
Open Source Debuggers and Integration with a 3D Engine

Andre Alexandre Wang Liu António Ramires Fernandes
Departamento de Informática

Universidade do Minho, Portugal
andre liu507@hotmail.com, arf@di.uminho.pt

Abstract
Debugging is always an important phase in an application life. Applications using 3D hardware accelerated
graphics in general, and OpenGL in particular, are usually hard to debug since the computation is split between
two processors, each with its own memory space. To be able to debug these applications one has to rely on the API’s
debugging mechanisms to inspect the output of the computations performed. Several tools are available for this
purpose, some of them are open source. Open source tools are great to integrate in already existing projects such
as 3D engines since they allow the required customizations. The goal of this paper is twofold. Firstly we provide an
overview of the existing open source debugging tools for OpenGL and secondly we discuss the integration of one of
such tools in an existing 3D engine.

Keywords
OpenGL; Debugging; GLSL; 3D engine

1. INTRODUCTION

OpenGL applications are prone to error for a number of
reasons. Probably the most common reason is the mathe-
matics behind 3D graphics which is complex and hard to
trace in a multi stream processor environment such as the
GPU. This may require the user to output partial results to
output buffers and latter inspect them. This inspection is
not straight forward to achieve in a regular debugger since
these buffers live in the GPU memory space, and it is up
to the programmer to retrieve them. The multi stream na-
ture of the GPU also makes it harder to debug a particular
instance of a shader.

Another reason lays on the drivers themselves. While the
specification is unique, it is a known fact that there are sig-
nificant differences between the implementations from the
two main hardware makers. For instance, currently, when
using uniform blocks NVIDIA accepts the instance block
name, while AMD does not. Furthermore, not all features
described in the specification are implemented. The same
applies to OpenGL extensions, with different drivers hav-
ing different degrees of implementation completeness. The
third issue relates to the silent way drivers deal with many
errors. When an error occurs usually life goes on in the
application. It is up to the programmer to retrieve the com-
pilation and linkage logs, and check for errors during exe-
cution.

Recently, OpenGL has came up with an extension dedi-
cated to debugging [Khronos 14]. The goal is to provide
the user with feedback when invalid operations are per-
formed. Although a step in the right direction, it is still far

from perfect. Not all problematic situations are covered
by this mechanism, and the debug messages provided by
the different hardware manufacturers are far from helpful
in most cases.

Each of the vendors provides a debugging tool, at least
for Windows operating system. NVIDIA released NSight
[NVIDIA 14], and AMD has CodeXL [AMD 13]. Both
debuggers can work integrated with Visual Studio. While
the list of features is impressive, including shader code
tracing, and GPU memory inspection, these tools are not
up to date with the latest version of OpenGL. CodeXL
claims to support OpenGL 4.3 while NSight only supports
OpenGL 4.2. Furthermore, NVIDIA Optimus equipped
laptops do not to take advantage of the full list of features
available in NSight, namely shader code tracing.

Open source tools on the other hand are not as powerful as
they don’t allow shader tracing. However, currently some
are up to date with the latest OpenGL version and exten-
sions making them useful for users who want to explore the
latest features. It is also possible to integrate these tools
within an application. Being open source allows for the
required customizations to be performed.

This paper explores some of the available open source
OpenGL debuggers (section 2). It also discusses the in-
tegration of one of such debuggers, GLIntercept, in an
OpenGL based application (section 3). The selected appli-
cation is the Nau 3D engine1. This engine allows for multi-
pass rendering using OpenGL with shaders, and integrates
NVIDIA’s Optix ray tracing engine and Bullet physics en-

1https://github.com/Nau3D/nau

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55631249?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

gine. It is a complex application covering a wide range of
OpenGL functionality and therefore should provide a very
rich case study. Conclusions are presented in section 4.

2. OPEN SOURCE DEBUGGERS

On the OpenGL wiki [OpenGL.org 12] four open source
debuggers are listed:

• GLIntercept

• APITrace

• Bugle

• glslDevil

Recently Valve has released its own debugger, VOGL. To-
gether these are the debuggers explored in this paper. Full
sub sections are devoted to debuggers which support the
latest OpenGL versions, namely: GLIntercept, APITrace
and Bugle.

All these debuggers are based on a library that wraps
OpenGL functions. This library replaces the OpenGL li-
brary as far as our application is concerned. When an
OpenGL function is called, the application is actually call-
ing the homonym function on the debugger library, en-
abling actions to be triggered before and after dispatching
the call to the OpenGL library. The most common of these
actions is logging function calls, and all the above men-
tioned debuggers perform this functionality.

Due to the open source nature of these tools there is no
guarantee that future updates will be available when new
OpenGL versions come out. Even if the team behind the
tool is active there will be a period of time when the debug-
ger is not fully updated. Some of these debuggers have a
fallback mechanism to at least report the OpenGL function
names called within an application. Nevertheless, for users
wanting to try the latest features, it is important to have full
support right away, or at least support for the features being
tested.

In the next sub-sections some of the particular features of
the debuggers will be discussed, namely their updatability.

2.1. GLIntercept

GLIntercept [Trebilco 13] is an OpenGL debugger origi-
nally designed for Windows, but a Linux port is available.
The main features of interest for modern OpenGL users
are:

• Full function logger: logs every OpenGL function call
during the application life to a file;

• Frame logging: as an alternative to full frame logging
it can selectively log only the function calls between
two consecutive swap buffers calls;

• Dump textures and frame buffers to file;

The configuration of the debugger is based on text files and
is performed manually. Nevertheless the syntax is simple
and examples are provided.

2.1.1. Plugins

This debugger is unique due to the fact that it allows the
inclusion of plugin libraries. The source code has it’s own
plugin solution to help users to create them, and source
code for several plugins is available. Some note worthy
plugins for modern OpenGL are:

• Debug Context: Forces an OpenGL debug
context and logs; ARB_debug_output and
GL_KHR_debug messages;

• Shader Editor: Provides a text editor to edit and in-
spect shader code in real-time;

• Function Stats: Statistics regarding function calls;

Plugins allow to override the default functionality of GLIn-
tercept by adding code to be executed before and after an
OpenGL function call. It is also possible to define code to
wrap render functions and the end of the frame.

Plugins are added to the default GLIntercept config file as
follows:

Plugins
{
FunctionStats = ("GLFuncStats\GLFuncStats.dll")
{

// plugin options
}

}

The available options are provided in the template config
file for each plugin.

2.1.2. Logging

GLIntercept works by overriding calls to
wglGetProcAddress, wrapping the real function
pointer with some code and returning it to the application
being debugged. Since the usage of wglGetProcAddress
is required by any application using post 1.1 OpenGL,
this approach ensures that GLIntercept will log all
functions. However, functions which are not defined
in the header config files of GLIntercept will have their
parameters represented by ”???”, for instance, assuming
that glGetProgramiv is not defined the log would
report glGetProgramiv(???).
An example of a log snippet is:

...
glClear(GL_DEPTH_BUFFER_BIT |

GL_STENCIL_BUFFER_BIT |
GL_COLOR_BUFFER_BIT)

glDisable(GL_SCISSOR_TEST)
glUseProgram(7)
glUniformMatrix4fv(0,1,false,[1.732051,0.000000,

0.000000,0.000000,0.000000,1.732051,0.000000,
0.000000,0.000000,0.000000,-1.006018,-1.000000,
0.000000,0.000000,9.458376,10.000000])

glUniform4fv(1,1,[0.000000,0.000000,1.000000,1.000000])
...

By default, return values are not logged in GLIntercept.
This functionality could be partially covered with a plu-
gin that traces glGet* functions. Yet, to fully implement
such a feature it requires the plugin programmer to iden-
tify all GL functions that return meaningful values to the
application.

2.1.3. Updating for newer OpenGL versions

As mentioned before, GLIntercept can log all OpenGL
functions. However, there is no automatic way of under-
standing the function parameters. GLIntercept requires
header configuration files with the function signatures and
constants to provide this information. Currently, GLInter-
cept is up to date with OpenGL 4.4.

Should a new OpenGL version come out, it is feasible to
partially update the header configuration files manually by
adding a few functions and constants.

For a full update, GLIntercept has a script to use egl, gl,
glx and wgl xml files from Khronos spec repository 2 to
create an almost complete GLIntercept header configura-
tion files. A small amount of code tuning is still required
due to the fact that OpenGL has constants defined with the
same value. For instance in glext.h we can find:

#define GL_PIXEL_MODE_BIT 0x0020
//...
#define GL_COMPUTE_SHADER_BIT 0x0020

And in the header configuration files we have

//gli1_1 include file
enum Mask_Attributes {

...
GL_PIXEL_MODE_BIT = 0x0020,
...

};
//gli4_3 include file
enum Mask_ShaderProgramStages {

GL_COMPUTE_SHADER_BIT = 0x0020,

};

The conversion of functions also requires tuning to take the
different enums into account. For instance, consider the
function glUseProgramStages:

//glext.h
GLAPI void APIENTRY glUseProgramStages (GLuint pipeline,

GLbitfield stages, GLuint program);

//gli4_4 include file
void glUseProgramStages(GLuint pipeline,

GLbitfield[Mask_ShaderProgramStages] stages,
GLuint program);

On the positive side, this updates do not require a rebuild
of GLIntercept.

2.2. APITrace

APITrace [Fonseca 13] is a unique tool among this set of
debuggers. When the application being debugged is run-
ning the debugger limits itself to log all calls producing a
binary file with all the information. APITrace’s main goal
is to replay the log file once the application terminates.

This debugger has the ability to replay it’s trace files allow-
ing the user to check and verify it’s current state including
the resources and uniforms used for the current function.
Using the replay it’s possible to dump images to ffmpeg in
order to create a video.

2https://cvs.khronos.org/svn/repos/ogl/trunk/doc/registry/public/api/

Although the log file is binary it can be edited using API-
Trace’s tools allowing the user to resize the file or even
change some input. Apitrace can read the frame uniforms
and shaders by replaying the trace file, it replays each func-
tion until it reaches a user defined breakpoint (a user se-
lected function) or the end of the file. Then it grants the
user the ability to inspect the application state at that point.
When replaying an application, APITrace provides a full
GUI application that makes it very easy to use.

As far as logging goes, APITrace supports all OpenGL de-
bugging extensions even if the extensions are not supported
by the driver/hardware. In this case the extension functions
themselves are not executed but they can be traced.

This debugger is also capable of profiling both CPU and
GPU execution times for frames and draw calls.

APITrace has cross-platform compatibility allowing de-
bugging for Linux, Windows, OSX, and Android. Be-
sides OpenGL, APITrace can also work with Direct3D and
OpenGLES. However the profiling features are only avail-
able to OpenGL.

2.2.1. APITrace GUI

When replaying a log file, APITrace provides a full GUI
application that makes it very easy to use. A log viewing
example is shown in figure 1.

Figure 1. APITrace log viewer.

The GUI provides every bit of information regarding the
application status for each draw call, uniform values,
shader code, and even a graphical profiling tool.

2.2.2. Updating for newer OpenGL versions

APITrace suffers from similar problems as GLIntercept re-
garding the update to new OpenGL versions or extensions.
Most of the process is automated, and it is based on the of-
ficial OpenGL header files. Nevertheless, manual tuning is
required for parameter types and some function signatures.

Again, while the update could be performed manually for a
reduced number of functions, it is unfeasible for someone

outside the development group to achieve a full significant
OpenGL version update.

Plus, when such an update is performed, a rebuild is re-
quired.

2.3. Bugle

Bugle [Merry 07] is mostly used in Linux operative sys-
tems. It can also be installed in Windows but, as men-
tioned on the web site, ”it is significantly trickier than on
UNIX-like systems, and currently only recommended for
experts”.

Bugle’s configuration is based on filters (a set of actions
used to extract, manage, or print information). Filters are
chained together, like a production line from a factory, the
product being debug or profile information.

Bugle comes with several filters that can be configured
inside a chain. However, unlike GLIntercept plugins, no
method other than changing the C code directly can create
new filters. There are filters for tracing, collecting statis-
tics, error logging, taking screen shoots, video capturing,
amongst others. An example of a chain is as follows:

chain myshowstats
{

filterset stats_basic
filterset stats_primitives
Note: stats_fragments requires GL_ARB_occlusion_query
filterset stats_fragments
filterset stats_calls
filterset showstats
{

show "frames per second"
show "batches per frame"
show "calls per frame"
graph "triangles per second"
graph "fragments per second"

}
}

This chain will compute several statistics that will be
used by the filter filterset showstats to dis-
play on the debugged application’s interface according
to the show and graph listed by the filter. The
filterset showstats displays data according to the
statistics configuration file, for example:

"frames per second" = d("frames") / d("seconds")
{

precision 1
label "fps"

}

2.3.1. Bugle GUI

Bugle displays statistics on top of the application being
debugged (figure 2), as well as in its own GUI (figure
3). Bugle’s own GUI allows the user to set breakpoints
on any OpenGL function and inspect the current OpenGL
state, including buffers, textures, framebuffer contents and
shaders.

2.3.2. Updating for newer OpenGL versions

Bugle generates it’s API configuration files using the
khronos-api xml files, which can be located in Khronos

Figure 2. Bugle stats on top of the applica-
tion.

Figure 3. Bugle’s GUI.

spec repository, making it the most simple debugger to up-
date. Updating is a fully automated process with no man-
ual tuning required.

On the downside, once the API configuration files are up-
dated, a rebuild is required.

2.4. Other Debuggers

GLSL-Debugger [Hanson 13], a descendant of glslDevil
[Klein 10], is the only open-source debugger that provides
GLSL tracing capabilities, based on Mesa[Mesa.org 99],
an open-source implementation of the OpenGL specifica-
tion. However, at the time of this writing Mesa only sup-
ports GLSL 3.3, hence, it may be of little use for cutting
edge developers. This debugger has a complete GUI and
a large number of features, but its dependency on Mesa
makes it hard to keep up to date with the latest OpenGL
versions.

A recent addition to the list of available debuggers is

VOGL [Software 14], Valve’s OpenGL debugger. Still
only supporting OpenGL 3.3, but with an interesting list
of features that makes it worth while to monitor its devel-
opment. Perhaps the most interesting feature is the abil-
ity to deal with very large trace files efficiently. OpenGL
state management allows to efficiently start tracing from
the middle of the trace file without having to replay the en-
tire file, as required with APITrace. Trimming and editing
of trace files is also considered an important feature and
VOGL’s developers are working hard on these tools.

2.5. Comparision table

The following table provides a short feature comparison
between the debuggers that have full support for current
OpenGL, namely: GLIntercept, APITrace and Bugle.

GLIntercept APItrace Bugle
GUI no yes yes
Log trace yes yes yes
Trace step-by-step no no yes
Replay trace no yes no
OpenGL debug ext. yes yes yes
Trace statistics yes no yes
Runtime statistics no no yes
Show extensions no no yes
Video capturing yes yes yes
Screenshooting yes yes yes
Capture frame log yes yes yes
Capture frame buffer yes yes yes
Application profiling no yes yes
Shader information yes yes yes
Uniform data reading no yes no
Plugin addition yes no no
Man. tuning GL updates yes yes no
Rebuild on GL updates no yes yes
OS Win Win/Unix Win+-/Unix

Table 1. Open Source Applications Feature
table

3. INCORPORATING THE DEBUGGER IN NAU

Nau [Ramires] is an open-source 3D graphics engine that
works with OpenGL as its graphics API. Nau allows for
multipass pipeline definition using XML project files. The
material management system is very extensible and flexi-
ble allowing for complex pipelines, and enabling it to per-
form many graphical effects without the need to write a
single line of C/C++ code.

Nau works with Optix [NVIDIA 09], from NVIDIA, en-
abling hybrid rendering algorithms in pipelines that con-
tain both rasterization and ray-tracing passes.

An embedded profiler detailing both CPU and GPU times
provides helpful information to fine tune projects.

Composer is an application GUI that works on top of Nau’s
library and provides a simple GUI to explore the settings
of the current project, allowing for shader recompilation in
real time. It also provides information on materials, lights,
cameras, and uniform variables.

Nau is continuously being updated to include new OpenGL
features and to extend the XML project definition lan-
guage. Although Nau already provides some debug infor-
mation, both final users and developers would benefit from
having extra debugging information available.

Integrating a debugger into Nau is certainly a path to ex-
plore, and this section reports on the progress achieved so
far. Being able to have access to the OpenGL calls log
file in runtime, will probably save many headaches when
writing code for Nau.

Since Composer already provides a GUI, and as both Bugle
and APITrace also have a GUI, we opted for GLIntercept.
Furthermore, its plugin architecture might reveal very use-
ful in this integration scenario as no source code editing in
the debugger is required. Finally, GLIntercept is the only
debugger that does not require a rebuild for each OpenGL
update, or new extension.

GLIntercept was designed to provide a large amount of in-
formation, not only for debugging but profiling as well.
Since Nau already contains debugging mechanisms not all
of GLIntercept features will be used as they are better cov-
ered inside Nau itself. For instance, if enabled GLIntercept
profiler records CPU times for every OpenGL call which
is not very useful since we are more interested in the GPU
times. Nau records both CPU and GPU times per user de-
fined block. GLIntercept also allows the recording of er-
rors, however this occurs with a significant performance
cost. We plan to add to Nau the most recent OpenGL de-
bugging extension [Khronos 14]. A GLIntercept plugin is
available for this purpose, but implementing it directly in
Nau provides more flexibility.

3.1. Changes on GLIntercept

By default GLIntercept’s behaviour can’t be changed when
the target application starts.Since the debugger is now inte-
grated in the target application it makes sense to be the ap-
plication controlling the logging facilities. Therefore, the
log is no longer automatically created, it has to be started
manually with a function on the target application. Also,
the plugins must be activated within the target application.

For the target application to control the debugger it was
required to allow to edit in runtime the debugger config-
uration settings. To achieve this we created a C module
integrated in the debuggers library to expose the required
functions.

Because the settings can now be edited in run-time sev-
eral changes regarding removing and adding new settings
also had to be made. For instance, plugins alter an internal
function table, and now the ability to remove plugins im-
plies methods to clean the function table in order to avoid
crashing.

3.2. Changes in Nau

Everything in Nau can be defined in XML project and ma-
terial definition files. Hence, it makes sense to follow the
same principle regarding the debugging options. There-
fore, the XML definition was extended to allow the con-
figuration of GLIntercept’s options and plugin usage. No
source code editing is necessary to configure debugging
options for a particular project.

The <debug> tag has been added in order to use the new
features. On the absence of this tag, GLIntercept will not

be used by Nau. This allows Nau not to use GLIntercept
at all, so the new features are not forced on the user, and
are disabled by default, causing no impact relative to the
original performance.

3.3. Changes on composer

As mentioned before, Composer is a GUI for Nau. De-
bugging information such as the log of OpenGL calls can
become a powerful debugging tool if provided frame by
frame, or even at a finer grain such as pass by pass. To
achieve this Composer was expanded to control render-
ing: pausing rendering, rendering pass by pass, or frame
by frame.

Once paused, it will load the txt logfile and split the log in
frames and passes. Due to the plugin architecture of GLIn-
tercept it is feasible to generate more info in the future.

3.4. Creating a Project File for Debugging

To activate Nau’s debugger all that is required is the addi-
tion of the debug tag on the project XML file. The chil-
dren tags are optional and allow the override of the default
settings for GLIntercept as defined in gliconfig.ini.
Without any children or options the default settings will be
used.

This section will demonstrate how most of these tags work.
Often the mentioned value for the attribute will be some
generic type, this means that the value should be of the
same type within the quotation mark. The generic values
are:

• "bool" so the value should either be "true" or
"false";

• "uint" means an unsigned int;

• ”string” is for text values.

The debug tag has a set of children as in the following code.
The glilog attribute is optional, when ”false” it won’t
create the function log file.

<project>
...
<debug glilog="bool">

<functionlog>
... see functionlog section

</functionlog>
<imagelog>

... see imagelog section
</imagelog>
<framelog>

... see framelog section
</framelog>
<plugins>

<plugin>
... see plugins section

</plugin>
...

</plugins>
</assets>

</project>

Most of the available options are very similar to the stan-
dard GLIntercept’s config file, however there are a few ex-
ceptions.

3.4.1. functionlog

This will define logging options such as the location of
the log file and if the number of frames to be logged
should be limited to a certain value to prevent exces-
sively long logs. All these options have default values in
gliconfig.ini, so the definition of these tags is only
required to override the default settings.

<functionlog>
<logmaxnumlogframes value="uint"/>
<logpath value="string"/>
<logname value="string"/>

</functionlog>

3.4.2. logperframe

This allows the user to select frames to log. If this tag
is defined then the logging is not started as soon as the
application starts. To start logging the user must press
a key, or combination of keys, as defined in the chil-
dren tags. To log only selected individual frames the tag
logoneframeonly must have a value true. Otherwise,
if logmaxnumlogframes is defined then only the de-
fined number of frames will be logged. If none of the men-
tion tags are defined then once logging is activated is keeps
logging frames until the application is terminated.

<logperframe>
<logoneframeonly value="bool"/>
<logframekeys>

<item value="key"/>
<item value="key"/>
...

</logframekeys>
</logperframe>

It should be noted that if logframekeys
has multiple children then a key com-
bination is being defined, for example
<item value="ctrl"/><item value="f"/>
means that the user needs to press <ctrl-f> to create
the snapshot.

3.4.3. imagelog

Image log determines if the logger will log textures, which
textures and in which format. In this section we can
configure which texture types to save, 1D, 2D, 3D and
cube textures. In here we can also configure the for-
mat in which images are saved, <imagesavepng>,
<imagesavetga>, and <imagesavejpg>, are the al-
lowed save formats and <imageicon> determines the
icon type. Note that if the configuration is set to log all
frames this will imply that all the images in the applica-
tion will be saved every frame. This feature is designed
to function with logging of single frames for performance
reasons.

<imagelog>
<imagesave1d value="bool">
<imagesave2d value="bool">
<imagesave3d value="bool">
<imagesavecube value="bool">
<imagesavepng value = "bool">
<imageicon>

...
</imageicon>

</imagelog>

3.4.4. framelog

This will save the frame buffer’s pre/post/diff state
on an additional frame folder. While in GLIn-
tercept’s gliConfig.ini the pre/post/diff flags
are one single attribute, here the they are 3 sep-
arate booleans (for example ColorBufferLog
is now: <frameprecolorsave>,
<framepostcolorsave>,
<framediffcolorsave>).

There is also the possibility of creating a movie with the
frame buffer, including all the specified buffers. For the
stencil buffer it is possible to specify a color table for sten-
cil values, for instance if the stencil value is 1 the color
could be #FF0000 (red).

<framelog>
<framepostcolorsave value = "bool">
<frameimageformat value="string"/>
<framestencilcolors>

<item value="uint"/>
<item value="uint"/>
...

</frameStencilColors>
...
<frameicon>

...
</frameicon>
<framemovie>

...
</framemovie>

</framelog>

3.4.5. plugins

Adding a plugin is slightly different on Nau because of the
configuration format.

GLIntercept plugins require at least the plugin name and
the location of its DLL. For example in glicongif.ini
we could write:

FunctionStats = ("GLFuncStats.dll")

Some plugins can fit extra parameters and these extra pa-
rameters should be placed as described in the example,
their format is the same as the GLIntercept’s config file.
These parameters can be found in the config.ini file of
the plugin. Converting this information for a Nau project
results in:

<plugins>
<plugin name="FunctionStats"

dll="GLFuncStats.dll">
parameter1 = "parameter1 value";
parameter2 = "parameter2 value";
...

<plugin>
...

</plugins>

3.4.6. WORKING WITH COMPOSER

A debug menu was added to Composer. In order to ac-
cess the debug options it is necessary to Pause Composer.
Once paused the composer will start reading the GLInter-
cept main log file (if available) and fetch program data.
This may take a while for large log files.

Once paused, the GLI Log, Program Info and
Buffer Info options become available. Navigation op-

tions include executing the next pass, go until the end of the
frame, or execute a full frame (see figure 4).

Figure 4. Nau’s pass control.

The log window shows the function call log and stats per
frame, see figure 7.

Program Info will provide information for each pro-
gram including the actual uniform values, see figure
6. Composer already provides the values that uniforms
should have according to the project file. Having the ac-
tual values allows developers to check if the uniforms are
correctly being set.

The buffer information window allows the visualization
of buffer contents. The user may specify the number of
atomic elements and their type per struct of the buffer.

Figure 5. Nau’s program uniforms.

4. CONCLUSIONS AND FUTURE WORK

Current Open Source debuggers, while not covering all de-
sired features, can complement each other. While there is
still a lot of work ahead, the debuggers presented in here
are already very useful tools for OpenGL developers.

Nevertheless, actual shader debugging remains an issue.
Proprietary debuggers like NSight or CodeXL, and GLSL
Debugger are the only debuggers capable of this feature
and even them are not fully up to date with the latest
OpenGL version and extensions. A software implemen-
tation by Khronos could help to solve this issue.

Integrating GLIntercept with Nau turned out to be a much
more simple task than expected. GLIntercept’s code it-
self is simple to read once the programmer knows where

Figure 6. Nau’s buffer information.

Figure 7. Nau’s log information.

to start looking and all that was required was to export the
configuration functions.

On Nau’s side, due to the highly modular architecture of
the 3D engine, it was painless to introduce all the new fea-
tures. Although we have implemented a substantial set
of features, much remains to be done to achieve a really
helpful debugging environment. For instance, as we know
which values the GL uniforms should have, and the values
actually set on those uniforms, an automatic verification
matching procedure is a goal to be achieved.

State inspection is another feature we are working on. The
goal is to be able to configure which OpenGL state vari-
ables are relevant and to be able to inspect them when the
application is paused.

Regarding the integration, not all information generated
by plugins is used by Nau, being available on text for-
mat only. Integrating this information in Nau’s GUI, Com-
poser, could be a helping hand in some debugging scenar-
ios.

5. ACKNOWLEDGEMENTS

Work partially funded by National Funds through FCT -
Fundação para a Ciência e a Tecnologia (Portuguese Foun-
dation for Science and Technology) within project PEst-
OE/EEI/UI0752/2014

References

[AMD 13] AMD. Codexl, November 2013. [On-
line - accessed 1 August 2014].

[Fonseca 13] José Fonseca. Apitrace. GitHub,
November 2013. [Online - accessed 1
August 2014].

[Hanson 13] Hanson e Chris ’Xenon’. Glsl-
debugger, October 2013. [Online - ac-
cessed 1 August 2014].

[Khronos 14] Khronos. Khr debug extension spec,
March 2014.

[Klein 10] Thomas Klein, Magnus Strengert, e
Thomas Ertl. Glsldevil - opengl glsl de-
bugger. GlslDevil. Http://www.vis.uni-
stuttgart.de, February 2010. [Online -
accessed 1 August 2014].

[Merry 07] Bruce Merry. Opengl software develop-
ment kit. BuGLe. OpenGL, 2007. [On-
line - accessed 1 August 2014].

[Mesa.org 99] Mesa.org. Mesa 3d graphics library,
January 1999. [Online - accessed 1 Au-
gust 2014].

[NVIDIA 09] NVIDIA. Nvidia optix ray tracing en-
gine, 2009. [Online - accessed 1 August
2014].

[NVIDIA 14] NVIDIA. Nvidia nsight visual studio
edition. NVIDIA Nsight Visual Studio
Edition. NVIDIA, 2014. [Online - ac-
cessed 1 August 2014].

[OpenGL.org 12] OpenGL.org. Debugging tools.
OpenGL.org, March 2012. [Online -
accessed 1 August 2014].

[Ramires] António Ramires. Nau - opengl + optix
3d engine. [Online - accessed 8 June
2014].

[Software 14] Valve Software. Valve opengl debugger,
May 2014. [Online - accessed 1 August
2014].

[Trebilco 13] Damian Trebilco. Glintercept - opengl
call nterceptor/logger. GlIntercept.
Code.google.com, June 2013. [Online
- accessed 1 August 2014].

