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ABSTRACT

Data Mining (DM) techniques have been successfully
applied to solve a wide range of real-world problems in
different real-world domains, particularly in the field of
geotechnical civil engineering. A remarkable example is
their use in Jet Grouting (JG) technology. Due to the
high number of parameters involved and to the hetero-
geneity of the soil, JG mechanical properties prediction,
as well as columns diameter, are complex tasks. Ac-
cordingly, the high learning capabilities of DM, namely
of the Support Vector Machine (SVM), were applied in
the development of new approaches to accurately per-
form such tasks. This paper aims to assess the SVM
model performance trained to predict Uniaxial Com-
pressive Strength (UCS) of JG samples extracted di-
rectly from JG columns, when applied to a new set
of records collected from a new JG work not contem-
plated in the database used during the model learning
phase. The achieved results highlight the importance of
the model domain applicability, as well as the restric-
tions and recommendations for its generalization when
applied to new JG work data not contemplated in the
training dataset.

INTRODUCTION

The capability to automatically learn from data is a
very attractive approach to extract useful knowledge.
Therefore, in the last decade the use of machine learn-
ing has spread rapidly throughout computer science
and beyond. Machine learning have shown to be very
useful to solve real-world complex problems. These
tools, supported on advanced statistics analysis, are
usually known as Data Mining (DM) techniques and
have been applied successfully in different knowledge
domains, such as in web search, spam filters, recom-
mender systems and fraud detection (Domingos 2012).

Taking advantage of its strong flexibility to deal with
high dimensionality problems, also in geotechnical civil
engineering field DM techniques were applied to solve
complex problems (Gomes Correia et al. 2013, Miranda
et al. 2011).

Following these successful applications, we applied for
the first time (from the best of our knowledge) DM
tools in the study of Jet Grouting (JG) technology,
namely for mechanical properties prediction of both lab-
oratory formulations (Tinoco et al. 2011), and field mix-
tures (Tinoco et al. 2012b;a). The developed model for
Uniaxial Compressive Strength (UCS) prediction of JG
mixtures (Tinoco 2012) are the target of the present
study, which represent a contribution for a better under-
standing of JG technology and therefore for its technical
and economic efficiency.

In few words, JG technology is classified as a grout-
ing on ground improvement methods and is defined as
placement of a pumpable material (normally a cementi-
tious material) directly into the subsoil, without previ-
ous excavation (Choi 2005). The cinematic energy of the
drilling fluid cut the soil, allowing its mixture with the
injected grout. At the end, a new material, also known
as soilcrete, with a controlled geometry structure is ob-
tained, presenting better physical and mechanical pro-
prieties when compared with natural soil. Indeed, JG
is actually a viable and economically attractive solution
for a large diversity of geotechnical problems when con-
ventional injection methods are unsuitable, unsafe or
too expensive, being nowadays one of the most soft soil
improvement methods widely applied worldwide (Poh
and Wong 2001).

However, despite of all its advantages and many years of
experience, JG design is still a complex and difficult task
to perform due to the high number of parameters in-
volved as well as the heterogeneity of the soil. Aiming to
overcome this problem, new approaches were proposed
based on advanced statistics analysis, usually know as
DM techniques, for JG mechanical properties prediction
of both laboratory formulations and field mixtures, as
well as for JG column diameter (Tinoco 2012).

An important issue related to any data-driven model is
its generalization capability, which is measured by the
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quality of the predictions for unseen data and is it re-
lated with the model’s applicability. Accordingly, and
although these issues have been taken into account dur-
ing the learning phase of the models through a cross-
validation approach, as detailed in Tinoco (2012), in
the present paper we evaluate how the developed model
for UCS prediction of soilcrete samples behave when
applied over a new set of records collected from JG
columns related to a JG work not contemplated in the
database used during the model learning phase. In this
paper, we intended, on one hand, to measure the influ-
ence of model domain applicability and, on the other
hand its generalization capacity, particularly when ap-
plied to data from a JG work different those used in the
model training.

MODEL CHARACTERIZATION

In the present work, the performance of the data-driven
models proposed in Tinoco (2012) for UCS prediction
of soilcrete mixtures are here applied over new data col-
lected from JG columns of a new JG work. Particularly,
we analyse the one who achieved the most interesting
results, either in terms of model performance and inter-
pretability, that is, the one developed using the Support
Vector Machine (SVM) algorithms (Tinoco et al. 2014),
termed in this paper as SVM-UCS.Field model.
A detailed and full description of SVM-UCS.Field
model as well as a complete characterization of the
dataset used to train it can be found in Tinoco (2012).
Following are just summarized the main aspects related
to this model, as well as to the dataset used to train it.
The input variables considered in SVM-UCS.Field
model were: JS - Jet System; W/C - Water Cement
ratio; ω - water content of the mixture; %Clay - per-
centage of clay in the natural soil; t - age of the mixture;
1/ρd - inverse of dry density of the mixture; Civ - volu-
metric content of cement; e - void ratio of the mixture;
n/(Civ)d - relation between mixture porosity and volu-
metric content of cement, and its statistics can be found
in (Tinoco et al. 2014).
Figure 1 depicts the relationship between experimen-
tal versus predicted values by SVM-UCS.Field model,
which achieved the most interesting result considering
the model’s accuracy and interpretability. As shown,
SVM-UCS.Field model was able to predict 81% of the
records with an absolute deviation lower than 2 MPa.
Moreover, for 13% of the remaining 19% of the records
where the absolute deviation is higher than 2 MPa, the
predicted value was above the real value. This means
that the prediction is on the safety side.
Taken into account that model accuracy is not enough
for its full assessment, Figure 2 shows and compares the
relative importance of each input variable according to
SVM-UCS.Field model, which was based on a global
sensitivity analysis (Cortez and Embrechts 2011). In-
terpreting this figure, we can see that the n/(Civ)d, JS,
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Figure 1: Relationship between UCS experimental ver-
sus predicted values by SVM-UCS.Field model

t and %Clay are the four key variables in UCS predic-
tion of soilcrete mixtures (Tinoco et al. 2014). Among
them it is identified one that is related to the soil type
(%Clay), another related with the JG process (JS) and
two others related to the JG mixture, namely its age
and the relation n/(Civ)d that combines the porosity
and cement content effect. In other words, to predict
UCS of soilcrete mixtures, the model ask for informa-
tion about the soil to be improved, how the improvement
was performed and the actual conditions of the obtained
mixture. Moreover, it is also interesting to observe that
such variable ranking has a physical explanation and is
empirically acceptable.

SVM MODEL PERFORMANCE OVER UN-
SEEN DATA

As summarized in previous section, SVM-UCS.Field
model achieved the best performance in UCS predic-
tion of soilcrete mixtures, when applied to a dataset
with 472 rows collected from five different JG works, for
which was applied a 20-fold cross-validation approach
during its learning process (Tinoco 2012).

Meanwhile, new records about UCS of soilcrete mix-
tures from another JG work (further identified by letter
C) were gathered and compiled into a new dataset with
31 rows. These new records were used in the present
study to assess SVM-UCS.Field model generalization
capacity when applied to data from a new JG work
not contemplated in the dataset used for its training
and measure the influence of model domain applica-
bility. Table 1 summarises the main statistics of this
new dataset over which SVM-UCS.Field model was ap-
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Figure 2: Relative importance of each input variable
according to SVM-UCS.Field model, quantified by 1-D
sensitivity analysis (Tinoco et al. 2014)

plied to predict UCS. Comparing this table with those
in (Tinoco et al. 2014) that summarizes the statistics of
SVM-UCS.Field model attributes we can see that the
range of n/(Civ)d, 1/ρ and e variables of the new dataset
is not totally inside of the range of the dataset used dur-
ing the learning process of the models. Particularly, the
first one is a key variable in the model and was based
on it that some records were defined as outside model
domain. This particular situation will allow us to as-
sess SVM-UCS.Field model performance when applied
to different/new conditions (extrapolation) when com-
pared to the model learning conditions. In other words,
will allow us to measure the influence of model domain
applicability. Accordingly, it was defined that a new
record is inside model domain if only the value of all
input variables are within model attributes range. If at
least one input variable is out of the model attributes
range, then this record is considered as outside model
domain. We tested other strategies for the definition of
inside/outside model domain samples, such as cluster-
ing (e.g. k-nearest neighbour algorithm), but achieved
identical results and hence we adopt the simpler domain
range rule.
Moreover, in order to establish more evidence-based
conclusions about the generalization capacity of SVM
algorithm, as well as SVM models domain applicabil-
ity influence, an external cross-validation, using the JG
work site as a criterion, was applied for all six JG works
actually available. This mean that we iteratively remove
one work site from the database, train the model with
five JG works and apply it in the prediction of the re-
moved work site records. In these cases, t and %Clay
were the main variables that defined some records as
outside model domain.
Figure 3 depicts the relationship between UCS exper-

imental versus SVM models predicted values for all
records inside model domain, under an external cross-
validation approach as above defined.
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Figure 3: Relationship between UCS experimental ver-
sus predicted values by SVM models for records inside
model domain

The achieved results show that SVM models have some
difficulties to predict accurately UCS of soilcrete sam-
ples collected from JG columns from a new JG work
not contemplated in the model learning phase. The dis-
persion shown in Figure 3 was also observed for those
records defined as outside models domain.
Therefore, these results lead us to underline that SVM
models trained to predict UCS of soilcrete mixtures
should be careful applied in UCS prediction of new
records related to a JG work not contemplated in the
model learning phase. This results underline the current
practice in JG works, where before built the project
columns, some test columns need to be built in order
to define each JG parameter that accomplish project
requirements. It should be stressed that these test
columns are compulsory for each new JG work.
In order to corroborate this statement, an additional
experience was performed. This experiment consists on
applying an external cross-validation approach as above
describe, but for the model learning phase additional
to the records related to the five JG works, it was also
added a percentage of records from the sixth work. Ac-
cordingly, and taken into account the amount of data
normally collected from JG test columns, a percentage
of 15% and 25% were considered. Moreover it was also
performed an experiment with a training dataset con-
taining 75% of the records from the sixth work. For
example, and following the strategy of 25%, the SVM
model is trained with all records from JG works A, B,



Table 1: Summary statistics of both input and output variables of the new records (from JG work C) to predict UCS
of soilcrete mixtures

Variable Minimum Maximum Mean Standard Deviation

JS 2.00 2.00 2.00 0.00
W/C 0.91 0.91 0.91 0.00
ω 4.00 67.00 23.97 18.21
%Clay 40.00 40.00 40.00 0.00
t 32.00 85.00 58.16 20.49
1/ρd 4.15E−4 1.15E−3 6.33E−4 1.97E−4

Civ 0.15 0.15 0.15 0.00
e 0.13 2.08 0.72 0.54
n/(Civ)d 12.14 72.94 40.33 16.72

UCS 0.60 10.20 5.24 2.07

C, D and E plus 25% of the records of JG work F. Then,
this model is tested in the remaining 75% records of JG
work F.
Table 2 compares the achieved performance considering
0%, 15%, 25% and 75% of the records from the sixth
work in the training dataset, using Mean Absolute De-
viation (MAD), Root Mean Square Error (RMSE) and
Coefficient of Correlation (R2) (Tinoco 2012) as a er-
ror measure. From Table 2 results, we can see that,
as expected, as more data from the new JG work were
used in the model training, better is its performance in
the prediction of new records related to this new JG
work. As shown, adding just 15% of records from the
new JG work, we can improve significantly the model
performance. Thus, in order to ensure a better reliabil-
ity when the model is applied to data from a JG work
not contemplated during its learning phase, it is rec-
ommended to retrain the model adding some data from
the new JG work to the training dataset, correspond-
ing to the data obtained with the JG test columns. As
a balance, between the trade-off of needing more data
and having a good prediction performance, we believe
that the 15% strategy is quite useful. Moreover, it is
also observed that SVM models have a great capability
to improve UCS prediction of soilcrete mixtures along
the construction works as data will be available. It was
shown that when around 75% of the records related to
the new JG work are available, SVM models are able
to predict with high accuracy UCS of soilcrete mixtures
for the remaining columns. In this conditions it was
achieved the performance depicted in Figure 4, for which
correspond an R2 = 0.63.

CONCLUSIONS

Data Mining (DM) techniques are being considered as
a good alternative to the traditional statistics to solve
complex problems. Indeed, even in the geotechnical

civil engineering field these tools have been success-
fully applied. One particular application is its use in
Jet Grouting (JG) technology, characterized not only
by a great versatility, but also by its complexity due
to the high number of parameters involved and to soil
heterogeneity. Related to this issue, some data-driven
models were developed to predict Uniaxial Compressive
Strength (UCS) of soilcrete samples over time, which
achieved extraordinary results.
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Figure 4: Relationship between UCS experimental ver-
sus predicted values by SVM models under an strategy
of 75%

Supported on these models, particularly on the SVM,
this work underlined two main conclusions when a given
model is applied in the prediction of new results from a
new construction site. The first one is the importance



Table 2: SVM models performance under 0%, 15%, 25% and 75% strategies

Metric 0% 15% 25% 75%

R2 0.21 0.45 0.46 0.63
MAD (MPa) 1.58 1.53 1.44 1.34
RMSE (MPa) 2.51 2.14 2.04 1.79

of the model domain applicability that can lead us to
reach wrong conclusions if such factor is not considered
when performing predictions on unseen data. The sec-
ond one is that the accomplishment of the model domain
applicability may not be sufficient for an accurate pre-
diction of unseen data, particularly if these new records
are from a new JG work not contemplated during the
model learning. It was shown that in order to ensure a
better generalization performance, it is fundamental to
include some data (e.g. 15%) related to new JG work
(for which it is intended to make predictions), in the
dataset used for model training. This observation un-
derlines the need of creating some test columns for each
new JG work before starting the works, which is a com-
pulsory practice in JG works. Thus, before applying
a given data-driven model, namely SVM, it is strongly
recommended to carefully analyse its domain applicabil-
ity. Moreover, when applying it to new records related
to a JG work not contemplated during the model learn-
ing phase, it is also advised to retrain the model with
some data from this new JG work (data from JG test
columns), allowing it to learn the particular character-
istics of this new JG work. Additionally, it was also
observed that SVM models have a great capability to
improve UCS prediction of soilcrete mixtures along the
construction works as data will be available.
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