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Abstract

Recently, the authors developed a matrix approach to multivariate polynomial sequences by
using methods of Hypercomplex Function Theory (Matrix representations of a basic polyno-
mial sequence in arbitrary dimension. Comput. Methods Funct. Theory, 12 (2012), no. 2,
371-391). This paper deals with an extension of that approach to a recurrence relation for
the construction of a complete system of orthogonal Clifford-algebra valued polynomials of
arbitrary degree. At the same time the matrix approach sheds new light on results about sys-
tems of Clifford algebra-valued orthogonal polynomials obtained by Gürlebeck, Bock, Lávička,
Delanghe et al. during the last five years. In fact, it allows to prove directly some intrinsic
properties of the building blocks essential in the construction process, but not studied so far.
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1 Introduction

1.1 Preliminaries

Approaches to multivariate polynomial sequences by methods of Hypercomplex Function Theory are usually
based on the following facts (see e. g. [4, 20]). Let {e1, e2, . . . , en} be an orthonormal basis of the Euclidean
vector space Rn with a non-commutative product according to the multiplication rules

ekel + elek = −2δkl, k, l = 1, . . . , n,

where δkl is the Kronecker symbol. The set {eA : A ⊆ {1, . . . , n}} with

eA = eh1
eh2

. . . ehr
, 1 ≤ h1 < · · · < hr ≤ n, e∅ = e0 = 1,

forms a basis of the 2n-dimensional Clifford algebra C`0,n over R. Let Rn+1 be embedded in C`0,n by identifying
(x0, x1, . . . , xn) ∈ Rn+1 with

x = x0 + x ∈ An := spanR{1, e1, . . . , en} ⊂ C`0,n.

Here, x0 = Sc(x) and x = Vec(x) = e1x1 + · · · + enxn are the scalar and vector parts of the paravector

x ∈ An. The conjugate of x is given by x̄ = x0 − x and its norm by |x| = (xx̄)
1
2 = (x20 + x21 + · · ·+ x2n)

1
2 .
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To call attention to its relation to the complex Wirtinger derivatives, we use the following notation for a
generalized Cauchy-Riemann operator in Rn+1, n ≥ 1,

∂ :=
1

2
(∂0 + ∂x)

and its conjugate

∂ :=
1

2
(∂0 − ∂x)

with

∂0 :=
∂

∂x0
and ∂x := e1

∂

∂x1
+ · · ·+ en

∂

∂xn
.

C1-functions f satisfying the equation ∂f = 0 (resp. f∂ = 0) are called left monogenic (resp. right
monogenic). We suppose that f is hypercomplex-differentiable in Ω in the sense of [19, 24], that is, it has a
uniquely defined areolar derivative f ′ in each point of Ω (see also [25]). Then, f is real-differentiable and f ′

can be expressed by the conjugate generalized Cauchy-Riemann operator as f ′ = ∂f . Since a hypercomplex
differentiable function belongs to the kernel of ∂, it follows that, in fact, f ′ = ∂0f = −∂xf which is similar
to the complex case.

Needless to mention that C`0,n-valued functions defined in some open subset Ω ⊂ Rn+1 are of the form
f(z) =

∑
A fA(z)eA with real valued fA(z).

We use also the classical definition of sequences of Appell polynomials [1] adapted to the hypercomplex
case.

Definition 1.1 A sequence of homogeneous monogenic polynomials (Fk)k≥0 of exact degree k is called a
generalized Appell sequence with respect to ∂ if

1. F0(x) ≡ 1,

2. ∂Fk = kFk−1, k = 1, 2, . . .

The second condition is the essential one while the first condition is the usually applied normalization condition
which can be changed to any real or hypercomplex constant different from zero or even to a generalized
constant. A generalized constant is a monogenic function whose hypercomplex derivative is zero. In dimension
three (n = 2) a generalized constant is isomorphic to an anti-holomorphic function as referred in [12].

Due to our goal of a matrix recurrence for orthogonal polynomials, we need also the Clifford algebra-valued
inner product

(f, g)C`0,n =

∫
Bn+1

f̄ g dλn+1, (1.1)

being λn+1 the Lebesgue measure in Rn+1 and ā the conjugate of a ∈ C`0,n.
Finally we notice that several authors ([16, 23]) prefer to consider monogenic functions as solutions of the

Dirac equation
∂xf = 0

in the Euclidean space Rn, n ≥ 1, and not as solutions of a generalized Cauchy-Riemann system like in our
case. The essential difference to our approach in the context of Appell sequences consists in the fact that
among all real variables xk, k = 1 . . . n, a-priori does not exist an exceptional variable like x0 that could
serve as reference for a hypercomplex derivative as explained before. Therefore they use, in general, the last
variable xn and rely their explanations on the fundamental concept of Fischer decompositions for harmonic,
respectively monogenic polynomials with respect to xen instead of x. In this case the variable xn plays the
role of an exceptional variable and the hypercomplex derivative ∂f := 1

2 (∂0 − ∂x)f is substituted by the real
partial derivative ∂xn

f . Of course, the difference of both approaches seems to be not essential. Nevertheless,
the fact that also the Cauchy-Kovalevskaya extension ([4, 15]) of polynomials defined in Rn−1 to monogenic
polynomials in Rn comes into the play complicates the natural inclusion of the real (x = 0) or complex case
(n = 1). Working in the framework of monogenic functions as solutions of a generalized Cauchy-Riemann
system avoids this problem (see Section 2).
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1.2 Motivation

The mathematical interests of Klaus Gürlebeck cover a wide range from theoretical to numerical aspects in
Clifford Analysis. For several years, one of the main subjects in the study of monogenic functions by Klaus
Gürlebeck and his disciples and collaborators was the construction of orthonormal polynomial systems in the
L2-space of monogenic Clifford algebra-valued functions in the unit ball of Rn+1. As examples, we mention
here only [5, 6, 7, 11]), where, mainly for practical applications, the case n = 2 was studied in great detail,
by different approaches, and from different points of view.

But the breakthrough to a new and elegant approach came with the paper [2], where S. Bock and K.
Gürlebeck succeeded to determine an Appell system as orthogonal basis in the space of square integrable
monogenic quaternion-valued functions1. Their methods relied on a process of monogenic primitivation for
constructing the Appell system. It was the connection of demanding orthogonality together with being of Appell
type that gave their result a particular elegance. The paper [22] confirmed their results from a representation
theoretical point of view followed by a more general and extensive explanation in the joint work [3] referring
to the role of Gelfand-Tsetlin bases.

Recent results of our own research (see [10]) and the analysis of the aforementioned papers showed that
a matrix approach to Appell sequences can also advantageously be used.

The results in [3] were later generalized in a systematic way in the paper [23] where the author constructed
Gelfand-Tsetlin bases for Clifford-valued homogeneous solutions of the Dirac operator in arbitrary dimensional
Euclidean space.

Reformulating these general results in terms of the generalized Cauchy-Riemann operator, we extend in
Section 3 our approach to the building blocks that are essential in the construction of a complete system of
orthogonal polynomials. The deduced matrix recurrence relation additionally allows to prove some of their
intrinsic properties in Section 4.

2 A Clifford algebra-valued orthogonal system

In [18] the construction of an orthogonal basis for the space Hk(Rn+1) of homogeneous harmonic polynomials
of degree k relies on the following decomposition

Hk(Rn+1) =

k⊕
j=0

F
(k−j)
n+1,j Hj(R

n), (2.1)

orthogonal with respect to the usual real-valued L2-inner product in the unit ball Bn+1 of Rn+1. The

embedding factors F
(k−j)
n+1,j are defined as the polynomials

F
(k−j)
n+1,j (x) =

(j + 1)k−j
(n− 1 + 2j)k−j

|x|k−jC
n−1
2 +j

k−j
(
x0

|x|
)
, x ∈ Rn+1, (2.2)

where x = (x0, . . . , xn), | . | stands for the usual Euclidean norm in Rn+1, the raising factorial (µ)m =
µ(µ + 1)(µ + 2) · · · (µ + m − 1) is represented by the Pochammer symbol (.)m and Cνm is the Gegenbauer
polynomial given by

C(ν)
m (t) =

bm/2c∑
i=0

(−1)i
(ν)m−i

i!(m− 2i)!
(2t)m−2i, t ∈ R, ν 6= 0.

It is well-known that the Gegenbauer polynomials C
(ν)
m satisfy several recurrence relations as e.g.:

d

dt
C(ν)
m (t) = 2νC

(ν+1)
m−1 (t) (2.3)

(1− t2)
d

dt
C(ν)
m (t) = (m+ 2ν)t C(ν)

m (t)− (m+ 1)C
(ν)
m+1(t) (2.4)

1Notice that in case of the classical orthogonal polynomials of one real variable only the Hermite polynomials are also Appell
sequences in the sense of [1] as has been shown by W. Hahn in [21] for the first time.
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d

dt
C

(ν)
m+1(t) = (m+ 2ν)C(ν)

m (t) + t
d

dt
C(ν)
m (t). (2.5)

An orthogonal decomposition analogous to (2.1) was described in [15] for the space Mk(Rn+1, C`0,n) of
homogeneous monogenic polynomials of degree k with values in the Clifford algebra C`0,n. Here it is considered
the Clifford algebra-valued inner product (1.1).

The described decomposition uses two fundamental tools in Clifford analysis: the Fischer decomposition
and the Cauchy-Kovalevskaya extension. In our context, the result can be formulated as the following.

Theorem 2.1 [15] The space Mk(Rn+1, C`0,n) has the orthogonal decomposition

Mk(Rn+1, C`0,n) =

k⊕
j=0

X
(k−j)
n+1,jMj(Rn, C`0,n). (2.6)

The embedding factors X
(k−j)
n+1,j are defined as the polynomials

X
(k−j)
n+1,j(x) = F

(k−j)
n+1,j (x) +

j + 1

n+ 2j
F

(k−j−1)
n+1,j+1 (x)x, x ∈ An, (2.7)

where x = x1e1 + · · ·+ xnen, F
(k−j)
n+1,j are given by (2.2) and F

(−1)
n+1,k+1 ≡ 0.

This theorem ensures that homogeneous monogenic polynomials in Rn+1 can be expressed in terms of
homogeneous monogenic polynomials in Rn, i.e., each Pk ∈Mk(Rn+1, C`0,n) can be represented by

Pk(x)=

k∑
j=0

X
(k−j)
n+1,j(x)Pj(x),

for some uniquely determined polynomials Pj ∈Mj(Rn, C`0,n).
We emphasize that each Pj ∈ Mj(Rn, C`0,n) does not depend on x0 and therefore can be considered as

a generalized constant when embedded in the space Mk(Rn+1, C`0,n).
We remark that the building blocks (2.7) are slightly different from those obtained in [15], where the

authors constructed the Cauchy-Kovalevskaya extension of the polynomials xk−j Pj(x). Here we consider the

Cauchy-Kovalevskaya extension of the scaled polynomials ck,j
(
k
j

)
xk−j Pj(x), where ck,j are real constants,

depending on k and j, given by

ck,j(n) =

{ (k−j)!!(n+2j−2)!!
(n+k+j−1)!! , if k, j have different parities

ck−1,j(n), if k, j have the same parity
. (2.8)

The consideration of these scaled polynomials ensures that

∂0X
(k−j)
n+1,j(x) = kX

(k−1−j)
n+1,j (x), for all x ∈ An,

which guarantees that, for each fixed j (j = 0, . . . , k),
{
X

(k−j)
n+1,j(x)Pj(x)

}
k∈N0

is an Appell system, i.e.

∂
[
X

(k−j)
n+1,j(x)Pj(x)

]
= kX

(k−1−j)
n+1,j (x)Pj(x), x ∈ An.

In the case j = 0, the particular sequence
{
X

(k)
n+1,0(x)P0(x)

}
k∈N0

coincides with the sequence
{
Pnk
}
k∈N0

constructed in [17, 26], where the study of paravector-valued Appell sequences in Rn+1 was considered for
the first time. As a generalization of the classical Appell sequence of one real variable, the polynomials Pnk
have the initial value P0(x) ≡ 1 and can be represented by the binomial-type formula

Pnk (x) =

k∑
s=0

(
k

s

)
cs(n)xk−s0 xs,

where cs(n) := cs,0(n) (s = 0, . . . , k) are given by (2.8). We observe that X
(0)
n+1,k(x) ≡ 1, for all x ∈ An and

all k ∈ N0.
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Remark 2.1 This Appell sequence was generalized in [27] by considering as first term an arbitrary generalized
polynomial constant of a fixed degree. The resulting sequence, designated by the author as shifted Appell,

can be considered equivalent to
{
X

(k−j)
n+1,j(x)Pj(x)

}
k∈N0

.

Theorem 2.1 permits to describe a recursive method for building monogenic polynomial bases in arbitrary
dimensions starting from a basis in R2 with values in the Clifford algebra C`0,2 (see [23, 3]). Indeed, an
orthogonal basis for the space Mk(Rn+1, C`0,n) is formed by the polynomials

fk,µ = X
(k−kn)
n+1,kn

X
(kn−kn−1)
n,kn−1

· · ·X(k3−k2)
3,k2

ζk2 , (2.9)

where ζ := x1 − x2 e1e2 and µ is an arbitrary sequence of integers (kn+1, kn,
. . . , k3, k2) such that k = kn+1 ≥ kn ≥ · · · ≥ k3 ≥ k2 ≥ 0. For details on the construction, see [23].

Notice that ζ and its integer powers ζk2 , (k2 ∈ N0) are the lowest degree polynomials in the set (2.9), for
fixed k. They form an orthogonal system of generalized constants in Mk(Rn+1, C`0,n).

3 A matrix recurrence formula

In [10] a matrix recurrence procedure was obtained to produce the polynomial Pnk from the given polynomial
Pnk−1 one degree lower. Our aim is to generalize this result for the building blocks of (2.6) that form the

orthogonal system
{
X

(k−j)
n+1,jPj ; j = 0, . . . , k

}
k∈N0

.

We begin by reformulating the above mentioned result in terms of the real variable

t :=
x0
|x|
∈ [−1, 1],

which implies that
√

1− t2 = |x|
|x| ∈ [−1, 1].

Using the function ω(x) = x
|x| ∈ S

n, with ω2 = −1, the polynomial Pnk can be written in a complex-like

form
Pnk (t, |x|) = |x|k

[
unk (t) + ω vnk (t)

]
, (3.1)

where unk and vnk are the real-valued polynomials of degree k given byu
n
k (t) =

b k2 c∑
l=0

(
k
2l

)
(−1)lc2l(n) tk−2l (1− t2)l, k ≥ 1,

un0 (t) = 1

and v
n
k (t) =

√
1− t2

b k+1
2 c∑
l=1

(
k

2l−1
)

(−1)l−1c2l−1(n) tk−2l+1 (1− t2)l−1, k ≥ 1,

vnk (0) = 0,

where the coefficients cs(n) := cs,0(n) (s = 0, . . . , k) are given by (2.8).

Using the new representation (3.1), Theorem 5 of [10] can be reformulated as follows:

Theorem 3.1 [10] The real-valued functions unk and vnk in the representation (3.1) of Pnk satisfy, for each
k ≥ 1, unk (t)

vnk (t)

 = Mn
k

unk−1(t)

vnk−1(t)

 ,
where

Mn
k := Mn

k (t) =

 t −
√

1− t2

k
k+n−1

√
1− t2 k

k+n−1 t

 .
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In order to generalize this result for the polynomials X
(k−j)
n+1,j , we start by representing them in the complex-

like form analogous to (3.1). The relation (2.3) satisfied by the Gegenbauer polynomials and the use of the

function ω permit to rewrite the polynomials X
(k−j)
n+1,j (j = 0, . . . , k) as

X
(k−j)
n+1,j(t, |x|) = |x|k−j

[
unk−j,j(t) + ω vnk−j,j(t)

]
. (3.2)

Here unk−j,j , v
n
k−j,j are the real-valued polynomials of degree k − j, given byu

n
k−j,j(t) = Ank,j (k + n− 1 + j)C

(n−1
2 +j)

k−j (t)

vnk−j,j(t) = Ank,j
√

1− t2 d
dtC

(n−1
2 +j)

k−j (t)
, (3.3)

where Ank,j :=
k!

j! (n− 1 + 2j)k+1−j
, with the convention that A1

k,0 := 1, for all k ∈ H.

Thus the generalization of Theorem 3.1 leads to the following:

Theorem 3.2 For each fixed k and j, (k ≥ 1, j = 0, . . . , k− 1), the polynomial X
(k−j)
n+1,j of degree k− j can

be obtained from the polynomial of the same family one degree lower by the matrix recurrence relationunk−j,j(t)
vnk−j,j(t)

 = Mn
k,j

unk−1−j,j(t)
vnk−1−j,j(t)

 , (3.4)

where

Mn
k,j := Mn

k,j(t) =

 k
k−j t − k

k−j
√

1− t2

k
k+n+j−1

√
1− t2 k

k+n+j−1 t

 .
Here unk−j,j , v

n
k−j,j and unk−1−j,j , v

n
k−1−j,j are the components of the polynomials X

(k−j)
n+1,j and X

(k−1−j)
n+1,j ,

respectively, in the representation (3.2).

Proof The right-hand side of (3.4) equals to k
k−j t u

n
k−1−j,j(t)− k

k−j
√

1− t2 vnk−1−j,j(t)

k
k+n+j−1

√
1− t2 unk−1−j,j(t) + k

k+n+j−1 t v
n
k−1−j,j(t)

 . (3.5)

In view of (3.3) the first row of (3.5) is given by

k

k − j
Ank−1,j

[
t (k + n+ j − 2)C

(n−1
2 +j)

k−1−j (t)− (1− t2)
d

dt
C

(n−1
2 +j)

k−1−j (t)
]

= Ank−1,j k C
(n−1

2 +j)

k−j (t),

where the equality follows from the recurrence formula (2.4).

The second row of (3.5) is given by

k

k + n+ j − 1

√
1− t2Ank−1,j

[
(k + j + n− 2)C

(n−1
2 +j)

k−1−j (t) + t
d

dt
C

(n−1
2 +j)

k−1−j (t)
]

=
k

k + n+ j − 1
Ank−1,j

√
1− t2 d

dt
C

(n−1
2 +j)

k−j (t),

where the equality follows from the recurrence formula (2.5).
Taking into account that Ank−1,j = k+n+j−1

k Ank,j , the right-hand side of (3.4) is now given by

Mn
k,j

[
unk−1−j,j(t)

vnk−1−j,j(t)

]
=

(n+ k + j − 1)Ank,j C
(n−1

2 +j)

k−j (t)

Ank,j
√

1− t2 d
dtC

(n−1
2 +j)

k−j (t)

 =

unk−j,j(t)
vnk−j,j(t)


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(j=0) (j=1) (j=2) (j=3) (j=4)

(k=0) 1 ≡ X
(0)
n+1,0

Mn
1,0

��

(k=1) Pn
1 ≡ X

(1)
n+1,0

Mn
2,0

��

1 ≡ X
(0)
n+1,1

Mn
2,1

��

(k=2) Pn
2 ≡ X

(2)
n+1,0

Mn
3,0

��

X
(1)
n+1,1

Mn
3,1

��

1 ≡ X
(0)
n+1,2

Mn
3,2

��

(k=3) Pn
3 ≡ X

(3)
n+1,0

Mn
4,0

��

X
(2)
n+1,1

Mn
4,1

��

X
(1)
n+1,2

Mn
4,2

��

1 ≡ X
(0)
n+1,3

Mn
4,3

��

(k=4) Pn
4 ≡ X

(4)
n+1,0

Mn
5,0

X
(3)
n+1,1

Mn
5,1

X
(2)
n+1,2

Mn
5,2

X
(1)
n+1,3

Mn
5,3

1 ≡ X
(0)
n+1,4

Mn
5,4

Figure 1: Recurrence scheme

and the theorem is proved. �

This theorem can be illustrated by the scheme presented in Figure 1.

Remark 3.1 Notice that for j = 0, the matrix Mn
k,0 coincides with the matrix Mn

k defined in Theorem 3.1.

In this case X
(k)
n+1,0 = Pnk and for the complex plane (n = 1), P1

k are isomorphic to the holomorphic powers

zk, where z = x0 + x1 e1 ∈ C.
With this interpretation for the complex case, Theorem 3.2 describes the multiplicative process of obtaining

zk as the product z.zk−1 (see [10]).

Remark 3.2 The matrix Mn
k,j can be decomposed as follows:

Mn
k,j(t) = Dn

k,jR(t), (3.6)

where

Dn
k,j :=

[
k
k−j 0

0 k
k−1+n+j

]
and R(t) =

[
t −

√
1− t2

√
1− t2 t

]
.

Introducing polar coordinates x0 = r cos θ and |x| = r sin θ, where r = |x| and θ ∈ [0, π], the represen-

tation (3.2) corresponds to the representation in polar coordinates of the homogeneous polynomial X
(k−j)
n+1,j .

Then t = x0

|x| = cos θ, and
√

1− t2 = sin θ. It is now clear that R is the rotation matrix

R(θ) =

cos θ − sin θ

sin θ cos θ


and the decomposition (3.6) shows the distortion of the rotation process when a multiplication occurs in higher
dimensions. Notice that for n = 1 and j = 0 (the complex case), the diagonal matrix D1

k,0 is the identity.



I. Cação, M.I. Falcão and H.R. Malonek 8

Remark 3.3 Recalling that X
(0)
n+1,k(x) = 1 for all x ∈ An and for any k ≥ 1 and each fixed j (j = 0, . . . , k−1),

the recursive application of Theorem 3.2 permits to obtain[
unk−j,j(t)

vnk−j,j(t)

]
= Mn

k,j

[
unk−1−j,j(t)

vnk−1−j,j(t)

]
= Mn

k,jM
n
k−1,j

[
unk−2−j,j(t)

vnk−2−j,j(t)

]
= · · ·

= Mn
k,jM

n
k−1,j · · ·

[
un0 (t)

vn0 (t)

]
=Mn

k,j

[
1

0

]
,

where

Mn
k,j :=

k−j−1∏
l=0

Mn
k−l,j . (3.7)

In this way, Theorem 3.2 describes a recursive procedure to produce each polynomial X
(k−j)
n+1,j (k ≥ 0 and

j = 0, . . . , k − 1) starting from the initial values 1 and 0 of the scalar and vectorial parts, respectively.

Since

detMn
k−l,j =

(k − l)2

(k − l − j)(k − l + n+ j − 1)
, l = 0, . . . , k − j − 1,

we have that

detMn
k,j =

(
k

j

)
k!

j!(n+ 2j)k−j
.

4 Some applications

From Theorem 3.2 we can derive some results concerning the structure of the building blocks X
(k−j)
n+1,j , for

k ≥ 0 and j = 0, . . . , k. The first one is related to the zeros of those polynomials.

Corollary 4.1 For all dimensions n ≥ 1, for k ≥ 1 and j = 0, . . . , k − 1, X
(k−j)
n+1,j(x) = 0 if and only if x = 0.

Proof For each k ≥ 1 and a fixed j (j = 0, . . . , k − 1), consider X
(k−j)
n+1,j given by (3.2) and let x ∈ An such

that X
(k−j)
n+1,j(x) = 0. Then,

|x|k−j unk−j,j(t) = |x|k−j vnk−j,j(t) = 0.

Using Theorem 3.2 recursively, we obtain

|x|k−jMn
k,j

[
1

0

]
=

[
0

0

]
.

Since detMn
k,j 6= 0, it follows at once that last equality holds if and only if x = 0. �

Corollary 4.2 For all dimensions n ≥ 1, for k ≥ 0 and a fixed j (j = 0, . . . , k),

∣∣X(k−j)
n+1,j(x)

∣∣ ≤ (k
j

)
|x|k−j , x ∈ An.

Proof Using Theorem 3.2 recursively, we have[
unk−j,j(t)

vnk−j,j(t)

]
=Mn

k,j

[
1

0

]
,

with Mn
k,j given by (3.7).
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The well-known properties of the Euclidean norm in R2 and the corresponding induced matrix norm allow
to state that

‖(unk−j,j , vnk−j,j)‖2 ≤ ‖Mn
k,j‖2 ‖(1, 0)‖2 ≤

k−j−1∏
l=0

‖Mn
k−l,j‖2.

For each l (l = 0, . . . , k− j− 1), the matrix Mn
k−l,j (Mn

k−l,j)
T can be written, using decomposition (3.6),

as

Mn
k−l,j (Mn

k−l,j)
T = Dn

k−l,j R(t) (R(t))T (Dn
k−l,j)

T =
(
Dn
k−l,j

)2
,

i.e., Mn
k−l,j (Mn

k−l,j)
T is the diagonal matrix

Mn
k−l,j (Mn

k−l,j)
T =

 (k−l)2
(k−l−j)2 0

0 (k−l)2
(k−l+n+j−1)2

 .
It is clear that the largest eigenvalue of this matrix is (k−l)2

(k−l−j)2 and therefore ‖Mn
k−l,j‖2 = k−l

k−l−j l =

0, . . . , k − j − 1. Hence,

∣∣X(k−j)
n+1,j(x)

∣∣ = |x|k−j ‖(unk−j , vnk−j)‖2 ≤ |x|k−j
k−j−1∏
l=0

k − l
k − l − j

= |x|k−j
(
k

j

)
.

�

Remark 4.1 Notice that for j = 0, we obtain the estimate stated in [10] for the polynomials Pnk ≡ X
(k)
n+1,0.

Remark 4.2 An estimate for the building blocks can also be obtained applying the sharp estimate for the
Gegenbauer polynomials (see [28])

|Cνm(t)| ≤ (2ν)m
m!

, |t| ≤ 1

to F
(k−j)
n+1,j in (2.2). It follows then ∣∣∣F (k−j)

n+1,j (x)
∣∣∣ ≤ |x|k−j (k

j

)
(4.1)

and therefore, from (2.7), ∣∣∣X(k−j)
n+1,j(x)

∣∣∣ ≤ |x|k−j (k
j

)(
1 +

k − j
n+ 2j

)
for each fixed j.

The estimate for the building blocks obtained in Corollary 4.2 is clearly better and it preserves the sharp

estimate (4.1) obtained for the building blocks F
(k−j)
n+1,j in the harmonic case (2.1).

Corollary 4.3 For each k ∈ H0, the elements of the orthogonal basis for the space Mk(Rn+1, C`0,n) given
by (2.9) are such that

|fk,µ(x)| ≤ k!

k2!
∏n
l=2(kl+1 − kl)!

|x|k, x ∈ An,

where µ is an arbitrary sequence of integers (kn+1, kn, . . . , k2) such that k = kn+1 ≥ kn ≥ · · · ≥ k3 ≥ k2 ≥ 0
and k2 ∈ N0.

Proof For each k ≥ 0, from (2.9) we have that

|fk,µ(x)| =
n∏
l=2

∣∣∣X(kl+1−kl)
l+1,kl

(x)
∣∣∣ |ζ|k2 , x ∈ An,
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where µ is an arbitrary sequence of integers (kn+1, kn, . . . , k2) such that k = kn+1 ≥ kn ≥ · · · ≥ k3 ≥ k2 ≥ 0
and k2 ∈ N0. From the previous corollary and for each k and all sequences of integers µ the building blocks
of the polynomial (2.9) are such that

∣∣X(kl+1−kl)
l+1,kl

(x)
∣∣ ≤ (kl+1

kl

)
|x|kl+1−kl , l = 2, . . . , n.

Therefore, taking into account that |ζ|k2 ≤ |x|k2 , for all x ∈ An and k2 ∈ N0, one can write

|fk,µ(x)| ≤
n∏
l=2

(
kl+1

kl

)
|x|kl+1−kl |ζ|k2 ≤ k!

k2!
∏n
l=2(kl+1 − kl)!

|x|k.

�

Acknowledgements

This work was supported by Portuguese funds through the CIDMA - Center for Research and Development
in Mathematics and Applications, the Research Centre of Mathematics of the University of Minho and the
Portuguese Foundation for Science and Technology (“FCT - Fundação para a Ciência e a Tecnologia”), within
projects PEst-OE/MAT/UI4106/2014 and PEstOE/MAT/UI0013/2014.

References

[1] P. Appell, Sur une classe de polynômes. Ann. Sci. École Norm. Sup. 9 (1880), no. 2, 119–144.

[2] S. Bock and K. Gürlebeck, On a Generalized Appell System and Monogenic Power Series. Math. Methods
Appl. Sci. 33, no. 4, (2010), 394–411.
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