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Abstract

Time Series Forecasting (TSF) is an important tool to support decision mak-
ing (e.g., planning production resources). Artificial Neural Networks (ANN)
are innate candidates for TSF due to advantages such as nonlinear learn-
ing and noise tolerance. However, the search for the best model is a complex
task that highly affects the forecasting performance. In this work, we propose
two novel Evolutionary Artificial Neural Networks (EANN) approaches for
TSF based on an Estimation Distribution Algorithm (EDA) search engine.
The first new approach consist of Sparsely connected Evolutionary ANN
(SEANN), which evolves more flexible ANN structures to perform multi-step
ahead forecasts. The second one, consists of an automatic Time lag feature
selection EANN (TEANN) approach that evolves not only ANN parameters
(e.g., input and hidden nodes, training parameters) but also which set of
time lags are fed into the forecasting model. Several experiments were held,
using a set of six time series, from different real-world domains. Also, two
error metrics (i.e., Mean Squared Error and Symmetric Mean Absolute Per-
centage Error) were analyzed. The two EANN approaches were compared
against a base EANN (with no ANN structure or time lag optimization)
and four other methods (Autoregressive Integrated Moving Average method,
Random Forest, Echo State Network and Support Vector Machine). Overall,
the proposed SEANN and TEANN methods obtained the best forecasting
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results. Moreover, they favor simpler neural network models, thus requiring
less computational effort when compared with the base EANN.

Keywords: Estimation Distribution Algorithm, Multilayer Perceptron,
Time Series, Regression,

1. Introduction

Nowadays, forecasting the future using past data is an important tool
to reduce uncertainty and support both individual and organization decision
making. For example, multi-step predictions (e.g., issued several months in
advance) are useful to aid tactical decisions, such as planning production
resources. In particular, the field of Time Series Forecasting (TSF) deals
with the prediction of a given phenomenon (e.g., ice cream sales) based on
the past patterns of the same event. TSF has become increasingly used in
areas such as agriculture, finance, management, production or sales.

Several Operational Research TSF methods have been proposed, such as
Holt-Winters (in the sixties) or the Autoregressive Integrated Moving Av-
erage (ARIMA) methodology [30] (in the seventies). More recently, several
Soft Computing methods have been applied to TSF, such as Artificial Neu-
ral Networks (ANN) [13], Evolutionary Computation (EC) [10] and Fuzzy
techniques [27] Also, several hybrid systems that combine two or more Soft
Computing and/or forecasting techniques have been proposed for TSF, such
as proposed in [23, 2, 35, 24].

This paper is focused on the use of ANN [20], which are a natural solution
for TSF due to advantages such as flexibility (i.e., no a priori knowledge
is required), nonlinear learning and robustness to noisy data. ANN were
initially applied to TSF in 1987 [25] and such research has been consistently
growing since [44, 33, 13]. Some examples of successful ANN forecasting
applications are Internet traffic [9], air pollution [34] and financial markets
[24].

While several types of ANN have been proposed for TSF (e.g., Radial-
Basis Functions, Recurrent Networks), the majority of the studies adopt
the multilayer perceptron architecture [25, 44, 13]. In particular, the Time-
Lagged Feedforward Neural Network (TLFN) is a popular approach [20, 33,
9]. The TLFN adopts a multilayer perceptron ANN as the learning base
model and uses a sliding time window method to create supervised training
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examples. The sliding time window defines a set of time lags that are used
as inputs by the ANN.

When adopting multilayer perceptrons for TSF (i.e., TLFN), a crucial
issue is the design of the best forecasting model, which involves both feature
and model selection [13, 40]. The former is required since a small set of time
lags will provide insufficient information to the ANN, while using a high num-
ber of time lags will increase noise and probability of having irrelevant inputs.
Indeed, time lag selection is a core step of the ARIMA methodology, which
often selects the 1, 12 and 13 time lags for monthly seasonal and trended
series [30]. The latter selection is needed to get a good generalization capac-
ity, since a too complex ANN model will overfit the data, while a model that
is too simple will present limited learning capabilities. However, most ANN
works for TSF adopt a manual design for this feature and model selection
that is ad hoc (e.g., [25, 44, 33, 12, 9, 22]), based either in domain knowledge
or in trial and error experimentation. An alternative is use Evolutionary
Computation to search for the best ANN, in what is known as Evolution-
ary ANNs (EANNs) [42, 38, 15]. Often, EANNs require more computation
when compared with manual ANN design, since more ANNs are tested. Yet,
EANNs are much more appealing to non specialized users, given that few
parameters need to be selected, the search is fully automatic and more ex-
haustive, thus tending to provide better performances when compared with
the manual design.

EANN systems have been treated mainly using three different optimiza-
tion points of view [42, 6]: topology (e.g., number of hidden layers, number
of nodes in each layer); connection weights (e.g., values for each ANN con-
nection); and learning rules (e.g., learning factor). Within the TSF domain,
the majority of EANN works make use of rather rigid ANN structures that
are fully connected, evolving only ANN hyperparameters, such as number of
input and hidden nodes [34, 6]. For instance, once the number of inputs is
set, all time lags are adopted by the TLFN. Working with fully connected
structures also means that ANNs can be more complex than needed. As
a consequence, these EANNs tend to require an heavy computational ef-
fort. Moreover, most EANN works for TSF use the standard Genetic Algo-
rithm (GA) as the search engine, which requires setting several parameters
to (e.g., mutation rate, population size). The Estimation Distribution Algo-
rithm (EDA) is a more recent Evolutionary Computation variant, proposed
in 2001 [26], and that makes use of exploitation and exploration properties
to find good solutions. When compared with other search methods (e.g.,
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GA), EDA has the advantage of requiring just one parameter (i.e., popula-
tion size), since crossover and mutation processes do not exist in EDA. Also,
EDA has a fast convergence and in recent previous work [35] it has outper-
formed the standard GA and differential evolution methods when selecting
the best ANN TSF models.

In this paper, we propose two novel EANN variants for TSF that are fully
automatic and can be used by non specialized users to perform multi-step
ahead time series forecasts, since no a priori knowledge is assumed from the
analyzed time series. In contrast with the majority of EANN works for TSF,
the proposed EANN variants make use of EDA as the search engine under
two design strategies: Sparsely connected EANN (SEANN) and Time lag
selection EANN (TEANN). Both strategies perform a simultaneous feature
and model selection for TSF, although with a different emphasis. SEANN
puts more effort in model selection by explicitly defining if a connection exists
and time lag deletion only occurs when an input has no connections. TEANN
enforces feature selection, explicitly defining which time lags are used in the
chromosome, while ANN structure selection is made only in terms of number
of input and hidden nodes. These strategies are addressed separately in or-
der to measure the contribution of each other when compared with the fully
connected EDA EANN [35]. Moreover, we also compare all EANN methods
with the popular ARIMA methodology and three recently proposed machine
learning methods: Random Forest (RF), Echo State Network (ESN) and
Support Vector Machine (SVM). The experiments were performed using sev-
eral real-world time series from distinct domains and the distinct forecasting
approaches were compared under both forecasting and computational per-
formance measurements. The paper is organized as follows. First, Section
2 described the EANN approaches. Next, in Section 3 we present the ex-
perimental setup and analyze the obtained results. Finally, we conclude the
paper in Section 4.

2. Evolutionary Design of Artificial Neural Networks

2.1. Time Series and ANN

The problem of forecasting time series with ANN [35] is considered as
obtaining the relationship from the value at period yt (in this system the re-
sulting ANN will have only one output neuron) and the values from previous
elements of the time series, using several time lags {t − 1, t − 2, . . . , t − I},
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to obtain a function:

ŷt = f(yt−1, yt−2, . . . , yt−I) (1)

where ŷt denotes the estimated forecast, as given by the ANN (f), and I the
number of ANN input nodes.

In order to obtain a single ANN to forecast time series values, an initial
step has to be done with the original values of the time series, i.e., normalizing
the data. The original values (yt) are normalized into the range [0, 1] (leading
to the Nt values). Once the ANN outputs the resulting values, the inverse
process is carried out, rescaling them back to the original scale. Only one
neuron was chosen at the output layer and multi-step ahead forecasts are
built by iteratively using 1-ahead predictions as inputs [9]. Therefore, the
time series is transformed into a patterns set depending on the k inputs nodes
of a particular ANN, each pattern consisting of:

• I inputs values, that correspond to I normalized previous values: Nt−1,
Nt−2, . . . , Nt−I .

• One output value: Nt (the desired target).

This patterns set will be used to train and validate (i.e., compute fitness
value) each ANN generated during the evolutionary execution. Thus, the
patterns set is split into two subsets, using a timely ordered holdout scheme
with 70% of the elements for training and the most recent 30% elements
for validation. We note that the 70/30 split is very common (e.g., [22, 27])
and in [12] this split provided better TSF results for ANN when compared
with other divisions (e.g., 60/40 and 80/20). As an example, Fig. 1 shows
how such training and validation sets are created with I = 3. Finally, after
evolving the ANN, the best model is evaluated on a test set, which includes
the most recent yt elements that were not used during the EANN procedure.

2.2. Evolutionary Neural Network Design

The problem of designing ANN could be seen as a search problem into the
space of all possible ANN. While several EC methods could be used for this
search, we adopt in this paper the EDA algorithm, since it has outperformed
the standard GA in our previous work [35]. As a base ANN structure, we
adopt the TLFN with all time lags, from 1 to i, as the forecasting model. We
use fully connected multilayer perceptrons with only one hidden layer and
one output node [33, 35].
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Figure 1: Process to obtain training and validation sets.

The Resilient Propagation (RPROP) learning algorithm is an enhanced
version of the backpropagation algorithm, performing a local adaptation of
the weight-updates based on behavior of the error function, given by the local
gradient information. When compared with other algorithms (e.g., backprop-
agation), the RPROP presents a faster training, requiring less computational
effort [37, 31].

In this paper, an evolving hybrid system that uses EDA and RPROP
learning algorithm, is adopted. This approach uses a digit number repre-
sentation (i.e., ∈ {0, ..., 9}) to encode the ANN topology hyperparameters
and RPROP learning parameters, with multiple initializations. Under this
EANN, the hyperparameters that we optimize are the number of inputs nodes
(i) and number of hidden neurons (h) of the hidden layer. For the ANN
learning, we use the RPROP algorithm [37], which presents a faster training
convergence when compared with other algorithms (e.g., Backpropagation),
requiring less computational effort. The performance of RPROP may depend
on the correct adjustment of two numeric parameters, known as ∆max ∈ <
(although the default value is 50.0) and α ∈ [0, 1] (although the value is
typically closer to 0), also known as ∆0. Hence, we adopt a direct encoding
schema, which places into the chromosome (Fig. 2): two decimal digits (i.e.,
from 0 to 9), to codify the number of inputs nodes (i); another two digits for
the number of hidden nodes (h); two more ∆max ∈ 0, 1, . . . , 99 and finally
one gene for α = {1, 0.01, 0.001, . . . , 10−9}.

As explained in Section 1, EDA contains just one parameter, the popula-
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Figure 2: EANN encoding scheme.

tion size (P ). Since the EDA works as a second order optimization procedure,
the tuning of this internal parameter is not a critical issue. In this work, a
fixed value of P = 50 was adopted. In preliminary experiments, we tested a
sensitivity analysis with other values (e.g., P = 48 and P = 52) and achieved
similar results.

The EANN search process consists of the following steps (Fig. 3):

1. A randomly generated population, i.e., a set of randomly generated
chromosomes, is obtained.

2. The phenotypes (ANN architectures) and fitness value of each indi-
vidual of the actual generation is obtained. To obtain the phenotype
associated to a chromosome and its fitness value:

(a) The phenotype of an individual of the actual generation is first
obtained (using the Stuttgart Neural Network Simulator (SNNS)
tool [43]).

(b) Then, for each ANN, training and validation pattern subsets are
obtained from time series data depending on the number of inputs
nodes, as it was explained in Section 3.1.

(c) The ANN is trained with RPROP (using SNNS). The architecture
(topology and weights) of the ANN when the validation error (i.e.,
error for validation patterns subset) is minimum during the train-
ing process is stored (i.e., we adopt early stopping). Thus, this
architecture is the final phenotype of the individual. The fitness
for each individual is the minimum Mean Squared Error (MSE)
validation error (Eq. 2), during the learning process.
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3. Once the fitness values for whole population have been already ob-
tained, Univariate Marginal Distribution Algorithm (UMDA)-EDA (with
no dependencies between variables) [35] operators are applied in order
to generate the next population. The UMDA operators work as fol-
lows. First, a truncation selection is adopted, which selects half of the
best solutions from the current population. This subset population is
included in the next population. Then, a distribution probability for
the subset population is automatically estimated. For instance, if there
are 25 individuals in the subset and only 5 of these individuals contain
the first gene with a 1 digit, then the probability for setting this gene
as 1 is set to 5/25 = 0.2. New individuals are then sampled using the
probabilities previously calculated and included in the next population.

4. Steps 2 and 3 are iteratively executed until a maximum number of
generations is reached.

Figure 3: Schema of the EANN design.

The fitness function uses the MSE and not the Mean Absolute Error
(MAE) due to three main reasons. First, squared error metrics are more
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popular to validate forecasting methods [12, 30, 1]. Second, MSE is more
sensitive to extreme errors (i.e., outliers) than MAE. Given that we use
feedback of 1-ahead predictions to generate ANN multi-step forecasts, such
outliers would dramatically propagate and affect the performance of long
term predictions. Third, preliminary experiments with two series (Passengers
and Temperature) have revealed better results for the MSE fitness approach
when compared with the MAE one. In these preliminary experiments, the
training data (e.g., 125 samples for Passengers) was further split into training
(e.g., 74 samples for Passengers, used to train the ANN), validation (e.g., 32
samples for Passengers, used to compute the fitness) and test (e.g., last 19
of the 125 Passengers samples, used to compare the forecasting performance
of MSE and MAE fitness approaches).

It should be noted that this EANN is competitive. This method was
ranked at 6th position, when comparing the other Soft Computing meth-
ods, at the NN5 competition [11]. EANN presented an average Symmetric
Mean Absolute Percentage Error (SMAPE) error of 21.9% and also outper-
formed the ARIMA forecasts performed by the commercial Autobox tool
(www.autobox.com, average SMAPE of 23.9%).

2.3. Sparsely Connected Evolutionary Artificial Neural Network

The topic of ANN topology selection was first suggested by Miller et al.
[32], which proposed GA as a very good candidate for the search. Miller et
al. identified two approaches to code the topology in a string: the strong
specification scheme (or direct encoding scheme), where each connection of
the network is specified by its binary representation, and a weak specification
scheme (or indirect encoding scheme), where the exact connectivity pattern
is not explicitly represented but it is computed on the basis of the information
encoded in the string by a suitable developmental rule. Several authors have
followed Miller et al. suggestion, including Whitley et al. [41] and Schaffer
et al. [39], which adopted a direct encoding scheme. The main advantage
of this direct approach is that it is easy to evolve networks with special
connectivity properties, either by constraining the representations allowed
or by including some specific penalty term in the fitness function. On the
other hand, the disadvantage is that these representations do not scale well
to large networks, with hundreds of nodes and thousands of connections.
However, when dealing with networks of smaller size, the direct encoding
scheme induces a less-fuzzy fitness function, i.e., the fitness value associated
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with each chromosome is more coherent when it is computed several times
using different training sets.

The proposed Sparsely EANN (SEANN) works as the previous EANN
(Section 2.2), except that now we can evolve more flexible structures. To
achieve this, and following the work of [41] and [39], we adopted a direct bi-
nary encoding scheme that defines which connections are used by the ANN.
The proposed chromosome includes three components. The first two com-
ponents work exactly as described in Section 2.2. The maximum number of
input and hidden nodes are needed to set the connection matrix size and the
two RPROP parameters are used to train the ANN. The third component
includes the direct binary encoding of the ANN connections. Fig. 4 shows
the sparsely connected chromosome, where the last binary digits (i.e., con-
nection matrix) set the active connections of the model. In Fig. 5, it can be

Figure 4: SEANN encoding schema (with the connection matrix).

observed an example of how the direct binary codification works, in order to
obtain the ANN connection matrix from the chromosome. In general, each
matrix cell represents a valid connection between an incoming node (at the
row) with the outgoing node (at the column). In the example, the third digit
(b3 = 1) sets a connection between the first input node and the third hidden
node. The exception is the last row, which represents the connections be-
tween the hidden nodes (at the columns) and the output one (the last row).
By default, the largest possible connection matrix is always set, with the
dimensions Row×Col, although the real dimensions are limited by the i and
h values. We have opted for this solution to set the same fixed length of the
chromosome, for all the individuals. Every time a new individual (genotype)
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is used to generate an ANN (phenotype) first the i and h parameters are
read, in order to discard the unwanted extra columns and rows of the default
matrix, leading to a matrix with the dimensions (i′+ 1)×h′, where i′ and h′

denote the real number of input and hidden nodes. In most cases i = i′ and
h = h′. Yet, in some rare cases it may occur that i′ < i or h′ < h if the last
binary rows (or columns) are all set to zero.

Figure 5: Example of the process to obtain a connection matrix from a given chromosome.

2.4. Time Lagged Selection Evolutionary Artificial Neural

This section presents the proposed Time lag selection EANN (TEANN),
which is similar to the EANN of Section 2.2 accept that we now also search
for the best set of time lags for the TLFN. As it was explained in Section 2.1,
every time a new individual (i.e., ANN) is generated, training and validation
patterns subset have to be obtained. In previous example (Fig. 1), if the
ANN had k input nodes, all k previous values from the time series (t− 1,t−
2,...,t−k) were used to generate the patterns set. A new level of specialization
is considered here, where the patterns are obtained by time lag filtering; i.e.,
selecting the relevant previous time lags of the series to generate the patterns
to feed the ANN, which defines how the sliding window is set.

To carry out this new approach, more genes were added into the base
chromosome. In particular, we adopted a binary codification, where each
new gene defines if the time lag is (or not) used by the model. Fig. 6 shows
the new codification scheme that includes time lag selection.

We set k to the maximum number of inputs (i.e., 100). Yet, it should
be noted that i now sets the maximum number of input nodes, i.e., only
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Figure 6: Encoding scheme with time lag selection.

the up to bi time lags are considered by the model. Lets considering the
same example of Fig. 1, where i = 3, but now with the time lag selection
where b1 = 1, b2 = 0 and b3 = 1. As shown in Fig. 7, the number of input
nodes of the ANN are set not only by i = 3, but also depends on the binary
encoding, which only activates two lags, thus I = 2. Thus, the first pattern
is Nt0, Nt2 ⇒ Nt3.

Figure 7: Process to obtain training and validation sets with time lag selection.

3. Experimental Setup and Results

3.1. Time Series

In this work, we selected a total of six time series, with different charac-
teristics and from distinct domains. Five series were selected from the well-
known Hyndman’s time series data library repository [21]. These are named
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Passengers, Temperature, Dow-Jones, Quebec and Abraham12. Passengers
has the information about the number of passengers of an international air-
line in thousands, measured monthly from January of 1949 till December
of 1960. Temperature is about the mean monthly of air temperature mea-
sured at Nottingham Castle from 1920 till 1939. Dow-Jones contains the
monthly closings of the Dow-Jones industrial index from August of 1968 till
August of 1981. Abraham12 represents gasoline demand at Ontario, in mil-
lions of gallons, from 1960 to 1975. Quebec includes the number of births, as
daily measured in Quebec, from 1st of January of 1977 till 31 of December
of 1978. We also adopt the Mackey-Glass series [16], which is a common
benchmark for comparing the generalization ability of different forecasting
methods. This series is a chaotic time series generated from a time-delay
ordinary differential equation.

It should be noted that these six times series were also adopted by the
NN3 and NN5 forecasting competitions [11]. Except for Mackey-Glass, all
datasets are from real-world domains and such data can be affected by ex-
ternal issues (e.g., floods, strikes, technological advances), which make them
interesting datasets and more difficult to predict.

3.2. Evaluation

The global performance of a forecasting model is evaluated by an accuracy
measure, such as MSE, Relative Squared Error (RSE) and SMAPE:

MSE = 1
H

∑T+H
t=T+1 e

2
t

RSE =
∑T+H

i=T+1 e
2
i∑T+H

i=T+1 (yt−yt)2
× 100%

SMAPE = 1
H

∑T+H
t=T+1

|et|
(|yt|+|ŷt|)/2 × 100%

(2)

where et = yt − ŷt, T is the current time period and H is the forecasting
horizon, the number of multi-step ahead forecasts. In all these measures,
lower values indicate better forecasts. Historically, the MSE (as well as its
root mean square error RMSE variant) is a very popular metric within TSF.
RSE and SMAPE have the advantage of being scale independent, thus can be
more easily used to compare methods across different series. A value of RSE
lower than 100% shows that the forecasting model is better than the naive
average predictor. Although the SMAPE was originally proposed in [4], Eq.
2 adopts the variant used in [3], since it does not lead to negative values, thus
ranging from 0% to 200%. SMAPE was also the error metric used in NN3,
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NN5 and NNGC1 forecasting competitions [11]. In this paper, we compute
both SMAPE and MSE metrics (RSE is used to average the squared errors
through the different series). When comparing results, statistical significance
is given in terms of the Diebold and Mariano test proposed in [14] under a
α = 0.1 level.

To evaluate the different forecasting methods, each series was initially
divided into two sets: in-samples and out-of-samples. The in-sample data
were used to build the forecasting models. In case of the EANN methods,
such data is further divided into training and validation sets (Section 2.1).
The out-of-samples, also known as test data, includes the more recent values
and is used to evaluate the error metrics. Table 1 shows number of elements
adopted for these sets.

Table 1: Time series in-sample/out-of-sample sizes

Time #in-samples #out-of-samples
Series (H )
Passengers 125 19
Temperature 206 19
Dow-Jones 129 19
Abraham12 168 24
Quebec 735 56
Mackey-Glass 735 56

3.3. Additional Comparison Methods

For additional comparison purposes, we have chosen a conventional ARIMA
approach (FP) and three recently proposed machine learning methods: Ran-
dom Forest (RF), Echo State Network (ESN) and Support Vector Machine
(SVM).

The ARIMA method is based on the implementation of the popular fore-
casting tool ForecastPro c© (FP) [18], which is fed with the in-samples of the
six datasets and the full automatic feature of the tool is executed to obtain
the forecasts. The rationale is to use a popular benchmark that can easily
be compared and that does not require expert model selection capabilities
from the user.

The RF method was proposed by Breiman in 2001 [5] and it is based on
an ensemble of T unpruned decision trees, where each tree is built by using
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a random feature selection with up to m features from bootstrap training
samples. The predictions are built by averaging the outputs of T trees.
RF is a nonlinear learning method that is more simpler to train and tune
when compared with other ensemble approaches, such as boosting [19]. In
the comparison, we use the default RF hyperparameters adopted by the
randomForest package (e.g., T = 500, m = I/3) of the R tool [36], which
tend to give good results in a wide range of problems. The default settings
are more likely to be used by common (non expert) users, thus this seems
a reasonable assumption for the comparison. The RF is set to use all time
lags and the number of inputs is set to I = K + 1 [40], where K is the
seasonal period of the time series. For the analyzed time series, we assume
that K is known a priori. In this paper, and as followed in [40], we use
autocorrelation values to find the cycle period, which is set to: K = 12 for
Passengers, Temperature and Abraham 12; K = 50 for Dow-Jones; K = 7
for Quebec and K = 30 for Mackey-Glass.

The ESN is a new recurrent neural network type that was proposed by
Maass et al. in 2002 [29]. ESN is capable of producing a fast nonlinear learn-
ing by using a large and random fixed recurrent network (called reservoir) and
then combining the desired output signal by training a linear combination of
all response signals. The main advantage of ESN for TSF is that only one
input is required since it is a recurrent network, i.e., the inputs are fed accord-
ing to the temporal sequence of the series and past patterns are stored in the
memory of the network. To set the ESN, we adopt the same settings as the
EANN methods, while the ESN hyperparameters are defined using the recom-
mendations proposed in [28]. There is only one output (the predicted value)
and multi-step ahead forecasts are built by iteratively using 1-ahead predic-
tions as inputs (similarly to all EANN methods). The size of the reservoir
was fixed to a large value of Nx = 1000. Also, both ESN hyperparameters,
the learning rate α and regularization β, were set by using a two dimensional
exponential grid search, within the range ∈ {2−10, 2−9.5, 2−9.0, ..., 20} (total of
21 searches per dimension). During the grid search, the same timely ordered
holdout scheme used by the EANN methods was adopted, there the training
data is split into 70% of the elements for training and the most recent 30%
for validation. The validation set was used to select the α and β combination
that resulted in the lowest MSE error. The ESN was implemented using the
R tool code provided in [28].

SVM is a powerful learning tool that is based on a statistical learning
theory and was developed in the 1990s due to the work of Vapnik and its col-
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laborators [7]. It is based on two key concepts: using a kernel function SVM
transforms input variables into a high dimensional feature space and then it
finds the best hyperplane to model the data in the feature space. The SVM
method is configured as described in [40]: it is based on a Gaussian kernel
and the ε-insensitive loss function; time lags are selected using a sensitive
analysis feature selection method and heuristics (e.g., grid search) are used
to set the SVM hyperparameters. This method requires setting a maximum
number of input time lags (I) for each series. For such purpose, the SVM
adopts the same RF rule of I = K + 1, which was also used in [40]. The
SVM was implemented in the R tool by using the rminer package [8].

3.4. Sparse ANN Results

Each EANN method explained in this paper was executed five times for
each time series. In the experiments, we used a maximum of 100 generations
as the stopping criterion of the EANNs. The forecasts were compared with
the real ones and two error metrics were computed: MSE and SMAPE. The
obtained results are shown in Table 2 (MSE errors) and Table 3 (SMAPE
errors). In case of the EANN methods, we present the median of the five
runs.

Table 2: SEANN forecasting comparison (MSE errors; best values in bold)

Series FP RF ESN SVM EANN SEANN
Pass. (MSE×102) 4.862 53.560 115.862 16.370 4.207 4.381FP,RF,ESN,SVM

?

Temp. (MSE) 4.383 4.922 7.073 4.929 4.380 5.730ESN
?

Dow-J. (MSE×103) 2.906 7.727 2.640 3.914 4.459 3.435RF,SVM,EANN
?

Abrah. (MSE×108) 2.512 3.321 10.352 2.149 3.023 1.511FP,RF,ESN,SVM,EANN
?

Queb. (MSE×102) 9.304 15.494 12.165 11.494 12.579 6.665FP,RF,ESN,SVM,EANN
?

Mack. (MSE×10−3) 89.15 56.098 3.477 0.218 5.623 1.593FP,RF,ESN,EANN
?

RSE Average 61.4% 111.0% 108.1% 53.5% 58.7% 38.7%
RSE Median 63.4% 87.4% 97.4% 38.3% 36.1% 20.4%

? - statistically significant when compared with listed methods

An analysis to tables shows that the proposed SEANN provides in gen-
eral better forecasts when compared with the baseline EANN. The sparsely
connected method outperforms the fully connected one in four cases (with
statistical significance), when considering both the MSE and SMAPE er-
rors. A detailed look at SMAPE criterion, which is more important for the
forecasting domain, shows interesting improvements of SEANN over EANN
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Table 3: SEANN forecasting comparison (%SMAPE errors; best values in bold)

Series FP RF ESN SVM EANN SEANN
Passengers 4.51 11.80 18.27 6.00 3.39 3.21FP,RF,ESN,SVM

?

Temperature 3.42 3.42 4.61 3.66 3.51 4.17ESN
?

Dow-Jones 4.78 7.74 4.77 5.38 6.28 5.80RF,EANN
?

Abraham 12 6.21 7.00 12.21 5.53 6.42 4.49FP,RF,ESN,SVM,EANN
?

Quebec 10.37 12.92 11.50 11.56 10.83 8.01FP,RF,ESN,SVM,EANN
?

Mackey-Glass 30.40 18.61 6.40 1.59 7.07 4.03FP,RF,ESN,EANN
?

Average 9.95 10.25 9.63 5.62 6.25 4.95
Median 5.50 9.77 8.95 5.45 6.35 4.33

? - statistically significant when compared with listed methods

(e.g., a difference of 1.9, 2.8 and 3.0 pp for the last tree series). SEANN also
outperforms other forecasting approaches, comparing favorable (with signif-
icance) against: FP in four cases for MSE and SMAPE; RF in five series
for MSE and SMAPE; ESN in five cases for MSE and SMAPE; and SVM
in four (MSE) and three series (SMAPE). The last two rows of the tables,
which shows the average and median performance across all six time series,
also ranks SEANN as the best method, under both error criteria. Table 4

Table 4: Comparison of the best models optimized by EANN and SEANN (smallest
connection and time values in bold).

Series EANN SEANN Rc Rte

inputs hidden connect. time inputs hidden connect. time

(i) (h) (c) (min) (i′) (h′) (c) (min)

Passengers 49.2 67.4 3383.4 165 49.6 71.4 1813.6 71 46.4% 56.9%
Temperature 63.6 64.8 4186.1 315 65.0 59.8 2011.1 114 51.9% 63.8%
Dow-Jones 35.8 48.8 1795.8 161 38.6 93.6 1868.8 73 -4.1% 54.7%
Abraham12 30.4 117.8 3698.9 270 21.2 99.4 1118.4 89 69.8% 67.0%
Quebec 14.6 136.6 2131.0 6603 12.2 111.2 824.8 5221 61.3% 20.9%
Mackey-Glass 13.0 90.4 1265.6 8529 14.6 117.8 924.6 5590 26.9% 34.5%

compares the characteristics of the best ANNs evolved by both EANN ap-
proaches, where each cell shows the mean value of all five run executions. For
each series and evolutionary method, we report the number of inputs (i or i′),
hidden nodes (h or h′), total number of connections (c) and computational

17



effort, given in terms of the total time elapsed for the EANN method (in
min). The last two columns shows the reduction rate achieved when com-
paring SEANN against the base EANN, where RF = 1−FSEANN/FEANN and
F is the factor of analysis (i.e., c – total number of connections or te – time
elapsed). The table shows that, in general, SEANN obtains simpler ANN
structures. In particular, high reduction rates were achieved for Abraham12
and Quebec series. The exception occurs with the Dow-Jones dataset, where
SEANN optimizes an ANN with much more hidden nodes when compared
with EANN, although the final number of connections is only 4% higher than
EANN. Furthermore, SEANN is always faster than EANN, requiring much
less computation in all time series considered.

For demonstrative purposes, we analyze a detailed SEANN execution
example for Passengers. It is assumed the user has only access to the in-
samples, in this case 125 elements of the series. SEANN is executed and
stopped after 100 generations. During SEANN execution, several ANNs are
trained with the first 88 elements and fitness function is computed over the
remaining 37 values. The fitness convergence process is shown in the left of
Fig.8, in terms of MSE of best individual (when considering the normalized
values, y-axis) and number of generations (x-axis). After one run, the best
chromosome found was (4, 9, 9, 2, 0, 5, 1, 0, 1, 0, 1, ...). This corresponds to an
ANN with a maximum of i = 50 input nodes and h = 93 hidden nodes.
The binary digits (e.g., 0,1,0,1) set the connectivity of the ANN as shown in
Fig. 5 (e.g., the first input node connects to the second and fourth hidden
nodes). In this case, a total of 2358 ANN connections were defined. This
ANN is trained with the RPROP algorithm using the parameters ∆max = 5
and α = 1 and all 125 Passengers elements. The last 50 values of the series
are fed into the ANN, in order to obtain the first (1-ahead) forecast, which
is 484 (close to the true series value of 472). The inputs are then slided, such
that the oldest input is removed and 484 is fed as the last input, in order
to obtain the 2-ahead forecast (536, also close to the true 548 value). The
process is repeated until all 19 ahead forecasts have been executed, which
are shown in Fig. 8 and that are close to the Passengers true values.

3.5. Time Lag Selection Results

Similarly to the previous section, each evolutionary approach (i.e., EANN
and TEANN) was executed five times, with a stopping criterion of 100 gen-
erations, for all time series, and results are reported as the median of these
five executions. The obtained results are shown in Tables 5 and 7.
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Figure 8: Example of SEANN convergence (left) and forecasts (right) for Passengers.

As it can be observed in Tables 5 and 7, the proposed time lag selection
strategy (TEANN) outperforms with statistical significance the full time lag
approach (EANN) in four cases for MSE and SMAPE. Also, the Passen-
gers and Temperature error improvements of EANN over TEANN are rather
small. For example, according to SMAPE, there is only a difference of 0.4
and 0.2 pp for Passengers and Temperature. In contrast, TEANN outper-
forms EANN by a pp difference that ranges from 0.7 to 2.1 for the remaining
series. The average and median results, when considering all time series (last
two rows of the tables), also favors TEANN when compared with EANN.
When comparing of TEANN against other forecasting approaches, TEANN
outperforms (with significance and for both MSE and SMAPE metrics): FP
in 3 series; RF in 5 cases; ESN in 5 series; and SVM in 4 cases. Moreover, the
average and median results (over all six series, last two rows of the tables),
ranks TEANN as the best forecasting method for both error metrics.

As an example, we present the best individuals achieved by TEANN
during a given execution in Table 8, where the third column (sliding window)
shows the selected time lags (i.e., bj values up to i). As shown by the fourth
and fifth (number of input nodes used by the model) columns, the binary time
lag selection genes perform a substantial pruning of the maximum number of
input nodes (i), thus leading to much simpler models. The left of Fig. 9 shows
the fitness convergence process (MSE of best individual when considering
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Table 5: TEANN forecasting comparison (MSE errors; best values in bold).

Series FP RF ESN SVM EANN TEANN
Pass. (MSE×102) 4.862 53.560 115.862 16.370 4.207 5.476RF,ESN,SVM

?

Temp. (MSE) 4.383 4.922 7.073 4.929 4.380 5.501ESN
?

Dow-J. (MSE×103) 2.906 7.727 2.640 3.914 4.459 3.642RF,SVM,EANN
?

Abrah. (MSE×108) 2.512 3.321 10.352 2.149 3.023 1.426FP,RF,ESN,SVM,EANN
?

Queb. (MSE×102) 9.304 15.494 12.165 11.494 12.579 8.450FP,RF,ESN,SVM,EANN
?

Mack. (MSE×10−3) 89.15 56.098 3.477 0.218 5.623 2.182FP,RF,ESN,EANN
?

RSE Average 61.4% 111.0% 108.1% 53.5% 58.7% 42.4%
RSE Median 63.4% 87.4% 97.4% 38.3% 36.1% 20.3%

? - statistically significant when compared with listed methods

Table 6: TEANN forecasting comparison (%SMAPE errors; best values in bold).

Series FP RF ESN SVM EANN TEANN
Passengers 4.51 11.80 18.27 6.00 3.39 3.78RF,ESN,SVM

?

Temperature 3.42 3.42 4.61 3.66 3.51 3.75ESN
?

Dow-Jones 4.78 7.74 4.77 5.38 6.28 5.54RF,SVM,EANN
?

Abraham 12 6.21 7.00 12.21 5.53 6.42 4.34FP,RF,ESN,SVM,EANN
?

Quebec 10.37 12.92 11.50 11.56 10.83 9.30FP,RF,ESN,SVM,EANN
?

Mackey-Glass 30.40 18.61 6.40 1.59 7.07 4.93FP,RF,ESN,EANN
?

Average 9.95 10.25 9.63 5.62 6.25 5.27
Median 5.50 9.77 8.95 5.45 6.35 4.64

? - statistically significant when compared with listed methods

the normalized values, y-axis) evolution through the number of generations
(x-axis) for one execution of TEANN for the Passengers series. For this
execution, the best evolved chromosome was (4, 8, 8, 3, 5, 8, 6, 0, 0, 1, 1, 1, ...),
which corresponds to an ANN with a maximum of i = 49, h = 84, trained
with ∆max = 58 and α = 10−6. The binary digits set the time lags used.
For instance, the set of {3,4,5} lags corresponds to the string (0, 0, 1, 1, 1)
and the full set of time lags is shown in the first row of Table 8 (total of 18
inputs). After trained with all 125 in-samples, the ANN was activated with
the respective inputs, obtaining the values 491 and 536 for the first two ahead
forecasts. The right of Fig. 9 plots the full 19 multi-step ahead forecasts.

Table 9 compares the characteristics of the best ANNs evolved by EANN
and TEANN, where each cell shows the mean value of all five executions.
For each series and evolutionary method, we report the number of inputs (I),
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Table 7: TEANN forecasting comparison (%SMAPE errors; best values in bold).

Series FP SVM EANN TEANN
Passengers 4.51 6.00 3.39 3.78(SVM)

?

Temperature 3.42 3.66 3.51 3.75
Dow-Jones 4.78 5.38 6.28 5.54(SVM,EANN)

?

Abraham 12 6.21 5.53 6.42 4.34(FP,SVM,EANN)
?

Quebec 10.37 11.56 10.83 9.30(FP,SVM,EANN)
?

Mackey-Glass 30.4 1.59 7.07 4.93(FP,EANN)
?

Average 9.95 5.62 6.25 5.27
Median 5.50 5.45 6.35 4.64

? - statistically significant when compared with the methods in parentheses

Table 8: Example of the best TEANN forecasting models.

Series i sliding window lag deletions inputs
Passengers 49 {3-5,9,13,15,16,18,22,. . . 31 18

,23,24,26,28,32,33,42,44,45,46,}
Temperature 67 {3-5,7,9-12,15,17,19,21,22,28,. . . 32 35

,34-36,38,41,46-49,53-57,59-61,65,66}
Dow-Jones 41 {3,4,7,8,11,13,17,22,. . . 23 18

,25-28,30,32,34,36,37,41}
Abraham12 30 {6,8,11-13,17-19,21,23,25,27,28} 17 13
Quebec 43 {2,5,8,10,14,16,17,23,. . . 26 17

,26,29,30,34,37,41-43}
Mackey-Glass 25 {6,8,10,11,13,15-17,19-25} 10 15

hidden nodes (h), total number of connections (c) and computational effort,
given in terms of the total time elapsed for the EANN method (in min). The
last two columns shows the reduction rate achieved when comparing TEANN
against EANN, where RF = 1−FTEANN/FEANN and F is the factor of analysis
(i.e., c – total number of connections or te – time elapsed). In general,
TEANN obtains simpler ANN structures. In particular, high reduction rates
were achieved for Passengers and Abraham12 series. The exception is for
Mackey-Glass, where TEANN optimizes an ANN with more hidden nodes
when compared with EANN. Moreover, TEANN is always faster than EANN,
requiring much less computation in all cases except Mackey-Glass.
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Figure 9: Example of TEANN convergence (left) and forecasts (right) for Passengers.

3.6. TEANN vs SEANN

In this section, we compare the results obtained by TEANN and SEANN.
Each method tends to produce better results in around half of the series, as
shown in Tables 10 (MSE values) and 11 (SMAPE). It should be noted the
results of Table 10 and 11 need to be interpreted with caution, given that the
differences are not statistically significant. Nevertheless, SEANN provides
better global results (in terms of the best RSE average and SMAPE average
and median overall values), with differences of 3.7 pp (RSE average) and 0.3
pp (SMAPE average and median).

On the other hand, Table 12 compares the characteristics of the best
ANNs evolved by TEANN and SEANN, where each cell presents the mean
value of all five executions. For each series and evolutionary method, we show
the number of inputs (I), hidden nodes (h), total number of connections (c)
and computational effort, given in terms of the total time elapsed (in min).
The last two columns shows the reduction rate achieved when comparing
SEANN against TEANN, where RF = 1−FSEANN/FTEANN and F is the fac-
tor of analysis (i.e., c – total number of connections or te – time elapsed). The
results of Table 12 show that for Passengers, Dow-Jones and Quebec series,
TEANN requires less computational effort when compared with SEANN. For
the first two of these series (Passengers and Dow-Jones), TEANN also opti-
mizes ANN with much less inputs such that the total number of connections
is also smaller when compared with the best model optimized by SEANN.
For the remaining series, SEANN obtains a relevant improvement in terms
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Table 9: Comparison of the best models optimized by EANN and TEANN (smallest
connection and time values in bold).

Series EANN TEANN Rc Rte

inputs hidden connect. time inputs hidden connect. time

(I) (h) (c) (min) (I) (h) (c) (min)

Passengers 49.2 67.4 3383.4 165 23.0 72.0 1728.0 61 48.9% 63.0%
Temperature 63.6 64.8 4186.1 315 37.6 80.6 3111.2 199 25.7% 36.8%
Dow-Jones 35.8 48.8 1795.8 161 21.4 64.8 1451.5 67 19.2% 58.4%
Abraham12 30.4 117.8 3698.9 270 16.0 95.4 1621.8 109 56.2% 59.6%
Quebec 14.6 136.6 2131.0 6603 16.2 115.4 1984.9 3906 6.9% 40.8%
Mackey-Glass 13.0 90.4 1265.6 8529 12.0 120.4 1565.2 8493 -23.7% 0.4%

Table 10: SEANN vs TEANN comparison (MSE errors; best values in bold).

Series SEANN TEANN
Passengers (MSE×102) 4.381 5.476
Temperature (MSE) 5.730 5.501
Dow-Jones (MSE×103) 3.435 3.642
Abraham 12 (MSE×108) 1.511 1.426
Quebec (MSE×102) 6.665 8.450
Mackey-Glass (MSE×10−3) 1.593 2.182
RSE Average 38.7% 42.4%
RSE Median 20.4% 20.3%

of reduced number of connections and required computational effort, in par-
ticular for Temperature and Mackey-Glass. Overall, taking into account the
average and median connection and time elapsed values (last two rows of
Table 12), SEANN is faster than TEANN.

3.7. Computational Effort

This section analyzes the computational effort required by all forecasting
approaches. The experimentation was carried out with an exclusive access
to an Intel Xeon 2.27 GHz server. Table 13 shows the computational time
(in minutes) required by each forecasting method. To facilitate the analysis,
the methods were first ranked according to their average values (over all
series) and then placed in the table from left (fastest method) to right (more
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Table 11: SEANN vs TEANN comparison (%SMAPE errors; best values in bold).

Series SEANN TEANN
Passengers 3.21 3.78
Temperature 4.17 3.75
Dow-Jones 5.80 5.54
Abraham 12 4.49 4.34
Quebec 8.01 9.30
Mackey-Glass 4.03 4.93
Average 4.95 5.27
Median 4.33 4.64

Table 12: Comparison of the best models optimized by TEANN and SEANN (smallest
connection and time values in bold).

Series TEANN SEANN Rc Rte

inputs hidden connect. time inputs hidden connect. time

(i) (h) (c) (min) (i′) (h′) (c) (min)

Passengers 23.0 72.0 1728.0 61 49.6 71.4 1813.6 71 -5.0% -16.4%
Temperature 37.6 80.6 3111.2 199 65.0 59.8 2011.1 114 35.4% 42.7%
Dow-Jones 21.4 64.8 1451.5 67 38.6 93.6 1868.8 73 -28.7% -9.0%
Abraham12 16.0 95.4 1621.8 109 21.2 99.4 1118.4 89 31.0% 18.3%
Quebec 16.2 115.4 1984.9 3906 12.2 111.2 824.8 5221 58.4% -33.7%
Mackey-Glass 12.0 120.4 1565.2 8493 14.6 117.8 924.6 5590 40.9% 34.2%
Average 1910.4 2139 1426.9 1860
Median 1674.9 154 1466.0 102

computational demanding method).
The obtained results were expected, corresponding to the type of com-

putational search performed by each method. The FP tool uses quick (but
non disclosed) heuristics to find the best ARIMA method and requires the
less computational effort. RF does not include any hyperparameter search
and thus it is the second fastest method. SVM uses a linear search for find-
ing the best set of time lags and it is the third fastest method. It should
be noted that both RF and SVM require a priori knowledge for setting the
cycle period value (K). Turning to the full automatic and generic methods,
in forth place comes ESN, which uses a two dimensional grid search, followed
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Table 13: Computational effort required by the forecasting methods (in min).

Series FP RF SVM ESN SEANN TEANN EANN
Passengers 0.01 0.11 0.4 15 71 61 165
Temperature 0.01 0.02 0.1 17 114 199 315
Dow-Jones 0.01 0.01 0.6 15 73 67 161
Abraham 12 0.01 0.01 0.1 16 89 109 270
Quebec 0.02 0.11 0.1 31 5221 3906 6603
Mackey-Glass 0.02 0.11 0.5 31 5590 8493 8529
Average 0.01 0.06 0.3 21 1860 2139 2674
Median 0.01 0.07 0.3 17 102 154 293

by SEANN.
The proposed SEANN approach produces very competitive forecasts and

it is faster than TEANN or EANN. While requiring more computational
effort than non EANN based approaches, the time requirements are not lim-
iting for small frequency time series (e.g., monthly). Moreover, the SEANN
computational effort can be highly reduced by using parallel computation for
each ANN training [17].

4. Conclusions

Time Series Forecasting (TSF) uses past patterns from a given event
to forecast its future values. TSF is useful to support decision making in
several domains (e.g., finance or production). In this paper, we approach
multi-step ahead TSF using Artificial Neural Networks (ANNS). In particu-
lar, we adopt fully automatic Evolutionary ANN (EANN) search methods,
which do not require prior knowledge from the user and that are based on
evolutionary computation. As the evolutionary engine, we use the Estimation
Distribution Algorithm (EDA), which has outperformed the standard genetic
algorithm and differential evolution in our previous work [35]. Furthermore,
we proposed two novel evolutionary design strategies: Sparsely connected
Evolutionary ANN (SEANN) and Feature selection EANN (TEANN).

The two novel forecasting strategies (SEANN and TEANN) were com-
pared over six distinct time series. As three baseline benchmarks, we also
performed forecasts using the base EANN strategy, the popular ARIMA
methodology and three recently proposed machine learning methods: Ran-
dom Forest (RF), Echo State Network (ESN) and Support Vector Machine
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(SVM). Also, the obtained multi-step forecasts were analyzed under two er-
ror criteria: MSE and SMAPE. The experiments held reveal the proposed
SEANN and TEANN as the best forecasting methods. Moreover, when com-
pared with the base EANN, both SEANN and TEANN tend to favor simpler
structures and require less computational effort. Globally, when comparing
SEANN and TEANN, similar predictive capabilities are achieved, although
the former method tends to give better overall results, while requiring less
computation effort and optimizing simpler strategies. Thus, we recommend
SEANN as the best option for TSF with ANN.

In the future, we intend to explore a mixed TEANN-SEANN approach,
by using the EANN to evolve both the time lags and the ANN connection
weights. Such mixed approach is expected to optimize simpler ANN struc-
tures. In addition, the EDA search algorithm can be improved by using de-
pendencies between its variables like Mutual Information Maximization for
Input Clustering (MIMIC) [26] (i.e., variables with order one dependencies)
or even ”tree” EDA [26], with no restriction on the numbers of dependencies.
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