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Carrier-free, continuous primary beer
fermentation
Eduardo J. Pires,1* José A. Teixeira,1 Tomás Brányik2 and António A. Vicente1
Developing a sustainable continuous fermentation reactor is one of the most ambitious tasks in brewing science, but it could
bring great benefits regarding volumetric productivity to modern breweries. Immobilized cell technology is often applied to
reach the large densities of yeast needed in a continuous fermentation process. However, the financial cost associated with
the use of carriers for yeast immobilization is one of the major drawbacks in the technology. This work suggests that yeast
flocculation could address biomass immobilization in a gas-lift reactor for the continuous primary fermentation of beer.
Nearly 25g dry wt L�1 of yeast was flocculated in the reactor before interruption of the fermentation. Stable sugar consump-
tion and ethanol production (4.5% alcohol by volume) from an 11°P wort was evidenced. The key esters and higher alcohols
measured in the young beer met the standards of a finished primary beer fermentation. Copyright © 2014 The Institute of
Brewing & Distilling
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Introduction
Continuous beer fermentation is far from being a recent science,
with patent registrations dating back the nineteenth century.
Indeed, the first continuous bioreactors were designed to work
with freely suspended/flocculated yeast. However, many factors
hindered the evolution of ‘non-immobilized’ continuous systems
in the late 1970s, such as: inflexibility in production rate and beer
type; lack of control over wort attenuation; excess ancillary equip-
ment needed; difficulty in maintaining production scale hygiene;
yeast mutations; and wild yeast contamination (1). The idea of
using solid carriers came later to overcome the pitfalls presented
by ‘non-immobilized’ reactors, mainly (but not limited to) how to
increment the productivity rate beyond the washout rate of yeast.
Immobilized cell technology (ICT) uses solid carriers for cell adsorp-
tion and biofilm formation (2–9) and forced physical entrapment
of yeast cells to solid matrices (10–13) as methods to increase cell
density inside the reactor. The carrier cost is a key component for
the financial viability of ICT (1,14) and the composition of the solid
matrix may also interfere in the final beer quality and flavour
profile (15,16). Additionally, the relatively short lifespan of a single
yeast cell (17) results in an accumulation of dead biomass in the
biocatalyst, thus demanding constant replacement (18).

Continuous beer fermentation depends on a high density of
yeast cells immobilized inside a bioreactor. The considerable
amount of yeast allows a short residence time for the wort in the
bioreactor. The wort is continuously supplied for beer production.
This feature results in high productivity and reduced space and
time being needed to reach the final product (15,19,20). Despite
being very attractive, the continuous fermentation of beer is still
marginalized to laboratory benches, pilot plants and a few coura-
geous companies such as Dominion Breweries of New Zealand,
which have been using continuous brewing since 1959 with a
setup based on flocculated biomass (15).

Some brewing yeast strains are remarkably flocculent and this
feature is widely used to harvest yeast at the end of primary fer-
mentation (21,22). Flocculation is a multifactorial inheritance
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triggered by both genetic and environmental factors (22). The
most accepted mechanism supporting yeast flocculation is
through the expression of FLO genes encoding specialized cell
wall proteins (flocculins), which are able to bind to sugar resi-
dues in the cell walls of adjacent cells (22,23). Hydrodynamic
conditions in the reactor have a direct impact on flocculation
and floc size, as the liquid agitation increases the chances of cell
collisions, but strong movement breaks up cell clusters (24).
Moreover, the higher the concentration of yeast cells that are
in suspension, the greater the number of collisions, and conse-
quently the faster the formation of flocs (25). Additionally,
factors that increase cell-surface hydrophobicity and/or that
decrease the repulsive negative electrostatic charges on the cell
wall cause stronger flocculation, as they increase the probability
of cell-to-cell contact (26). This self-aggregation characteristic is
a free-of-charge way of immobilization and seems to have been
poorly exploited in recent ICT setups.

Gas-lift bioreactors are remarkably efficient in regard to mass
transfer for either liquid–liquid or solid–liquid phases triggered
by rapid mixing, low shear stress, simple design and low energy
consumption (27,28). The low shear environment provides
excellent conditions for ICT implementation (29) and has previ-
ously been adopted for continuous beer fermentation (3,13).
This work examines the feasibility of self-aggregation as a single
biomass immobilization method for young beer production in a
gas-lift reactor.
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Material and methods

Brewing yeast

The flocculent Saccharomyces pastorianus strain no. 96 from the
Culture Collection of Brewing Yeast (Research Institute of
Brewing and Malting plc, Prague, Czech Republic) was used. It
was inoculated onto a complex media of the following composi-
tion (g L�1): glucose, 30; KH2PO4, 5; MgSO4

. 7H2O, 0.4; (NH4)2SO4,
2; yeast extract, 2; agar, 20. The medium was prepared in Petri
dishes for the isolation of yeast colonies. A colony was then inoc-
ulated in 400mL of 5°Plato wort and incubated at 20°C, 120 rpm,
for 48 h before use as an inoculum for the gas-lift reactor.
Beer wort

Pale wort concentrate was acquired from the Research Institute of
Brewing and Malting (Prague). It was diluted to the final desired
concentration – 5 and 11°P. The final wort was filled into 20 L
polyethylene carboys (Nalgene, USA) and autoclaved for 3.5 h.
Continuous fermentation

The experiment was carried out using a Perspex gas-lift reactor
with 4 L of total work volume. Gas flow was kept constant at 0.5 L
min�1 by the GFC17 mass controller (Aalborg, USA). The temper-
ature was held at 15°C using a Julabo F32 refrigeration/heating
circulator (Julabo, Germany). The dilution rate was kept at
0.043h�1 using a peristaltic pump PDC 83 (Kouřil, Czech Republic).
Figure 1 shows the scheme of the entire equipment setup used
in the current work.

The reactor was sterilized by bleaching, using a 3% (v/v) solu-
tion of commercial sodium hypochlorite with 1.5% of active
chlorine, 48 h prior to use. After this time, the solution was
discarded and 50 L of sterile water was used to wash the reactor.
It was then filled with 5°P wort and inoculated.
Figure 1. Immobilized yeast bioreactor system used in the current work: 1, wort
barrel; 2, peristaltic pump; 3, gas-lift reactor; 4, air filter; 5, flow mass controller; 6,
pressurized air; 7, CO2 bottle; I, green beer outflow/sampling point; II, biomass sam-
pling point; III, wort inlet; IV, gas sparger.
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Batch growth was performed in the first 48 h, using pressur-
ized air as the gas supply at 500mLmin�1. After that, the gas
was changed to CO2 at the same flow rate and the continuous
phase was started with a 5°P wort supply at a 0.043 h�1 dilution
rate. Four days later, the wort supply was changed to 11°P wort
keeping the dilution rate unchanged.
Biomass measurements

The flocculated biomass was evaluated daily. Three 15mL plastic
falcon tubes were dried at 105°C for 12 h and weighed. Then
10mL of cell suspension from the reactor was added to each
one of them and centrifuged at 4000g for 5min. The liquid
phase was discarded and the tubes were dried (105°C) for 24 h
prior to weighing. Control blank experiments were carried out
using the inlet wort to correct for the presence of trub-like
components that could interfere with weighing.
Sugars and ethanol measurements

A daily sample was taken from the reactor’s outflow for green
beer analysis. Sugars and ethanol were evaluated using high-
performance liquid chromatography (HPLC) with an Agilent 1100 se-
ries equipped with Agilent G 1362A RID detector (Agilent, USA). The
column used was the Rezex™RSO-Oligosaccharide 200×10mm
(Phenomenex, USA) and the eluent was deionized degassed water
pumped at a flow of 0.4mL/min. Sugar and ethanol standards were
calibrated previous towort and young beermeasurements using the
following reagents: D-fructose (Chemapol, Praha, Czech Republic),
D-maltose monohydrate (Fluka, Japan), D-glucose (Fluka, Japan),
maltotriose (Sigma, USA) and ethanol (Sigma, USA).
50
Measurement of flavour-active compounds

Higher alcohols and esters were analysed by gas chromatogra-
phy using an Agilent HP-6890N gas chromatography–mass
spectrometry system (Agilent Technologies, USA) coupled to a
mass detector Agilent 5975B Inert MSD (Agilent Technologies,
USA). Compounds were separated on an InnoWax (30m×0.25
mm×0.25μm) column (Agilent Technologies, USA). Helium
was used as the carrier gas at a flow rate of 6mL/min. The oven
temperature was programmed to a start temperature of 30°C for
10min, then it was raised at 2°Cmin�1 to 52°C (2min), plus 2°C
min�1 up to 65°C and finally up to 250°C at 5°Cmin�1 (3min).
Samples were injected at 260°C. Standards were analysed
previous to samples using 2-methyl-1-butanol (>98%), 3-methyl-
1-butanol (>98.5%), isobutanol (>99%), isoamyl acetate (~99%),
ethyl acetate (99.7%), ethyl butyrate (>98%), ethyl hexanoate
(>99%), ethyl octanoate (>98%), ethyl decanoate (>99%) and
2-phenyl ethyl acetate (>99%) (Fluka, Germany). Internal stan-
dards used were 3-octanol (99%; Aldrich, USA) and ethyl
heptanoate (99%; Aldrich, Germany).

Results and discussion

Biomass build-up

One of the main conditions in the environment that triggers
yeast flocculation is the reduced amount of sugars present at
the end of primary fermentation (22,30,31). For this reason di-
luted (5°P) wort was used in the start-up of the gas-lift reactor.
Unexpectedly, this lower input of sugars did not favour biomass
te of Brewing & Distilling wileyonlinelibrary.com/journal/jib
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accumulation, which was only observed after changing wort
barrels for inletting the 11°P wort (Fig. 2). Considering that the
dilution rate and other parameters were kept constant during
both the 5 and 11°P worts, nutrients may have been restrictive
for biomass growth in the course of the former stage, otherwise
biomass build-up in this phase should have been more expres-
sive. Moreover, as there were still sugars present in the outflow
current (Table 1), there might have been a lack of assimilable
nitrogen throughout the inlet of the 5°P wort. Concentrated
wort syrups, as used in this work, may have insufficient levels
of assimilable nitrogen (32). In fact, although flocculation could
be visualized through the Perspex reactor, nitrogen starvation
may have reduced cell division and biomass growth (33).
Recently, Ogata (23) suggested that the flocculins in S.
pastorianus are expressed in response to nutritional starvation
on account of the expression of Lg-Flo1 (flocculin-encoding
gene), which is regulated by a nitrogen catabolite repression-like
mechanism. These pieces of evidence could explain why bio-
mass was not growing during the 5°P wort injection, but the bio-
mass still flocculated.

Many factors could explain the strong biomass accumulation
observed throughout the 11°P wort inlet. First, more nutrients
were flowing in the current inlet if compared with the previous
5°P wort, supporting yeast growth. In the advanced stages of
11°P wort supply, the environment inside the gas-lift was poor
in sugars and rich in ethanol (around 4.5% v/v). Ethanol has a
positive effect on flocculation, as it reduces the negative electro-
static repulsion between cells (34) and increases cell-surface
hydrophobicity (35). Moreover, it has also been suggested that
ethanol acts directly on the expression of FLO genes (36,37).
Together with constant agitation in both the 5 and 11°P phases,
the growing number of cells probably favoured cell encounter
and collisions, enhancing flocculation in the current setup.

As no solid carriers were used in this study, immobilization of
yeast cells inside the gas-lift reactor depended exclusively on
flocculation. At the end of the reactor’s operation, the biomass
suspended inside the gas-lift reactor was nearly 25 g L�1 in dry
matter and most of this biomass was flocculated (data not
shown). The separation of free cells from flocks is virtually impos-
sible owing to the small size of the flocks and the dynamics of
Figure 2. Specific saccharide load and consumption (rs), ethanol productivity (rp) and
fermentation. This figure is available in colour online at wileyonlinelibrary.com/journal/
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cell aggregation (38,39). Hence, the biomass expressed in Fig. 2
denotes the total biomass (Xtot = flocs + free cells) suspended in
the system.

Comparing Xtot in different setups used by other authors is a
difficult task. Whereas cell adsorption is very dynamic,
entrapment-based studies often do not discuss biomass growth
on biocatalysts. For example, Tata and co-workers (8) compared
a number of two-stage systems for continuous beer production.
Each of these systems was composed of two reactors connected
in series: two fluidized bed reactors with porous glass beads for
cell immobilization and two loop reactors with a silicon carbide car-
tridge for yeast load. Themaximumvalues of Xtot reported by the au-
thors for each of these systems were 29.7 and 18.2 g cell dry wt L�1,
respectively. In further work involving continuous primary beer
fermentation carried out by Brányik et al. (40), the Xtot reported using
a gas-lift reactor with a lignocellulosic carrier obtained from brewer’s
spent grains varied from 9.3 to 10.5 g cell dry wt L�1. However, the
yeast load of a specific system does not necessarily reflect good re-
sults. Therefore, the performance of different ICT setups must be
compared in terms of specific saccharide consumption (rs) and volu-
metric ethanol productivity (rp) (8,41) as further discussed.
Sugars consumption and ethanol yield

The efficacy of the gas-lift reactor for primary beer fermentation
has long been studied, using several types of yeast immobilization
method (13,40,42). The present work focused on self-aggregation
to attain the biomass needed for the continuous primary fermen-
tation of the wort provided. As temperature and dilution rate were
kept constant during the entire experiment, sugar consumption
and ethanol production were directly dependent on the Xtot and
wort gravity. Table 1 shows in detail the amount of each ferment-
able sugar present at the inlet wort for both the 5 and the 11°P
stages. It also shows the residual content of these sugars and the
ethanol present in the green beer through the course of the con-
tinuous fermentation. Changing the composition of wort during
the continuous phase caused an adaption phase between the
144h (start of inlet supply of 11°P barrel) and 388h (beginning
of steady phase) period of the continuous fermentation (Fig. 2).
Environmental changes are known to alter yeast metabolism,
total immobilized biomass (Xtot) inside the reactor through the primary continuous
brewing.

J. Inst. Brew. 2014; 120: 500–506te of Brewing & Distilling



Table 1. Wort and green beer composition measured in the course of both 5 and 11°P wort supply through the continuous pri-
mary fermentation

Sample type Time (h) Maltotriose
(g L�1)

Maltose
(g L�1)

Glucose
(g L�1)e

Fructose
(g L�1)

ABV
(%)

Ethanol
(g L�1)

Xtot
(g dry wt L�1)

5°P wort — 6.45 23.49 5.71 2.46 — — —
GB5 48 2.34 1.76 0.14 0.32 1.96 15.50 3.9
GB5 72 2.29 1.69 0.17 0.33 1.96 15.48 4.3
GB5 96 2.61 1.93 0.22 0.36 1.93 15.26 4.5
GB5 120 3.24 2.85 0.30 0.48 1.90 14.99 4.0
GB5 144 3.63 4.11 0.34 0.55 1.97 15.57 3.4

11°P wort — 13.69 50.96 12.91 6.69 — — —
GB11 168 7.59 18.61 1.57 1.70 2.04 16.09 4.1
GB11 192 8.36 20.18 1.22 1.48 2.63 20.81 5.8
GB11 216 7.68 14.38 1.17 1.45 3.26 25.72 7.5
GB11 240 6.24 8.31 0.68 1.02 3.90 30.78 10.6
GB11 264 4.78 3.90 0.39 0.71 4.21 33.29 14.0
GB11 288 3.78 2.71 0 0.53 4.47 35.28 16.8
GB11 312 3.20 2.20 0 0 4.48 35.41 20.0
GB11 336 3.03 1.97 0 0 4.52 35.68 22.0
GB11 360 2.75 1.92 0 0 4.50 35.58 24.2
GB11 384 2.56 1.31 0 0 4.62 36.54 24.8

ABV, Alcohol By Volume; GB5, Green Beer from 5°P Wort; GB11, Green Beer from 11°P Wort; Xtot, total biomass.
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which can then take some time to adapt to the new conditions
(43). Thus, instead of changing the wort gravity, the dilution rate
should have been raised gradually, using a steady wort gravity,
to avoid delays. After the adaption stage, the consumption of
sugars was satisfactory and stable until the end of the fermenta-
tion trial. At this time, from the original 84.25 g L�1 of fermentable
sugars present in the inlet (11°P) wort, only about 5 g L�1 was pres-
ent in the outflow. These residual sugars corresponded to maltose
and maltotriose (on average 2 and 3g L�1, respectively). Not
surprisingly, glucose and fructose were not present in the young
beer at this phase (Table 1) owing to preferential sugar consump-
tion of monosaccharides by yeast (43–46). Furthermore, a reduced
amount of fermentable sugars is required in the green beer for
further carbon dioxide development in the maturation stage.

The rs value designates the consumption rate of all the
fermentable sugars (g L�1 h�1) in the course of the retention
time. Through the initial 5°P stage, the average rs measured
was 0.66 g L�1 h�1 and this value increased during the steady
phase of 11° P to 3.4 g L�1 h�1 (Fig. 2). This consumption rate is
consistent with rs values reported by other studies regarding
continuous primary beer fermentation (3,8,13,40,42,47).

Ethanol yield obtained during the steady 11°P phase was very
satisfactory and an average of 4.5% (v/v) alcohol by volume was
measured during this period (Table 1). As the total retention time
(RTtot) was 23.25 h, the average rpmeasured in the course of steady
phase of 11° P wort was 1.54g L�1 h�1 (Fig. 2). In the studies
involving entrapped yeast carried out by Smogrovicová and co-
workers (42), they reported rp values from 1.7 to 2.4 g L�1 h�1.
However, the higher yields of ethanol reported by these authors
were followed by higher amounts of residual sugars in the young
beer. Short RTtot may ultimately increase rs and rp, but without
enough biomass, the result will be an unfinished primary fermen-
tation. The rp values observed in the current study are also in
accordance with previous reports involving continuous primary
beer fermentation: 1.6 g L�1 h�1 (40) and 2g L�1 h�1 (47).
J. Inst. Brew. 2014; 120: 500–506 Copyright © 2014 The Institu
Volatile compounds profile

The consequences of continuously operated systems using ICT over
the aromaprofile producedduring primary continuous beer fermen-
tation have previously been reviewed by Willaert and Nedovic (15).
The great majority (nearly 80%) of higher alcohols present in

the final beer are produced by the yeast during primary fermen-
tation (43) either from catabolism (48,49) or from the synthesis of
amino acids (50). Higher alcohols not only contribute directly to
the final beer aroma, but can also be used as precursors in the
synthesis of esters. Data involving the production of higher
alcohols using ICT are rather inconsistent as some works have re-
ported a low production of higher alcohols using ICT (51–53),
while others have observed even higher values of fusel alcohols
in continuous mode when compared with batch fermentation
(54). In the current work, isoamyl alcohol (3-methyl-1-butanol)
and the active amyl alcohol (2-methyl-1-butanol) were mea-
sured together and are henceforth reported as amyl alcohols.
The threshold for these alcohols when considered together is
50mg L�1 (55). Higher alcohols measured in the green beer
produced in the current work are presented in Table 2. When
fermentation reached a steady state upon 11°P wort supply, the
threshold of amyl alcohols was achieved. At this time, the Xtot
was nearly 14g dry wt L�1 and the amyl alcohol concentration
was 52mgL�1. Levels of these alcohols changed slightly (55mgL�1)
up until the interruption of fermentation when Xtot was close to 25g
dry wt L�1. Using polyvinyl alcohol for yeast entrapment,
Smogrovicová and co-workers (56) observed 57.8mgL�1 of amyl
alcohol in their young beer. The amyl alcohol yield measured in the
Brányik et al. (47) setup using brewer’s spent grains as yeast carriers
was somewhat higher and 60.1mgL�1 was measured. In an early
study, Smogrovicová and Dömény used calcium-pectate beads for
yeast immobilization and observed a similar amyl alcohol content
of 56.8mg L�1 (52). In this particular last mentioned work, the au-
thors used the same yeast strain and temperature (15°C) and a
similar wort gravity (11.5°P) as used in the current work, which
may also explain the similarity in the amyl alcohol content. Higher
te of Brewing & Distilling wileyonlinelibrary.com/journal/jib
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Table 2. Flavour-active compounds present in the outflow (young beer)

Compound Concentration (mg L�1) at:

120 h 216 h 264 h 384 h

Ethyl acetate 3.33 15.38 28.86 36.71
Isoamyl acetate 0.09 0.65 1.24 1.99
Ethyl butyrate – 0.02 0.03 0.07
Phenyl ethyl acetate 0.30 0.33 0.49 0.52
Ethyl hexanoate (caproate) 0.008 0.04 0.05 0.14
Ethyl octanoate (caprylate) 0.005 0.02 0.07 0.14
Ethyl decanoate (caprate) 0.001 0.004 0.04 0.04
Total esters 3.73 16.44 30.78 39.60
Amyl alcoholsa 24.55 28.24 52.37 55.50
Isobutanol – 4.76 11.05 11.55
2-Phenylethanol 40.28 40.42 61.49 67.55
Total higher alcohols 64.83 73.43 124.91 134.60
A/Eb 17.38 4.47 4.06 3.40
a3-Methyl-1-butanol and 2-methyl-1-butanol;
bhigher alcohol to ester ratio.
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alcohols production is totally dependent on the fermentation
conditions adopted and is usually enhanced by conditions that
favour yeast growth (43,57). The isobutanol levels measured in
the current work are also in agreement with published data for
green beer produced by ICT (47,52). Surprisingly, the level of
2-phenylethanol was high in the green beer produced from 11°P
wort (Table 2), which could ultimately contribute to a pleasant
floral aroma in the finished beer.

Esters are pleasant aroma compounds present in beer and contri-
buting positive notes such as flowers, honey and fruity. They are
mainly produced during the initial phase of primary fermentation,
by the action of yeast acyltransferase activities catalysing the conden-
sation reactions between either acetyl/acyl-CoA and higher alcohols
or ethanol. Accordingly, successful primary beer fermentation must
produce enough esters that will be present in the final product.
The ester most present in beer is the fruit/solvent-like ethyl acetate,
which has a flavour threshold around 25–30mgL�1 (55,58). For the
current work, this threshold was reached at the beginning of the
steady phase of the continuous experiment (11°P). From this time
Figure 3. Correlations between the total biomass (Xtot) present in the gas-lift reactor a
colour online at wileyonlinelibrary.com/journal/brewing.
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onwards, the ethyl acetate values changed only slightly up to
36.7mgL�1 at the end of the continuous fermentation. This number
is higher than any other data found in the literature and is also in
accordance with past works regarding the overproduction of ethyl
acetate by ICT systems (3,52,56,59–61). Ester production is greatly
influenced by yeast strain, pitching rate, temperature, top pressure,
aeration and agitation (43). An increased production of acetate esters
by immobilized yeast was evidenced during beer fermentation
owing to higher ATF1 gene expression in immobilized cell population
when compared with free cells (62). Alcohol acetyltransferase (ATF1
and ATF2) gene expressions are the most important aspects deter-
mining acetate ester levels during fermentation (63). Isoamyl acetate
is also an important constituent of the final beer with threshold
values around 1.2mgL�1 (55). The performance of the current setup
regarding the production of isoamyl acetate was also superior to
other data involving primary beer fermentation (3,51,59). However,
very high isoamyl acetate levels are not desired in lager beers.

Medium-chain fatty acid (MCFA) ethyl esters such as ethyl
hexanoate (caproate), ethyl octanoate (caprylate) and ethyl
nd the outlet content of total esters and higher alcohols. This figure is available in

J. Inst. Brew. 2014; 120: 500–506te of Brewing & Distilling
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decanoate (caprate) are produced at much lower levels than ace-
tate esters in beer (58). Thus, ICT studies often focus more atten-
tion on the acetate family rather than the ethyl ester group. The
MCFA ethyl esters measured in this study were consistent with
past records involving immobilized yeast during primary beer fer-
mentation (52,56,59–61). Table 2 shows the ester profile of the
green beer at different fermentation times for the present work.

Both higher alcohols and esters present in the green beer
from the outflow of the gas-lift reactor could be correlated with
Xtot (Fig. 3) for a specific sampling time. This data can give crucial
insights for planning new continuous fermentations. The use of
higher pitching yeast rates on the start-up of the reactor may
also accelerate the expected results.
50
Conclusions
The current work has shown that it is feasible to use floccula-
tion as a single method of yeast immobilization in a gas-lift bio-
reactor for continuous primary beer fermentation. This fact is
supported not only by the successful tendency for biomass
accumulation relying only on self-aggregation of yeast cells,
but also by the good performance on specific saccharide
consumption and ethanol volumetric productivity demonstrated
in this work. The feasibility of biomass accumulation through
flocculation is supported by hydrodynamic (favouring cell–cell
collisions) and environmental conditions (low sugar and high
ethanol) in the gas-lift reactor. The data obtained was compara-
ble to other ICT systems using several types of yeast carriers in
gas-lift reactors. It is important to bear in mind that, although
these results are very promising, the experiments were carried
out at the laboratory scale and more experiments should be
carried out if this setup is to be scaled up. Keeping the compo-
sition of the wort as constant as possible is highly recom-
mended as otherwise it could interfere with biomass build-up
during the start-up of the reactor. A carrier-free setup would
provide advantages concerning the financial cost and manage-
ment of the reactor when scaled up.
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