at 48 h no evident nuclear condensation could
be observed in any of the cell lines used (data not shown), which
corroborates the lack of massive cell death shown above. Regarding
this phenomenon, we hypothesise that the cell death by apoptosis
could be a more delayed event. Therefore, induction of apoptosis
was evaluated 72 h after incubation of cells with bLF. The results
demonstrated that bLF failed to induce apoptosis in all breast
cancer cell lines under study (data not shown), except for the MCF-
7 cells (Fig. 2). Cells presenting nuclear condensation are shown
with arrows in Fig. 2A. Nuclear condensation was found to increase
in a dose-dependent way in MCF-7 cells, reaching a ratio of about
35% after 72 h of treatment with 175 um bLF (Fig. 2B). This assay
indicated that bLF could selectively induce apoptosis in MCF-7 cells
among the tested breast cancer cells.

To confirm the induction of apoptosis by bLF in the MCF-7 cells,
the annexin V/PI assay was performed after 40 h of incubation,
since the translocation of phosphatidylserine for the outer leaflet of
plasma membrane is an apoptotic event that occurs earlier than the
DNA fragmentation (Elmore, 2007). The results showed that the
amount of non-apoptotic cells (Q4 region: annexin V negative/PI
negative) decreased in a concentration-dependent manner
compared to the non-treated group (Fig. 2C). In contrast the
number of cells in the early stage (Q3 region: annexin V positive/PI
negative) and later stage of apoptosis (Q2 region: annexin V posi-
tive/Pl positive) was considerably increased by bLF in a
concentration-dependent manner. Although the percentage of
apoptotic cells in bLF-treated groups estimated by the Annexin V/PI
assay was less than the one determined by the nuclear condensa-
tion assay, it was possible to confirm the ability of bLF to induce
apoptosis in MCF-7 cells.
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Fig. 1. Effect of bovine lactoferrin (bLF) on growth of breast cancer cells (MCF-7, T-47D, Hs578T and MDA-MB-231): values correspond to the mean + SD of three independent

experiments; *p < 0.05 and **p < 0.01 when compared with the control.

3.3. Lactoferrin inhibits cell cycle progression in MCF-7 cells

Considering that apoptotic cell death was only observed in MCF-
7 cells, in this experiment we only tested this cell line to infer the
effects of bLF in the cell cycle progression. As shown in Fig. 3A, bLF
clearly induced cell cycle arrest of MCF-7 cells at the G1 phase after
24 h of treatment, and this effect increased in a dose-dependent
manner. This event was accompanied with a remarkable decrease
in the percentage of cells at the S phase (cells synthesising DNA).

Since the concentration of bLF being used was relatively high
(175 pm), reaching a quantity of 14 g L~! in the culture media, we
questioned whether the observed effects could be due to this
considerable amount of exogenous protein added, which would
disturb the cellular microenvironment and prevent cell division.
Therefore, a parallel assay using bLF and bovine serum albumin
(BSA) at similar amounts (14 g L~!) on the MCF-7 cell cycle pro-
gression was conducted. As shown in Fig. 3A, BSA also induced cell
cycle arrest of MCF-7 cells at the G1 phase. However, this effect was
found to be much lower when compared to bLF. Moreover, cells
incubated with bLF presented a distinct morphology, while the
morphology of the BSA treated group was very similar to the con-
trol one (Fig. 3B). This suggests that bLF could significantly inhibit
the MCF-7 cell growth through cell cycle arrest due to a specific
biological function.

DNA damage is one of the main events that lead to cell cycle
arrest. Since it was shown that cells can internalise bLF, it is plau-
sible to consider that bLF may arrest the cell cycle by inducing DNA
damage. A very early step in the cellular response to DNA double-
strand breaks (DSBs) is the phosphorylation of a histone H2A
variant, H2A.X, at the sites of DNA damage. Therefore, the phos-
phorylation levels of histone H2A.X was used as a marker of DNA
damage. As shown in Fig. 3C, the exposure of MCF-7 cells to 12.5 um
and 125 uM bLF did not induce phosphorylaton of histone H2A.X,
contrarily to the positive control etoposide (50 pm). Therefore, these

results demonstrate that the induction of cell cycle arrest by bLF
was not due to DNA double-strand breaks.

3.4. Lactoferrin decreases mitochondrial membrane potential

In the apoptotic cascade, mitochondrial depolarisation is usually
associated to the intrinsic apoptosis pathway (Ly, Grubb, & Lawen,
2003). In this study, we used the JC-1 probe to assess the modifi-
cation of the mitochondrial membrane potential in MCF-7 cells
after treatment with bLF for 2 h, 24 h and 48 h. After 2 h of bLF
treatment at several concentrations (12.5 pm, 50 pum, 125 um and
175 um), it could be observed a significant decrease of the red to
green ratio in the fluorescence, which represents the decrease of the
mitochondrial membrane potential. Furthermore, the depolarisa-
tion effects of bLF on mitochondria increased in a dose-dependent
way (Fig. 4A). The mitochondrial depolarisation occurred in all
bLF-treated groups after 24 h incubation, although not in a dose-
dependent manner. Contrarily, after 48 h of bLF treatment, mito-
chondria depolarisation was found to be more pronounced and to
be dependent on the bLF concentration. From the cell distribution in
the dot plot graph, it was observed that treatment of MCF-7 cells
with 175 um bLF for 48 h led to a significant shift of the number of
cells with red to green fluorescence, as compared with the non-
treated cells (0 um bLF) (Fig. 4B). In fact, the percentage of cells
with depolarised mitochondria after 48 h of bLF treatment (30%) is
similar to the apoptosis rate observed at 72 h (35%). When cells
were observed under a fluorescent microscope it was confirmed
that bLF induced the depolarisation of mitochondria in a significant
part of the cell population, in contrast to the positive control CCCP
that basically depolarised the mitochondria of all cells. As a control
condition for protein load, 175 pm BSA treatment for 48 h was also
tested, but no significant differences from the control were
observed (data not shown). This shows that bLF-induced mito-
chondria depolarisation is a specific effect of this protein.
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Fig. 2. Effect of bovine lactoferrin (bLF) in the apoptosis of MCF-7 cells. Panel A: representative images of the nuclear condensation assay where apoptotic cells are shown with
arrows: thick arrows correspond to examples of early apoptotic cells (condensed DNA); slim arrows correspond to examples of late apoptotic cells (condensed and fragmented
DNA). Images are provided with a magnification of 400x. Panel B: apoptosis rate induced by bLF as mean + SD of three independent experiments, as estimated by the nuclear
condensation assay: *p < 0.05 and **p < 0.01 when compared with the control. Panel C: apoptosis assay by Annexin V/PI; results are representative of two independent assays.

3.5. Downregulation of Bcl-2 was associated with the lactoferrin-
induced apoptosis

Considering the apoptosis and mitochondria membrane depo-
larisation observed in MCF-7 cells treated with bLF, the expression
of Bcl-2 was also studied by western blot. As shown in Fig. 5A, bLF
significantly decreased in a concentration-dependent manner the
expression of the anti-apoptotic protein Bcl-2. Moreover, it is

known that the tumour suppressor gene p53 has a critical role in
the regulation of Bcl-2 and other proteins of the Bcl-2 family
(Meulmeester & Jochemsen, 2008). However, by western blot
analysis we did not observe significant changes in the total levels of
p53 in the bLF-treated groups after 48 h of treatment (Fig. 5A).
Related with inhibition of cell proliferation, the levels of CDC25c
were measured by western blot and shown to clearly decrease after
bLF treatment for 48 h (Fig. 5A). Although it is not a key regulator in
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(magnification of the images: 40x).

the G1/S transition of cell cycle, the downregulation of CDC25c
suggests that bLF induced cell cycle arrest through the regulation of
key factors in the cell cycle progression.

3.6. Lactoferrin significantly inhibits colony formation

Considering that bLF inhibited cell growth of MCF-7 cells due to
both cell cycle arrest and induction of apoptosis, we then per-
formed an anchorage-dependent colony formation assay as a
functional assay to determine the effectiveness of the bLF anti-
cancer effect. This assay essentially tests the ability of a single cell to
grow into a colony by undergoing cell division. By comparing with
the control condition (O um bLF), the bLF-treated cells exhibited a
much lower cloning efficiency (Fig. 5B and C). The number of col-
onies in the treatment with 175 pm bLF could only reach 2.6% of the
control (***p < 0.001). Additionally, DMEM media without FBS used
as a positive control also inhibited the colony formation.

3.7. Induction of cell migration by bovine lactoferrin in MCF-7 cells
is not specific of this protein

Metastasis is the primary cause of mortality in most cancer
patients. The repression of the metastatic process has been used as
an important strategy in cancer therapy. Cell migration and inva-
sion are the two key factors involved in the metastasis formation
(Valster et al., 2005). LF was previously described as a promoting

factor for the migration of MCF-7 cells (Ha et al., 2011). Herein, we
also tested the effect of bLF in cell migration, and we indeed
observed that this protein promotes the migration of MCF-7 cells at
175 pw (Fig. 6). To test if this effect was only due to the presence of a
higher concentration of protein in the extracellular milieu, we also
compared the results with an experiment conducted with the same
concentration of another protein, namely BSA. Cell migration was
greatly increased when cells were treated with BSA. Actually, BSA
appeared to be more efficient in promoting cell migration than the
bLF after 6 h of treatment. However, no significant differences were
found between BSA- and bLF-treated groups after 12 h and 24 h of
incubation. This result showed that the ability of bLF to induce cell
migration is an unspecific property and it may result from a positive
change of cell microenvironment due to the presence of a high
concentration of exogenous protein.

4. Discussion

In this study, we demonstrated that bLF at several concentra-
tions significantly inhibited the growth of the four breast cancer
cell lines, but it induced apoptosis only in MCF-7 cells. The different
genetic profiles among the used cells may explain this selectivity in
the apoptosis induction. For example, the p53 gene that plays an
important role in this type of cell death (Meulmeester &
Jochemsen, 2008) may be associated with the present finding.
Whereas T-47D, MDA-MB-231 and Hs578T cells harbour a mutated
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7 cells after 48 h of treatment with positive control (50 pm CCCP) or 175 um bLF analysed by flow cytometry. The graphs exhibit the percentages of cells with depolarised mito-
chondria (green positive/red negative). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

p53 gene, MCF-7 cells possess a wild-type p53 (Janicke, 2009; Xu
et al.,, 2007). Therefore, the resistance of T-47D, MDA-MB-231 and
Hs578T cells to undergo apoptosis in the presence of bLF may be
due to the lack of the normal functions of p53. Previous studies
reported the ability of LF to induce apoptosis in cancer cells
(Damiens et al.,, 1999; Wang et al., 2011; Xu et al., 2010). The current
study shows that this effect may depend on the genetic background
of the cell line used, such as the presence of a functional p53 pro-
tein. Previously, we have reported the ability of bLF to inhibit cell
growth of T-47D and Hs578T cells, and to increase the activity of
caspases by 2-fold as a marker of apoptosis (Duarte et al., 2011).
However, as demonstrated here, this mild induction of caspases
activity might not be enough to trigger cell death by apoptosis.
Herein, we showed that bLF at higher concentrations induced
selectively apoptosis in MCF-7 after 72 h of treatment.
Additionally, the bLF inhibitory effect on the MCF-7 cells growth
was also shown to be associated with the cell cycle arrest at the G1

phase and a decrease of CDC25c levels. This activity has been
confirmed for hLF in some studies (Damiens et al., 1999; Wang et al.,
2011). Regarding to MCF-7 cells, previous studies also demon-
strated that re-expression of LF or ALF using several delivery vec-
tors induced cell cycle arrest (Breton et al., 2004; Mader et al.,
2005). In the current study we demonstrated that exogenous bLF
could also induce cell cycle arrest in these cells. We also excluded
that these anticancer effects triggered by bLF could be due to DNA
damage.

Furthermore, the mitochondrial intrinsic death pathway has
been reported as the main mechanism of LfcinB-induced apoptosis
(Bi et al., 1996; Eliassen et al., 2006). Our results demonstrated that
mitochondrial depolarisation was also associated in the bLF-
induced apoptosis. This effect was also specific to bLF since no
mitochondria depolarisation was observed when cells were treated
with BSA. Depolarisation of the mitochondria membranes was kept
during the time period ranging from 2 h to 48 h, and no reversible
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change could be observed. The changes in the membrane potential
presumably stand for the opening of the mitochondrial perme-
ability transition (MPT) pore, which allows the release of cyto-
chrome c from the mitochondria. This is a key event in the initiation
of apoptosis cascade (Gottlieb, Armour, Harris, & Thompson, 2003).
Therefore, these findings suggest that depolarisation of mito-
chondria membrane potential is an important factor in the bLF-
induced apoptosis of MCF-7 cells.

In addition to the mitochondrial depolarisation, bLF significantly
decreased the anti-apoptotic Bcl-2 protein, which confirms that the
intrinsic death pathway may be involved in the apoptosis induced
by this protein. This is in a good agreement with former studies in
other cancer cell lines that report LF- and LfcinB-induced apoptosis
associated with a down-regulation of Bcl-2 (Mader et al., 2005;
Wang et al., 2012; Xu et al, 2010). The decrease of Bcl-2 is
considered as an important event to the opening of the MPT pore
and loss of the mitochondrial membrane potential, for the release
of cytochrome c and other pro-apoptotic proteins characteristic of
the intrinsic apoptosis pathway (Lin et al., 2005). It is known that
the tumour suppressor gene p53 has a critical role in the regulation
of Bcl-2 and other proteins of the Bcl-2 family (Kuhara et al., 2012).
As we previously discussed, the p53 has probably a key role in the
apoptosis selectively induced in MCF-7 cells as compared with the
other used breast cancer cells. Although we did not find changes in
the total p53 levels, this does not exclude that p53 may have an
important function in the bLF-induction of apoptosis in MCF-7 cells,
for example through its phosphorylation. However, a previous
study with hLF showed that induction of apoptosis in cancer cells
occurred through a p53-independent mechanism (Adlerova et al.,
2008). The role of p53 in the apoptosis induction by bLF needs
therefore to be further elucidated.

Finally, the bLF anticancer potential against MCF-7 cells was
confirmed by its pronounced ability to inhibit the colony formation.
These findings are in accordance with other reports. For instance,
the hLF was previously shown to significantly inhibit the colony
formation of nasopharyngeal carcinoma cells (Gottlieb et al., 2003).
The efficient inhibition the colony formation of MCF-7 cells by bLF
suggests its potential antitumour effect in vivo. Although bLF pro-
moted the migration of MCF-7 cells, this effect was shown to be an
unspecific effect of this protein. Therefore, this is probably not
relevant in the in vivo context in view of the high concentration of
proteins present in the biological fluids.

Interestingly, several studies have shown that bLF exhibits
similar biological activities to hLF (Liao, Jiang, & Lonnerdal, 2012;
Lonnerdal, Jiang, & Du, 2011). Although other LF sources could
also be considered (e.g., camel, sheep or goat; Rodrigues, 2013),
these have not been widely evaluated for their anti-cancer po-
tential. Also, the mechanism by which bLF exerts its effect against
MCEF-7 cells in this study was found to be similar to the one re-
ported for hLF (Adlerova et al., 2008; Fischer et al., 2006; Yamada
et al.,, 2008). Therefore, bLF could be considered as a suitable
substitute for hLF with the advantage that it can be produced in
great amounts from bovine milk. On the other hand, the oral
administration of bLF has been suggested as a good choice for
chemoprevention strategies (Kuhara et al, 2000; Norrby,
Mattsby-Baltzer, Innocenti, & Tuneberg, 2001). New nano-
particles with bLF encapsulated have been developed for possible
applications in the food and biopharmaceutical industries (Balcao
et al,, 2013; Hu et al., 2011). Additionally, the absence of adverse
effects of bLF for humans at the proposed levels of consumption
has been approved by European Food Safety Authority (EFSA).
Therefore, we anticipate that bLF could be considered in the
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future as a potential nutraceutical for chemoprevention and/or
cancer treatment.

5. Conclusion

In summary, the bLF effect against four breast cancer cell lines
was evaluated in a concentration range from 12.5 pm to 175 pm. The
protein was found to selectively induce apoptosis in MCF-7 cells, as
a delayed event that could only be observed at 40—48 h with
mitochondria depolarisation and the presence of phosphati-
dylserine in the outer leaflet of plasma membrane, as well asat 72 h
with DNA condensation and fragmentation. Furthermore, bLF
significantly decreased the levels of the anti-apoptotic Bcl-2 protein
that, in addition to the mitochondrial membrane depolarisation,
suggests that the intrinsic pathway may be involved in the
apoptosis induction. The inhibitory effect of the milk protein on
MCF-7 cells growth was also shown to be associated with the cell
cycle arrest at the G1 phase. Lastly, the bLF anticancer potential
against breast cancer cells was confirmed by its pronounced ability
to inhibit colony formation.
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