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Abstract. ZLIB is used in diverse frameworks by the scientific com-
munity, both to reduce disk storage and to alleviate pressure on I/O.
As it becomes a bottleneck on multi-core systems, higher throughput
alternatives must be considered, exploring parallelism and/or more ef-
fective compression schemes. This work provides a comparative study of
the ZLIB, LZ4 and FPC compressors (serial and parallel implementa-
tions), focusing on CR, bandwidth and speedup. LZ4 provides very high
throughput (decompressing over 1GB/s versus 120MB/s for ZLIB) but
its CR suffers a degradation of 5-10%. FPC also provides higher through-
puts than ZLIB, but the CR varies a lot with the data. ZLIB and LZ4
can achieve almost linear speedups for some datasets, while current im-
plementation of parallel FPC provides little if any performance gain.
For the ROOT dataset, LZ4 was found to provide higher CR, scalability
and lower memory consumption than FPC, thus emerging as a better
alternative to ZLIB.

Keywords: Data Compression, Scientific Data, ROOT, Parallel Com-
pression, ZLIB, LZ4, FPC.

1 Introduction

Technological developments have lead to increasingly more powerful data pro-
cessing systems, higher-resolution sensors and higher bandwidth communication
networks. Yet systems are getting increasingly farther from Amdahl’s balanced
computing system [1], as the abilities to create, process, distribute and store
data have not grown equally. In particular, the availability of multi-core sys-
tems has greatly amplified the ratio between the available computational power
and the available input/output bandwidth [2]. As the potential of ”big data”
repositories in our society is explored [3,4], this balance between the system’s
ability to analyse, to transmit and to store data becomes even more important.
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The same applies to the techniques that can affect it, such as caching, pre-
fetching and compressing the required data.

Data compression, in particular, has been used for many years to trade com-
puting power for storage capacity as well as for network and storage bandwidth
whenever the first more abundant than the later ones. It has been used to im-
prove disk space utilization with compressed packages or file-systems, to speedup
WAN traffic over slow links and to increase write bandwidth in some solid-state
disks. It also presents a large potential for specialized libraries such as NetCDF,
HDF5 and ROOT to store scientific data in more compact forms. Taking into ac-
count the 2:1 file size reduction allowed by the LZ77 compression, very significant
savings in terms of network bandwidth and disk space are achieved in datasets
such those from the LHC’s ATLAS (A Toroidal LHC Apparatus) experiment [5],
which start in the multi-petabyte range, and that after several pre-processing
stages, the data reaches the analysis applications still in the tens of terabytes
range.

In [6] it was identified that in the analysed application the processing time
associated with compression was indeed significant, where the ZLIB library took
18% of the total CPU-time to expand data prior to analysis. Some of that over-
head can be offset by the reduced time associated with writing and reading less
data to disk, as long as compression/decompression bandwidth exceeds storage
bandwidth. But modern storage systems with well behaved usage patterns can
provide much more bandwidth than ZLIB decompression can handle, both be-
cause a single modern disk is already capable of sequentially reading faster than
the 120MB/s decompression bandwidth achieved by ZLIB in a single processor
core (Intel Xeon E5620) and because ZLIB does not support multiple threads.

As ZLIB compression and decompression becomes a bottleneck, techniques
must be devised to improve performance while maintaining the advantages of
compression. This work focuses both alternative compression methods, that
could provide higher bandwidth, and implementations with a level of parallelism,
that could properly explore multi-core systems. We present a comparative per-
formance study of six compressors, in terms of bandwidth, compression ratio
(CR) and scalability, using a group of different numeric scientific datasets. This
approach permits assessing the compressor behaviour in the context of ROOT
files and a few other application areas where compression can be beneficial.

This work focuses on the study of the serial compressors gzip, LZ4 and FPC
and their respective multi-threaded counterparts pigz, lz4mt and pFPC.

2 Background Information

Scientific data compression has been used extensively, and in situ techniques are
also on the rise [7,8,9]. For instance, in the ROOT toolkit [10], compression is
used to deal with large volumes of information such as that generated by the
Large Hadron Collider’s (LHC) experiments. The approach there is to compress
objects with the general purpose ZLIB or LZMA compressors prior to writing
the data nodes to disk.
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ZLIB and LZMA compression is asymmetric, the decompression time can be
very small compared to the compression time, which makes it fitting for data that
has to be read multiple times. Although they achieve very good CR on general
purpose data, it is at the cost of both being time-consuming compressors. Several
high-bandwidth compression algorithms have been developed in recent years,
sacrificing some CR for faster execution times. LZ4 is a good representative of the
modern high-performance compressors, and a potential alternative to ZLIB for
ROOT, as it is about an order of magnitude faster than ZLIB when compressing,
and around five times faster at decompression [6].

Recent research has focused on the development of compression techniques
that explore domain knowledge to achieve higher CR or increased throughput,
including techniques with large potential such as compressive sensing, but differ-
ent application domains may require different techniques and yield very different
results, so, that potential is hard to explore. The FPC lossless compressor is
one example that uses context information to effectively compress and decom-
press 64-bit double precision floating-point data. Another one is the compression
scheme based on entropy coding that is used in ALICE (A Large Ion Collider
Experiment) hosted at CERN, where the differences of the times in two consecu-
tive bunches (group of adjacent samples coming from the sensor pad), produced
by ALICE’s Time Projection Chamber detector, are coded [11], reducing the
entropy of the source by exploiting the time correlation present in the data.

2.1 Compressor Algorithms

The gzip compressor implements the DEFLATE algorithm, which is an evolution
of original LZ77 [12]. It is a well-known general-purpose compression system,
providing high CR at the cost of performance, due to the use of a form of entropy
encoding (Huffman coding). The algorithm is very asymmetric, with compression
taking between 2.5 and 10 times the decompression speed, depending on the
compression level selected and the input data.

LZ4 by Collet [13] is also a lossless compressor based on LZ77 algorithm, but
on current multi-core systems it can reach throughputs of more than 400MB/s
per core when compressing, while during decompression it can achieve more than
1.8GB/s1, bound only by RAM bandwidth. The algorithm works by finding
matching sequences and then saving them in a LZ4 sequence using a token, that
stores the literals length (uncompressed bytes) and the match length, followed
by the literals themselves and the offset to the position of the match to be copied
from (i.e. a repetition). There are optional fields for literals and match length if
necessary, and the offset can refer up to 64KB. With the offset and the length of
the match the decoder is able to proceed, and copy the repetitive data from the
already decoded bytes. The simplicity of the algorithm together with the fact
that entropy coding is not used makes LZ4 decompression very fast.

FPC [14,15] is a lossless compression algorithm for linear streams of 64-bit
floating-point data. This compressor is based on a fast compression algorithm,

1 http://code.google.com/p/lz4/ Accessed March 6th.

http://code.google.com/p/lz4/
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tailored for scientific floating-point data compression on high-performance en-
vironments, where low latencies and high throughput are essential. The FPC
algorithm can be implemented entirely with fast integer operations, resulting in
a compression and decompression time one to two orders of magnitude faster
than other more generic algorithms. It starts by predicting each value in the
sequence and performing an exclusive-or operation (xor) with the actual value.
A good prediction results in a substantial number of leading-zeroes in the cal-
culated difference, which are then encoded by simply using a fixed-width count.
After each prediction the predictor tables are updated with the actual double
value to ensure that the sequence of predictions are the same during both com-
pression and decompression. The remaining uncompressed bits are output in the
end, after the count of leading-zeroes.

2.2 Block-Oriented Parallel Compression

When a stream can be divided in blocks, and in order to increase throughput, the
processing can be parallelized as each block is delivered to a different thread and
handled independently. But this approach carries some restrictions, as resulting
compressed blocks have to be joined into the final output and that may or may
not be a simple operation, depending on how the stream is concatenated. While
LZ4’s output stream is byte aligned, in ZLIB the intermediate output streams
are bit aligned, so concatenating them implies a time-consuming data shift. To
bypass the shift, intermediate blocks have to be terminated explicitly, which
consumes more space (5-6 bytes per block) on the final output stream.

The compressor can also take longer to reach an effective dictionary, lowering
the CR, as the contextual information is less rich. Due to this, it should be noted
that block parallelism is effective only when processed in blocks of a significant
size, and, produces less compressed outputs than a single block implementation.

The use of large data blocks may also not be straightforward. ROOT files,
for example, have a tree-like internal structure in which only data nodes are
compressed, with many being less than 10K bytes. Multiple threads can still be
used in this case, each writing a different data node, but it requires that multiple
threads access ROOT’s internal structures concurrently, which is only possible
after ROOT version 6.

2.3 Multi-pass Compression

When data streams must be compressed immediately as they reach the com-
pressor (such as low-memory or low-latency communication systems), or when
forced to use small data blocks, improving performance by block parallelization
becomes more difficult. Multi-pass compression is an alternative approach that,
in very particular circumstances that depend on the type of input data, may
yield significant compression rates.

Multi-pass compression consists of performing multiple passes of the compres-
sor, with a high-bandwidth compressor on a first stage and a high-compression
compressor in a second stage. The rationale is that a high-performance first



Two High-Performance Alternatives to ZLIB Scientific-Data Compression 627

stage compressor can reduce the stream significantly, leaving a more thorough
analysis to the second compressor that has less data to deal with. To use this
technique the higher level redundancy must remain visible to the second com-
pressor, which happens with LZ4 but not so much with the bit-oriented output
streams generated by ZLIB. It also requires that not all redundancy is seen by
the first level compressor, otherwise the second level will see no compression
improvement. And while a more capable first stage compressor could be aware
of the higher-level redundancies and eliminate them, a real advantage of this
approach is that it may achieve similar results in less time.

In very redundant log data the results are surprising enough to be worth
mentioning2, but we found no evidence of this being the case in our scientific-
data streams. In particular, we found that a 3.5GB binary log file from a profiling
application could be compressed with ZLIB to 54MB on a first pass and to 17MB
in a second. With LZ4 on both stages, the first pass left the file at 56MB and the
second at just over 9MB. With high-compression LZ4 (LZ4HC) on both stages,
the first pass got a 44MB file, the second pass a 2MB, and after a few more
rounds the file was left with a 750KB size. In terms of throughput, a single step
from that application using ZLIB took 265ms, while the same step with LZ4
and two additional passes of LZ4HC took only 16ms. It also proved effective
with some text files, where one pass with LZ4 and one with LZ4HC ended up
producing a similar size file as a single LZ4HC, in one fifth of the time.

3 Evaluating Compressor Performance

In this section the main considerations regarding testing the compression perfor-
mance are presented, including characterization of the datasets and the testing
procedures.

3.1 Evaluation Datasets

The compressors were tested with several numerical datasets from different back-
grounds and sources (see Table 1). The six different disciplines covered by the
33 datasets, mostly from simulation programs, go from molecular and electronic
structure modelling, through message, numeric and observational data to par-
ticle collision simulation data. After an initial evaluation of the 33 datafiles,
a selection of five was made consisting of only one datafile per datagroup,
based on its properties and characteristics being representative of each group
(Table 2). The entire dataset can be consulted on Table3.

3.2 Dataset Preparation

The datafiles used came in many different source formats (some in binary and
others in text format). FPC compresses only double-precision floating-point

2 A public discussion on this topic is available at
https://groups.google.com/forum/#!msg/lz4c/DcN5SgFywwk/AVMOPri0O3gJ.

https://groups.google.com/forum/#!msg/lz4c/DcN5SgFywwk/AVMOPri0O3gJ
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Table 1. Characteristics of the datagroups

Datagroup #Files Research Area Software Data Type

waterglobe 6 water nanodroplet TINKER text
engraph 3 graphene flake TINKER text
gauss09 4 graphene nanoribbon Gaussian 09 text
sci-files 13 message, numeric, observational diverse sources doubles
NTUPs 7 particle collision simulation LIP code ROOT files

data, so in order to compare the compressors properly the input files had to
undergo some transformation in order to be stripped of additional information
and converted to binary, 64bit floating-point numbers.

3.3 Dataset Information Content

The information contents of the datasets are presented in Table 2. Equation (1)
describes the percentage of uniques in a dataset, where V is the original vector
consisting of all values, and VUnique is the vector with duplicates removed.

Uniqueness =
|VUnique|

|V | × 100% . (1)

H(V ) = −
N∑

i=1

p(xi)× log2p(xi) . (2)

Randomness =
H(V )

H(Randomunique(|V |)) × 100% . (3)

Equation (2) represents the Shannon entropy H(V ), where N is the number
of distinct elements xi, and p(xi) the probability of those elements, i.e., the
number of xi occurrences divided by the total number of elements in the file. An
element of a dataset depends on the datatype that composes it (8bits ASCII,
32bits single, 64bits double). The randomness is closely related with the entropy
as described in (3). Its value reflects how close the Shannon entropy of the
datafile is to that of a true 100% unique random datafile with the same number
of elements.

These datasets have high degrees of random entropy, in average 81.43%, which
indicate that entropy coding will not be very effective and low compression ratios
should be expected. The molecular mechanics data correspond to Cartesian co-
ordinates and velocities which by definition have very low content in zeros. Inter-
estingly, the waterglobe.vel has a lower value of randomness than the Cartesian
coordinates as the atomic velocities on a molecular dynamics simulation of an
equilibrated system are by definition periodical. The electronic density matrix
(gauss09 density) was chosen as it has a very low zero content and, expected,
high randomness. It is relevant to point out that engraph and the gauss09 density
are calculations on graphene systems which are highly regular.

The uniqueness varies more and reaches an average of 44.66%, whilst some
files barely contain unique values, others are almost entirely composed of them.
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Table 2. Information details from the selected five datasets. R-ness is the Randomness.

Datafiles Size(MB) #elements Unique% Zeros% Entropy R-ness%

waterglobe.vel 1318 172800000 3.30% 0.00% 21.466 78.44%
engraph1 100 650 85190400 72.88% 0.00% 25.664 97.42%
gauss09 density 128 16753366 39.78% 0.05% 22.535 93.90%
msg sp 277 36263232 98.95% 0.00% 25.032 99.68%
NTUP2 floats 1433 375644746 28.70% 38.77% 15.116 53.07%

AVG (all) 860 163954134 44.66% 10.47% NA 81.43%

What is interesting is that even the files with low uniqueness are highly random
(high randomness%). With this early but quite insightful statistical character-
ization we can already predict that NTUP datagroup (only one shown) should
have the best CR with entropy coders (gzip/pigz). No prediction can be made
for the FPC compressor, as that would require knowledge about the smoothness,
or data continuity of the datasets, which was not analysed.

The metrics calculated here agree with the values from the sci-files datagroup
as described in [15,7]. The overall dataset seems well balanced, with datafiles
that cover many possible combinations.

3.4 Measuring Parallel Scalability

In order to assess the scalability potential of the algorithms two metrics were
considered: speedup ratio and parallel efficiency. Speedup compares the perfor-
mance of the parallel version to that of the serial version. It is the ratio between
the execution time of a compression cycle using the serial compressor and the
execution time of the same compression using the multi-threaded compressor,
as shown in (4):

Speedup =
exec timeserial
exec timeparallel

=⇒ Spt =
Ts

Tt
. (4)

where Ts is the execution time of the serial version and Tt is the execution time
of the parallel version, executed with t threads.

Efficiency is the ratio of the achieved speedup with the expected maximum
gain, as defined in (5):

Efficiency =
Speedupparallel

#threads used
=⇒ Eft =

Spt
t

. (5)

where Spt is the measured speedup for that number t of threads used.

3.5 Parallel Decompression

In pFPC the decompression is symmetric to compression, so in both cases data
is chunked and assigned to threads as needed. Due to its internal mechanics,
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pFPC performs slower on decompression, but with an approximately linear be-
haviour where higher compression levels come with increasing compression and
decompression times.

In ZLIB and LZ4 the decompression is simpler and much faster than com-
pression. In fact, a single LZ4 decompression stream reaches a large portion of
the available memory bandwidth. The decompression does not depend on the
selected compression level (asymmetric), and there is very limited opportunity
to explore parallelism. In fact, in lz4mt and pigz, decompression in parallel is not
really implemented. Although pigz uses a single main thread for decompression,
it creates three other threads for reading, writing, and checksum calculations,
which can speed up decompression under some circumstances.

3.6 Test-Bench Characterization

The results presented in the following section were performed in cluster nodes
containing two six-core Intel Xeon X5650 @ 2.66GHz CPUs and at least 12GB of
RAM. Hyper-Threading technology was enabled, given that integer performance
benefits from it, so a maximum of 24 threads per node were tested.

All timing measurements are represented by the walltime reported by the rou-
tine omp get wtime() from the OpenMP API. To obtain consistent results, for
each file there are nRuns executions of compression and decompression per com-
pression level (dependent on the compressor), written to the local hard drive disk
and to /dev/null (i.e. data is discarded), which are then transferred compressed
(but not measured), through the local network, as evaluated in [16].

The parallel scalability tests ran the same sequential tests, and the number
of concurrent threads used (nthreads) is passed as a parameter. In each com-
pression/decompression loop, the call for the compress(file) or decompress(file)
receives nthreads. The amount of nthreads used correspond to the sequence
(1,2,4,6..24), i.e. one, two, four, six... until twenty four, hence thirteen different
tests in total.

4 Results and Discussion

The following sections present the CR, serial and parallel throughput, speedup
ratio and memory requirements of the aforementioned compressors, as described
in the previous section.

4.1 Compression Ratio and Serial Throughput

Figure 1 depicts the throughput of the three serial compressors, for both com-
pression and decompression, and the CR yield for the datafile NTUP2. Interval
bars are used for the three metrics, representing the minimum and maximum
values measured from the five selected datafiles. Three compression levels are
used for each compressor, with the exception of LZ4 that only has two modes.
The levels are the minimum compression allowed by the algorithm, a selected
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Fig. 1. Bandwidth of compression and decompression from the three different algo-
rithms using NTUP2. The attained compression ratio for each compressor is read on
the right y axis.

intermediate level and the maximum (FPC compression has no theoretical max-
imum, but is bound by the amount of RAM).

The bars in Fig.1 demonstrate immediately the performance advantage of
both LZ4 and FPC compared to gzip’s lower compression and decompression
bandwidth. The compression bandwidth is largely dependent of the compression
level selected. In case of gzip (ZLIB), while the highest level of compression is
barely readable (8MB/s), the lowest level is able to reach 48MB/s. In the case
of LZ4 the difference is dramatic, as the highest level of compression reaches
34MB/s while the lowest reaches 472MB/s. Regarding FPC, it ranged from
136MB/s to almost 400MB/s.

Comparing to the 120MB/s of ZLIB, LZ4 showed a decompression bandwidth
of 1.3GB/s for one of the five datafiles. For NTUP2, LZ4 reached almost 1GB/s,
while FPC decompression bandwidth ranged from almost 800MB/s and down
to 63MB/s (depending on the compression level).

Nevertheless, ZLIB provides the highest CR of 2.19 (with a maximum of
3.87), followed by lz4hc with 2.10 (with a maximum of 3.33), lz4 with 1.97 (with
a maximum of 2.80), and finally FPC with 1.59. For some other datasets FPC
reached the highest CR by a huge difference, e.g. datafile num plasma attains a
CR of 15 (see Table 3), but for the selected five the maximum CR of FPC is only
1.72 (reached when working with the gauss09 alpha dataset) and compression
level 12. The CR varies a lot because the advantages of domain knowledge and
the heuristics used depend strongly on the data.
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4.2 pFPC Irregular Compression Ratio

When it comes to the variability of CR there are some unexpected events with
pFPC, as higher compression levels may lead to lower compression. pFPC assigns
each thread with chunks, representing a quantity number of double-precision
floats to compress (8192 was the elected chunk size), and as more threads are used
they will only compress certain parts of the data for the input datafile. Depending
on the dimensionality (e.g. number of variables) of the data, the threads receive
a chunk and can end up getting the values from the same dimension (variable)
as they process the file. Therefore, this will affect the predictions and CR for the
best if the same dimension ends up with same thread, or for worse if the threads
get chunks from different dimensions.

Figure 2 presents the CR obtained with pFPC for the five datasets varying
the compression level. The pattern that appears with gauss09 alpha repeats
itself, much more subtly, with engraph1 100. Both datasets show a decrease in
CR which then starts to recover with higher levels. With waterglobe.vel.bin the
CR line starts to decline after compression level 17 (not visible on current scale),
while with NTUP2 it starts to increase after level 14. These events depend on the
file itself and the compression level of FPC/pFPC, as these algorithms are based
on predictors. The predicted values change with each compression level, thus
giving a chance to expose these behaviours. Summing up, higher compression
levels in FPC/pFPC do not always yields higher compression ratios.
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Fig. 2. Compression ratio versus compression level in pFPC

4.3 Parallel Speedup Ratio

Figure 3 presents comparative plots for the speedups of the parallel compressors
versus the serial compressors. To compare the speedup ratio from different com-
pression levels, three levels were used, low, medium, and high compression, with
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the exception of lz4/lz4mt that only have low and high compression levels. The
NTUP2 dataset is used as the baseline, the remaining four datasets are repre-
sented as interval bars (minimum and maximum). The value ’one’ corresponding
to x=0 represents the baseline for the speedup, and the values on x=1 represent
one-threaded version of each compressor/parameter.

Figure 3 shows that speedup varies significantly, either with the datafiles, the
compression level used or the compressors themselves. It is split in high and low
speedups in order to improve readability. The best performing compressor is pigz
when used with maximum compression. After 12 threads, when the maximum
number of cores run is reached, the speedup increases more modestly, which
demonstrates the benefits of hyper-threading in this kind of workload.

Speedups are larger with more demanding compression levels, as higher com-
pression levels usually mean more computations, thus, longer execution times
and a better chance to explore parallelism. This is indeed observable in almost
every case for the initial nthreads, most notably on pigz with compression level
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9, that yields the highest speedups of this study. On the opposite, lz4mt and
all pFPC levels show very poor speedups. Using LZ4 in the fast mode is so fast
that using multiple threads can actually reduce performance (when the datasets
are small the execution times are really low). However, when datasets are big-
ger and/or the compression level is increased it leads to longer execution times,
which in turn yields higher compression speedup (lz4mthc achieves a speedup
close to 11 using 12 threads).

Super-linear speedups, or ratios above one, appear mostly with higher com-
pression levels on pigz, and less frequently lz4mt, depending on the datafile. This
arises from the fact that the parallel implementation is at times faster than the
simpler serial algorithm, which was unexpected. This is particularly noticeable
when 12 threads are used.

pFPC shows the worst scaling, presenting the lowest speedup values since the
first nthreads. The overhead of the multi-threaded version is specially negative
for pFPC.

Depicted in Fig.4 is the speedup versus the compression level, using 12 and
24 threads, in order to assess the scalability of the algorithm when the level of
compression is increased. The top left plot (pigz 12 threads) shows once again
that pigz was faster with one thread than gzip, as the speedups consistently
surpass the theoretic limit of 12. The same does not happen with pFPC, that
shows a peak followed by a drop with higher compression levels. The behaviour
is the same with 12 or 24 threads, with the nuance that the speedups of two files
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(gauss09 alpha and msg sp) drop below one with 24 threads when maximum
compression settings are used.

4.4 Memory Requirements

The memory required for ZLIB and LZ4 serial compression and decompression is
insignificant in a modern system. Nevertheless, the respective parallel compres-
sors, pigz and lz4mt, do use more memory than their serial counterparts. The
values observed for pigz were around 10MB with 12 threads and 18.5MB with 24
threads, while lz4mt reserves about 100MB and 196MB with 12 and 24 threads
respectively. For decompression the memory requirements are very similar, and
only 100-400KB lower for both the gzip/pigz and LZ4/lz4mt compressors.

When it comes to FPC memory usage, and in particular to the parallel pFPC,
the requirements can be much higher. Serial FPC allocates a table with 2n+4

bytes of memory, while pFPC allocates 2n+4 bytes for each thread, with n being
the compression level selected. This means that the amount of memory used

Table 3. Highest CR and speedup values for each datafile. The third and sixth columns
contain, enclosed in square brackets, the algorithm, number of threads and compression
level that originated these values.

Largest CR Largest Spt
Datafiles CR Conditions MB/s Spt Conditions MB/s Eft

waterglobe.arc.txt 2.14 [gzip 1 8] 7.3 17.94 [pigz 24 9] 131.6 0.75
waterglobe.1col.arc.txt 2.20 [gzip 1 8] 6.2 18.17 [pigz 24 8] 111.9 0.76
waterglobe.vel.txt 2.19 [gzip 1 8] 6.7 18.10 [pigz 24 8] 122.1 0.75
waterglobe.1col.vel.txt 2.27 [gzip 1 8] 5.3 18.41 [pigz 24 9] 97.1 0.77
waterglobe.arc.bin 1.20 [gzip 1 3] 20.0 16.35 [pigz 24 8] 286.0 0.68
waterglobe.vel.bin 1.48 [gzip 1 5] 19.1 16.12 [pigz 24 5] 307.6 0.67
engraph1 100.txt 2.33 [gzip 1 9] 5.7 18.60 [pigz 24 8] 106.5 0.78
engraph1 100.1col.txt 2.44 [gzip 1 9] 5.0 19.18 [pigz 24 9] 95.5 0.80
engraph1 100.bin 1.22 [gzip 1 3] 20.3 16.42 [pigz 24 7] 276.4 0.68
gauss09 alpha.txt 4.37 [gzip 1 9] 1.9 20.85 [pigz 24 9] 39.4 0.87
gauss09 density.txt 2.36 [gzip 1 9] 4.1 19.28 [pigz 24 9] 78.6 0.80
gauss09 alpha.bin 3.87 [gzip 1 9] 4.6 18.25 [pigz 24 9] 84.7 0.76
gauss09 density.bin 1.09 [FPC 1 24] 82.8 14.83 [pigz 24 9] 294.5 0.62
msg bt 1.29 [FPC 1 24] 82.4 16.06 [pigz 24 9] 263.5 0.67
msg lu 1.17 [FPC 1 20] 173.7 15.92 [pigz 24 7] 279.4 0.66
msg sp 1.26 [FPC 1 24] 116.7 16.47 [pigz 24 9] 217.9 0.69
msg sppm 7.43 [gzip 1 9] 314.8 15.84 [pigz 24 8] 360.0 0.66
msg sweep3d 3.09 [FPC 1 24] 166.3 15.40 [pigz 24 7] 272.4 0.64
num brain 1.16 [FPC 1 24] 96.0 15.68 [pigz 24 5] 263.2 0.65
num comet 1.16 [gzip 1 9] 88.7 15.76 [pigz 24 9] 236.3 0.66
num control 1.16 [gzip 1 9] 18.0 15.53 [pigz 24 7] 280.0 0.65
num plasma 15.00 [FPC 1 24] 127.3 13.05 [pigz 24 5] 322.3 0.54
obs error 3.54 [FPC 1 24] 91.4 15.94 [pigz 24 8] 193.2 0.66
obs info 2.27 [FPC 1 24] 65.7 12.30 [pigz 20 7] 232.8 0.62
obs spitzer 1.23 [gzip 1 3] 18.0 16.45 [pigz 24 9] 203.7 0.69
obs temp 1.04 [gzip 1 4] 18.3 13.56 [pigz 24 6] 247.7 0.56
NTUP1 floats.bin 2.19 [pigz 1to24 9] 107.8 16.19 [pigz 22 9] 116.2 0.74
NTUP2 floats.bin 2.19 [pigz 1to24 9] 107.9 16.20 [pigz 22 9] 116.3 0.74
NTUP3 floats.bin 2.19 [pigz 1to24 9] 107.6 14.47 [pigz 22 8] 257.2 0.66
NTUP4 floats.bin 2.19 [pigz 1to24 9] 107.8 14.44 [pigz 22 8] 257.1 0.66
NTUP5 floats.bin 2.19 [pigz 1to24 9] 107.7 14.49 [pigz 22 8] 257.6 0.66
NTUP1to5 doubles.bin 4.27 [pigz 1to24 9] 94.9 14.76 [pigz 22 3] 884.7 0.67
NTUP1to5 floats.bin 2.19 [pigz 1to24 9] 114.4 14.84 [pigz 24 8] 263.8 0.62
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grows exponentially with the compression level selected. For decompression both
FPC and pFPC require about the same memory, because it is needed to refill
prediction tables upon the decompression process.

In [15] FPC was tested with n=25, so it took 225+4 = 512M bytes of memory,
but in order to use the same compression level with 24 threads the tables would
occupy 12GB of memory, which was unavailable in the testing nodes. To stay
within the limit n was set to n = 24, which allows for the use of all available
threads 24× 224+4 = 6GB of memory.

4.5 Compression Ratio and Speedup over the Full Dataset

The highest CR and highest speedup measured are presented on Table 3, with
CR summarized on the left three columns and speedup on the rightmost four
columns. The speedup values have an extra fourth column that presents the
associated parallel compression efficiency of the best attained speedup. As one
can verify, the serial algorithms have the best CR, with the exception of NTUPs
that are best compressed with pigz, which is also the compressor that achieve
highest speedups. The best compression ratios come mostly from higher com-
pression levels, which is expected. pigz has the best speedup for every dataset,
with mostly 24 threads, and an overall efficiency above 66%.

5 Conclusions

Selecting an effective compressor for large volumes of scientific data is not an
easy task. Firstly, scientific data can be generated and processed with many
different usage patterns, which means that the balance between compression
and decompression effort, and storage and communication requirements, are not
easy to find. Secondly, data can be highly heterogeneous, and the quality of
compression depend strongly on the very data. This is relevant, as for large data
volumes a poor compressor choice will needlessly increase the CPU time.

We studied high-performance alternatives to ZLIB for high energy physics
data and a combination of representative scientific datasets, the general purpose
ZLIB/gzip against LZ4 (another general LZ dictionary with increased perfor-
mance) and the floating-point data compressor FPC. Five datasets with an av-
erage random entropy (randomness) of 84.5% were selected, out of 33 datasets,
for a more thorough analysis.

In terms of performance, LZ4 is the fastest decompressor, and the faster com-
pressor but only on the lowest compression level. For parallel speedup, pigz yields
the best values, but is the slowest compressor when it comes to absolute serial
execution times. The most efficient parallel compressor is pigz, but closely fol-
lowed by lz4mt, presenting efficiency around one when 12 threads are used on a
12 core machine.

As expected, FPC achieved in some cases CR that were unattainable by gen-
eral purpose compressors [15], arising from the domain-knowledge in the algo-
rithm. We tested if FPC could be a potential alternative to the LZ4 compression
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system being implemented in the ROOT toolkit [17]. For 9 datasets FPC had
the highest CR of all compressors, while the gzip/pigz pair achieved the highest
CR of the remaining 24 datasets. In the five datasets analysed in more detail,
FPC shows the highest CR in two cases, but the maximum CR in those cases
was 1.29 on data that was difficult to compress by other means. In terms of
performance, FPC topped 20% below the performance of LZ4 low compression,
which is still much higher than ZLIB. However, parallel scalability was poor, as
the multi-threaded implementation seems not to be fully mature yet.

In the context of the high energy physics datasets studied, nevertheless, the
behaviour of FPC does not seem competitive. On the ROOT dataset the FPC
CR, less than 1.8, was much lower that both LZ4’s CR of 2 and ZLIB’s CR of 2.1.
Also, on practical systems the memory requirements for the pFPC compressor
will become critical. In fact, when high compression levels are used together with
many threads in pFPC several gigabytes of RAM memory are necessary. On the
other hand LZ4 performance is very good, CR degradation is limited and even
the parallel implementations use memory sparingly, not becoming an obstacle
for other application’s activities.
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