-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Universidade do Minho: RepositoriUM

Removing Inefficiencies from Scientific Code: the
Study of the Higgs Boson Couplings to Top
Quarks

André Pereiral?, Anténio Onofre!2?, and
Alberto Proencal

! Universidade do Minho, Portugal
2 LIP-Minho, Portugal
{ampereira, aproenca}@di.uminho.pt, onofre@fisica.uminho.pt

Abstract. This paper presents a set of methods and techniques to re-
move inefficiencies in a data analysis application used in searches by the
ATLAS Experiment at the Large Hadron Collider. Profiling scientific
code helped to pinpoint design and runtime inefficiencies, the former
due to coding and data structure design. The data analysis code used by
groups doing searches in the ATLAS Experiment contributed to clearly
identify some of these inefficiencies and to give suggestions on how to
prevent and overcome those common situations in scientific code to im-
prove the efficient use of available computational resources in a parallel
homogeneous platform.

Keywords: Scientific Computing, High Performance Computing, Code
Efficiency, ATLAS Experiment

1 Introduction

At the European Organization for Nuclear Research (CERN), the fundamental
structure of the universe is studied using the most complex scientific instruments
built by physicists and engineers up to now. CERN was founded in 1954 by 12
members states but has grown to the size of a world lab with 21 member states
and more then 30 states to which were given the status of “observer” states.
The instrumentation used in nuclear and particle physics research is essentially
formed by particle accelerators and detectors. The Large Hadron Collider (LHC)
speeds up groups of particles close to the speed of light, in opposite directions, in-
ducing a controlled collision of protons at the detectors core. The detectors record
various characteristics of the resultant particles of each collision (an event), such
as energy and momentum, which originate from complex decay chains of parti-
cles produced in the interaction of the partons inside the colliding protons. The
purpose of these experiments is to test models and predictions in High Energy
Physics (HEP), such as the Standard Model, by confirming or discovering new
particles and interactions.

The ATLAS Experiment [1] is one of the seven particle detectors at the
LHC. ATLAS goals are to study the properties of the recently discovered Higgs

https://core.ac.uk/display/55631116?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Pereira, Onofre, and Proenga

boson [2], the search for new particles predicted by models of physics beyond the
Standard Model like Susy, searches for new heavy gauge bosons and precision
measurements where the top quark is of utmost importance. Approximately 600
million collisions occur every second at the LHC. Particles produced in head-on
proton collisions interact with the detectors, generating massive amounts of raw
data. It is estimated that all the combined detectors produce 25 petabytes of
data per year, and it is expected to grow after the ongoing LHC upgrade [3].
This data then passes a set of processing and reconstruction stages until it is
ready to be used by specific analysis codes developed to search for interesting
events predicted by several HEP models that may be present in data. Several
research groups work in event reconstruction in the same experiment, enforcing
positive competition to produce quality results in a fast and consistent way.

These factors enforce the need to process more data, more accurately, in less
time, which often leads to investments on larger computing clusters to improve
the quality of the research results. However, most scientific code was not designed
and/or developed for an efficient use of the available computational resources.
If these applications were adequately designed (or tuned), the event analysis
throughput could be massively increased. An efficient parallel application can
significantly improve its performance at a much lower cost [4].

This paper addresses inefficiencies in two stages of the data analysis applica-
tion: the code development and application runtime. In the former, inefficiencies
in the algorithm coding and data structuring are pinpointed and several solu-
tions are suggested, based on a quantitative analysis of the bottlenecks. The
latter identifies inefficiencies in threads accessing remote shared memory, and
gives hints to overcome these limitations.

This paper is organized as follows: section 2 briefly presents the top quark
and Higgs boson decay process and introduces a short characterization of the
data analysis application used as case study; in section 3 the code inefficiencies
are identified, analysed, and removed, with a final shared memory parallelization
proposal; in section 4, runtime inefficiencies of the parallelization are identified
and possible alternatives suggested, concluding with an assessment of the core
affinity impact; finally, section 5 concludes the paper with suggestions for future
work.

2 Top Quark and Higgs Boson Decay

At the LHC, two proton beams are accelerated close to the speed of light in
opposite directions, set to collide inside a specific particle detector. This head-
on collision triggers a chain reaction of decaying particles, and most of the final
particles interact with the detector, allowing to record relevant data. One of the
searches being conducted at the ATLAS Experiment relates to the study of the
top quark and Higgs boson couplings. Figure 1 represents the final state topology
of the associated production of two top quarks and one Higgs boson (that decays
to two b-quarks), labelled from now on as ¢tH production.

Removing Inefficiencies From Scientific Code

Bottom Quark (b)
| Muon ()

W Boson (W)

Meutrino | v,)

Proton Beam

Proton Beamn
Neutrino (v_)

W Boson (W)

Bottom Quarks (b)

Electron ()

Bottom Quark (b)

Fig. 1: Schematic representation of the tt system and Higgs boson decay.

The ATLAS detector can record the characteristics of the bottom quarks,
detected as a jet of particles, and leptons (muon and electron). Neutrinos do not
interact with the detector, so, their characteristics are not recorded. Since the top
quark reconstruction requires the neutrinos, their characteristics are analytically
determined with the known information of the system, through a kinematical
reconstruction. However, the tf system may not have a possible reconstruction:
the reconstruction has an intrinsic uncertainty associated which determines its
accuracy.

The amount of jets from bottom quarks and leptons present in the events
may vary according to the decay channel of the W bosons produced in the top
quark decays. As shown in figure 1, four jets and two leptons are required to be
present in the events. Two of the jets, together with two leptons are required to
reconstruct the t system, and the remaining two jets are used for the Higgs boson
reconstruction. For the kinematical reconstruction, every possible combination
of jets and leptons must be evaluated and only the most accurate reconstruction
of each event is considered. In a first step, the ¢f system reconstruction is tried.
If it has a possible solution, the Higgs boson is reconstructed from the jets of the
two remaining bottom quarks. The Higgs reconstruction does not use the jets
which were associated to the best tf system reconstruction. The overall quality
of the event processing depends on the quality of both reconstructions.

For the global event reconstruction, several solutions can be tested if we
assume that the ATLAS detector has an experimental energy-momentum reso-
lution of +1%, by varying these quantities within their uncertainty. This uncer-
tainty is propagated into the ¢ system and Higgs reconstructions, affecting their

Pereira, Onofre, and Proenga

accuracy. To improve the quality of the reconstructions several random varia-
tions are applied to the measured values, within a maximum range of |1%| next
to the measured values. The quality of the reconstructions and the application
execution time is directly proportional to the amount of variations performed per
combination. The goal is to do as many variations as possible within a reasonable
time frame.

=]
=1
=]
c
a

. itDilepKinFit
S [[or each 2J + 2L
/
l / / ¥
S N N
P ; Select
* x
/ Yos }
- i
‘
S N 7 @ach varlatiof
; i
. ‘
. '
‘ f
rI MNo i
-« S
i
.
Yas !
[
;
v ‘
i
'
v
v
.i “
v .
N
v i A
.
\ |
. Yas . i
A * Ay
' .
v .
' s
. ‘.
b N
' —
B v
v
v

Fig. 2: Schematic representation for the ttH_dilep application flow.

To reconstruct the t#H system a data analysis application was developed,
the ttH_dilep. The application flow is presented in figure 2. Each event data
on an input file is individually loaded into a single global state, shared between
the data analysis code and the LipMiniAnalysis toolbox3, and it is overwritten
every time a new event is loaded. The event is then submitted to a series of cuts,
which filters events that are not suited for reconstruction. When an event reaches
the cut 20, the ## system and Higgs boson are reconstructed in the function
ttDilepKinFit, which is expected to be the most computing demanding. If the
tt system reconstruction fails, the current combination is discarded and the next

3 The LipMiniAnalysis toolbox provides a skeleton to several data analysis applica-
tions under study in the Portuguese LIP institution, a CERN partner in the ATLAS
Experiment.

Removing Inefficiencies From Scientific Code

is processed. If an event has a possible reconstruction it passes the final cut and
its final information is stored.

The application also depends on the ROOT framework? for part of the func-
tionalities used in the reconstructions and for result output and visualisation.
The code from both ROOT and the LipMiniAnalysis toolbox cannot be modified
as many data analysis applications depend on them.

3 Coding Inefficiencies

Inefficiency removal is a two stage iterative process, where bottlenecks are identi-
fied and later removed. First, the application is profiled and analysed to identify
the critical sections of the code that take longer to compute. Then, the critical
section is optimized by modifying the code, algorithm, or parallelization. The
identification of critical sections can be automated by using third party tools,
such as gprof [6], Callgrind [7], or VTune [8], which produce reports listing the
percentage of time spent in each of the application functions. A more detailed
analysis can be obtained using tools similar to PAPI [9], where hardware coun-
ters are used to quantify cache miss rates, executed floating point instructions,
and other low level information.

The test environment used in both this section and section 4 is a dual-socket
system with two Intel Xeon E5-2670v2 [10] with 10 cores, with hardware support
for 20 simultaneous threads, at 2.5 GHz each, 256 KB L2 cache per core and
25 MB shared L3 cache, with 64 GB DDR3 RAM. The K-Best measurement
heuristic® was adopted to ensure that the only the best, but consistent, time
measurements are considered. Software wise, the GNU Compiler version 4.8.2
with O3 optimizations enabled and ROOT 5.34/17 were used. A 5% interval was
used for a k of 4, with a minimum of 12 and maximum of 24 time measurements.

Profiling the data analysis code using Callgrind, the ttDilepKinFit was
identified as the most time consuming function, taking 99% of the execution
time for 1024 variations. ttH_.dilep execution with this amount of variations was
considered reasonable for all efficiency measurements unless stated otherwise,
without compromising the application execution time.

A preliminary computational analysis concluded that the application is com-
pute bound on the testbed system, where accesses to the system RAM memory
are not a limiting factor with a ratio of 7 instructions per fetched byte for 1024
variations.

An analysis of the code showed two major inefficiencies restricting the per-
formance: (i) the pseudo-random number generation is consuming a large part
of the ttDilepKinFit execution time, (ii) the way data is structured in the

4 ROOT [5] is a C++ framework produced by CERN to help the development of
particle data analysis code, by implementing specific features.

5 For a detailed explanation of the K-Best Measurement Scheme, see Chapter 9.4.3 of
Computer Systems: A Programmer’s Perspective (CS:APP), Randal E. Bryant and
David R. O’Hallaron, Prentice Hall, 2003.

Pereira, Onofre, and Proenga

LipMiniAnalysis prevents processing in parallel events from the same input file.
These two issues are further detailed in the next subsections.

3.1 Pseudo-Random Number Generation Inefficiencies

Pseudo-random number generators (PRNGs) are common in many Monte Carlo
simulation and reconstruction applications. A good PRNG deterministically gen-
erates uniform numbers with a long period, its produced values pass a set of
randomness tests and, in HPC, it must be efficient and scalable. Repeatability
is ensured by providing a seed to the PRNG prior to number generation, due to
their deterministic execution.

The reconstruction of t#H events depends crucially in the intrinsic energy-
momentum resolution of the ATLAS Experiment. In order to increase the prob-
ability of finding the correct solution for the particular configuration of the ttH
event under study, pseudo experiments are performed. For each pseudo exper-
iment, the event kinematics is varied by applying an offset which changes the
energy-momentum four vectors of final state particles, within detector resolu-
tions. As a case study, the maximum offset has been set to £1% of the original
value and is computed with the help of PRNG. An analysis of the callgraph
produced for 256 variations (higher variations made the Callgrind execution
time infeasible) showed that 63% of ttH_dilep execution time was spent on the
PRNG. However, 23% of the time was spent defining a new seed for the PRNG.
Figure 3 presents the callgraph for the ttDilepKinFit function of ttH_dilep.

ttDilepKinFit
99.56%

TRandom::SetSeed
23.27%

TRandom::Gaus

39.37%

dilep
13.35%

Fig. 3: Callgraph subset of the ttDilepKinFit most time consuming functions for 256
variations per combination.

An analysis of the code showed that the application uses a PRNG available
in ROOT, which uses the Mersenne Twister algorithm [11], resetting the seed for
every parameter variation. The Mersenne Twister period is approximately 4.3 %
105901 while the maximum amount of pseudo random numbers generated by the
application, for the input file used and 1024 variations, is 3% 10°, making the seed
reset unnecessary. The removal of this inefficiency granted a 71% performance
improvement.

Removing Inefficiencies From Scientific Code

3.2 Data Structure Inefficiencies

Once removed the PRNG seed reset inefficiency, the ttDilepKinFit still re-
mained the critical region in the application, with no apparent code inefficiency.
The most obvious solution is to process in parallel several events from the same
input file. However, the function in LipMiniAnalysis that loads events from a
file into memory assigns a single global space. This data structure contains in-
formation that is modified during the event reconstruction process, and it is
overwritten for every event loaded. Changing the data structure to support mul-
tiple events in memory simultaneously, and loading all events in the input file
at the beginning of the data analysis, would allow the parallel processing of
events with low overhead. However, as mentioned in section 2 many data analy-
sis applications depend on LipMiniAnalysis preventing any modifications to its
structure, so alternative solutions were explored.

3.3 Alternative Parallel Approaches

Next step to improve the code execution time is to parallelize ttDilepKinFit.
Note that it is not possible to parallelize the whole event processing since only
one is loaded at a time and part of its information is stored in LipMiniAnalysis
toolbox. Besides not allowing this parallelization, reading events individually
is more inefficient than reading all events at once, where in the former slower
random reads are made on the hard drive and in the latter the fast sequential
reads are used.

Parallelizing ttDilepKinFit implies modifying its flow. Currently, for each
different combination of jets and leptons from an event, the processed data of
each variation of the detector measurements is overwritten. A new data struc-
ture is required to hold all combinations of each event. Picking a lepton/jet
combination depends on all previous chosen combinations, which serializes the
construction of the data structure. Each parallel task (indivisible work segment)
selects a combination with variations still to compute, then varies the particles
parameters, performs the kinematical reconstruction, and attempts to recon-
struct the Higgs boson. A parallel merge is performed after all combinations
are computed to get the most accurate reconstruction for the event. Figure 4
presents the sequential and parallel workflow for ttDilepKinFit.

A shared memory parallelization using OpenMP [12] was devised, as it is the
best approach for single shared memory systems. The parallel tasks are grouped
into threads, which holds the best reconstruction to minimize the complexity
of the merge by reducing through all the threads instead of tasks. The amount
of tasks for each thread is balanced dynamically by the OpenMP scheduler, as
the workload is irregular since the Higgs boson reconstruction execution is not
always computed. Each thread has a private PRNG initialized with different
seeds to avoid correlation between the numbers generated.

Figure 5 presents the speedups for different number of parallel threads. The
purpose of the 1 thread test is to evaluate the parallelization overhead. The
best efficient implementation occurs when using 2 and 4 threads, where the

Pereira, Onofre, and Proenga

KinFit
KinFit
Jpreachad +2L v

¥ Select all
Select
sjr' each

Fig. 4: Schematic representation of the ttDilepKinFit workflows: sequential (left) and
parallel (right).

application is using almost all resources at each used core. The best overall
performance occurs for 40 threads, but it only offers a speedup of 8.8, underusing
the available 20 physical cores. Note that there is no significant overhead due to
NUMAS accesses, as seen by the constant increase in performance from 10 to 16
threads. For more than 20 threads all available resources on both CPU devices.

The lack of scalability beyond a low number of parallel threads suggests that
inefficiencies may still affect the application, probably caused by the paralleliza-
tion overhead. Intel’s VTune was used to search for hotspots (bottlenecks) on
the parallel ttH_dilep, since this tool is best suited for profiling parallel appli-
cations while providing a user friendly graphic interface. A preliminary analysis
showed that the application was spending 20% of the execution time building
the combination data structure for 256 variations.

An analysis of the coded data structure showed that inefficiencies were affect-
ing the performance in specific situations. Data that is read-only on the parallel
section is being replicated in each element of the data structure. If the elements
were to share a pointer to such data, the overhead of constructing the data struc-
ture would be reduced. However, this could lead to worse cache management,

5 NUMA, Non-Unified Memory Access, since each Xeon device has its own memory
controller with attached RAM: RAM access time for each core differs as the RAM
is connected to the same device or the neighbour Xeon.

Removing Inefficiencies From Scientific Code

10

8 ﬁ
| e
|

‘.

0 4 8 12 16

20 24 28 32 36 40
Threads

Fig. 5: Speedup for the ttH-dilep original parallel version of the application.

due to cache line invalidations, since the application is accessing data on memory
more frequently, and the data structuring did not efficiently separate read-only
data from read/write data. This is particularly critical in NUMA environments,
where communication costs are higher. This was implemented and tested (ad-
dressed as pointer version), with its speedups plotted in figure 6. The reference
value for the speedup computation is still the same sequential version.

10

//4

8
—9— non-pointer
version
4 \E\E
f/ —&— pointer

2 V version

0 4 8 12 16 20 24 28 32 36 40
Threads

Fig. 6: Speedup for ttH_dilep parallel pointer and non-pointer implementations.

As expected, the best speedup occurs when using only one CPU device. The
performance degradation from 8 to 10 threads (on the same device) may be ex-
plained by the increase of concurrent accesses to the shared L3 cache. However,
this implementation is more efficient than the non-pointer implementation when
using only one device. This is a classical case where partitioning the data struc-
ture allows it to fit on the L2 cache, providing superscalar speedups for certain

Pereira, Onofre, and Proenga

number of threads. The data structure has an average size of 30 KB, but can
have up to 867 KB with the input used. Considering the 5 thread superscalarity,
partitioning the data structure among 5 cores reduces its size per core to 173
KB, fitting their private L2 cache and avoiding the slower accesses to the L3
cache.

4 Runtime Inefficiencies

When submitting a job or application for execution on a given computing sys-
tem, most users trust the default configurations of the submission environment.
However, if the user needs to improve the efficiency of the code execution, he/she
must be aware of the environment variables that can be controlled and how those
can impair the performance. Two cases will be addressed here: (i) how to spread
the code parallelism, between processes and threads, and (ii) how to allocate the
available cores on each device to threads and processes.

4.1 Multithreading Inefficiencies

Without the sensibility provided by the tests in section 3, a scientist would incur
in the pitfall of using all available cores on the system (and even all hardware
threads, if each core supports hardware multithreading), hoping that it would
provide the best performance. While it may be true for the non-pointer imple-
mentation, the system computational resources would be inefficiently used, and
using the single device highly efficient pointer implementation would induce a
even greater waste.

A closer look to the pointer based implementation shows in fact that it is the
most efficient one. As seen in section 3.2, the scalability of the parallelization
is limited by the NUMA organization on modern multiple CPU device systems.
If the threads on cpu; do not share information with the threads on cpus, the
NUMA bottleneck is removed by using multithreaded processes. However, par-
allelization at the process level, where each process performs a data analysis on
a separate event, is not possible with the current implementation of LipMini-
Analysis, where a single global state is allocated to store data from each event
processing.

Data analysis applications are individually executed for each file (around 1GB
in size) in a very large set of files, at a terabyte scale, received weekly from CERN.
An alternative approach to the process parallelization over a single input data file
is to balance the execution of different ttH_dilep processes in the system on a set
of distinct input files. This reduces the complexity of the implementation, with
no changes needed for ttH_dilep, and avoids communication between processes.
A simple scheduler was devised, which takes a set of input files and spawns
a given amount of ttH_dilep processes. The scheduler dispatches the files to
the different processes in a queue-like approach, and monitor their execution as
shown in figure 7. A set of 20 input files was considered for testing and evaluation
purposes, with different configurations of processes and threads per process.

Removing Inefficiencies From Scientific Code

Input Flles

\ B\ B\

Scheduler

file x file x+1

TH_dilep TH_dilep

¥ N
Event Global Load Event Load Event Event Global

Fig. 7: Schematic representation of dispatcher workflow.

Figure 8 presents the speedups using 2, 4, 5, 8, and 10 processes for vari-
ous thread configurations, with maximum number of threads limited to 40. A
higher amount of processes was not tested as the efficiency decayed from 8 to
10 processes. The best speedups occur for 8 processes with 5 threads each, with
a peak of 69.3, 7.8 and 11.7 times better than the best non-pointer and pointer
implementations, respectively. A small number of threads such as this allows
for a small overhead in the ttH_dilep parallelization, namely on load balancing
and final best reconstruction merge for each event. For 10 processes the load
on the system due to the lack of shared memory and I/O operations affects the
performance, decreasing the speedups relatively to using 8 processes. A com-
mon behaviour is that when using the CPU devices hardware multithreading
the speedups tend to stabilize, or even drop for 2, 4, and 5 processes. Over-
all, the best speedups occur when using all available cores on the system, with
multithreading.

Since this implementation uses the parallel pointer version, which has su-
perlinear speedups as presented at the end of subsection 3.3, the performance
improvements tend to be higher than the theoretical maximum. Here, the su-
perscalarity is enhanced because the data structure is less partitioned than with
the pointer version for the same number of threads, as threads from the same
process are paired in each core to allow sharing common data on the L2 cache.

4.2 Core Affinity Inefficiencies

One of the key issues in runtime efficiency is the thread affinity [13], namely to
control the allocation of each thread to which CPU core. By default, OpenMP
lets the operating system to manage the thread affinity; as a consequence, threads
may migrate among cores during runtime. If a thread is running on core ¢; and

Pereira, Onofre, and Proenga

N

60 / —o—1 process

50
——2 processes

/ // /3/A —#&—4 processes
30
i/f//\/ —>—5 processes
X
)é/ EB/D_D\Q‘E —%—8 processes
{/M/é‘\é—\ °> ° —0—10 processes!
< —

0 4 8 12 16 20 24 28 32 36 40
Threads per process

Speedup

Fig.8: Speedups for the scheduler with the pointer based implementation for several
combinations of #processes and #threads per process.

moves to core cy, all data on the private cache [., needs to be reloaded to
cache [.,, causing unnecessary overhead. This effect is amplified if the threads
are moved between adjacent CPU devices. When multiple different, and (pos-
sibly) parallel processes are running on the same system, which is common in
production environments, such scheduling occurrences happen more frequently.
This subsection presents a preliminary study on thread affinity for data analysis
code.

Defining the thread affinity of an application may provide a more predictable,
or in some cases better, performance. In theory, an optimum thread affinity
scheme allocates the threads to contiguous physical cores of one CPU device,
uses the cores of the second CPU device only after the first is filled, and finally
uses the multithreading capability after filling all physical cores. Note that using
multithreading before the second CPU device is fully occupied may provide
better performance in memory bound applications. This type of affinity must be
defined prior to the application execution and depends on the system used. In
this compute bound data analysis case, the affinity was specifically tuned to the
20-core testbed system for all threads or process/threads configurations for the
scheduler.

By analysing the speedups of the pointer implementation of ttH_dilep with
thread affinity, in figure 9, the specification of the affinity provides speedups
for the previous most efficient number of threads, i.e., up to 8 threads. For 8
threads the performance increases by 41%, relative to its no affinity counterpart.
With this number of threads, and the amount of shared data, moving threads
between cores at runtime causes more cache warm ups to occur, significantly
affecting the performance. When using more than 10 threads the application is
roughly 4% slower as the operating system uses some multithreaded cores rather
than using all available physical cores and it does a better job at managing the
multithreading.

The same affinity study was performed on the scheduler, with the speedups
presented in figure 10. The performance is increased for some specific configura-

Removing Inefficiencies From Scientific Code

Speedup

0.5 LN B B B S B S S B B B B B B B B B S B N L
o] 4 8 12 16 20 24 28 32 36 40
Threads

Fig.9: Speedup of the ttH_dilep parallel pointer implementation with core affinity.

tions, with the exception of 5 processes that is always worse, providing improve-
ments up to 52%, 90%, 8%, and 25% for 2, 4, 8, and 10 processes respectively.

—®—2 processes

15
—#—4 processes
5 processes
.
1
;/\/ \/ -
—%—10 processes

0.5

Speedup

0 2 4 6 8 10 12 14 16 18 20
Threads per process

Fig. 10: Speedups of the scheduler with the pointer based implementation for various
threads per process with core affinity.

The performance with core affinity is less susceptible to oscillations, as with
no affinity it is sometimes affected by OS thread reallocations. It is when many
reallocations may occur that setting the core affinity provides the best perfor-
mance. Hard setting the affinity may not allow for proper multithreading to hide
the memory accesses latency, affecting the performance. It is not possible to use
a theoretical affinity scheme to always improve the performance on every system,
as it is highly dependent on:

Pereira, Onofre, and Proenga

— the algorithm, memory bound, suffers more from core reallocation due to
losing all data on cache, where fixing their position on a specific core avoids
unnecessary accesses to the RAM;

— the application execution time, as the impact from thread reallocations is
higher in applications with low execution times;

— the operating system, as OpenMP, by default, lets it manage the thread
allocation and it is susceptible to the overall system load, causing fluctuations
in consecutive applications execution time.

With all optimizations considered, the best overall performance in a dual
10-core Xeon system is obtained using the scheduler combined with the pointer
implementation, with 8 multithreaded processes (with 5 threads each), reaching
a speedup of 112 over the original sequential application.

5 Conclusion

This paper presents a study of the inefficiencies in scientific code, using a particle
reconstruction analysis application as a case study. Top quark and Higgs boson
studies require reconstructing from measurements of a very large number of par-
ticle collisions, performed weekly by the ttH_dilep application on terabytes of
data. A faster and more accurate analysis of the data allows to better reconstruct
ttH events and improve the quality of the research results.

Execution inefficiencies of software applications may occur due to several fac-
tors, from algorithm and data structure design to numerical approaches, choice
of library functions or compile tuning for code vectorisation, among others. Our
focus in this work was on the identification and removal of inefficiencies at only
two stages of the application - the code design and its submission for execution
- since efficient numerical libraries were already used [14], as well as the Intel
guidelines to develop efficient code [15-17]. The code inefficiencies we identified
and corrected had a significant negative impact on performance: the removal of
the unnecessary seed generation for the pseudo random number generation led to
71% performance improvement. Two parallelisation alternatives were proposed
to overcome data structure inefficiencies, one that scales with two CPU devices
and other much more efficient but only scales with one CPU device.

At application runtime, a multiprocess approach using the more efficient
parallel implementation tackled its inefficiencies on NUMA systems, providing
a superscalar speedup of 69.3 with 40 threads. This superscalarity was achieved
due to the data partition, which led to a better cache usage. An efficient control
on the thread affinity of this implementation provided a performance improve-
ment close to 2x. However, the fluctuation in performance and the dependencies
on many system characteristics prevented the definition of a generalized heuristic
to aid to control the best affinity for the application, for any computing system.

Figure 11 plots the number of events processed per second in four different
situations using a dual 10-core Xeon computing system: (i) assuming the particle
properties as given by the ATLAS detector with 100% confidence, (ii) the same

Removing Inefficiencies From Scientific Code

Sequential:

w/o var 2865

1024 var

Parallel,
1024 var:
Pointer 8t

8p, 40t total

1 10 100 1000 10000
Events processed per second

Fig. 11: Throughput of events processed for the original sequential ttH.dilep, with no
and 1024 variations (var), and for the parallel pointer and multiprocess implementa-
tions (with p processes and ¢ threads).

code but assuming an error of +1% on the detector measurements and consid-
ering 1024 variations on those values improving the analysis accuracy, (iii) a
parallel single process implementation, with multiple threads, and (iv) the best
parallel combination of processes and threads. By removing the code inefficien-
cies and developing efficient parallelisation strategies, the overall result of this
work increased the event throughput by a factor of 112, from 5 to 560 events
per second.

These promising results on code execution efficiency leave yet some room for
further enhancements. The scheduler could be improved to automatically predict
the best process/thread configuration for each system by analysing a set of micro-
benchmarks or the application itself on a small input, and ultimately identify
the best core affinity scheme. Also, the application efficiency could be improved
using hardware accelerators, balancing the workload among accelerators and
CPU devices in heterogeneous systems. The use of development frameworks for
heterogeneous systems, such as StarPU [18], may further improve productivity
and efficiency through aids in code parallelization and transparent workload
distribution among multi-core devices and computing accelerators.

Acknowledgments. This work is funded by National Funds through the FCT -
Fundagao para a Ciéncia e a Tecnologia (Portuguese Foundation for Science and
Technology) within project PEst-OE/EEI/UI0752/2014, by LIP (Laboratério de
Instrumentagao e Fisica Experimental de Particulas), and the SeARCH cluster
(REEQ/443/EEIL/2005).

References

1. The ATLAS Collaboration: The ATLAS Experiment at the CERN Large Hadron
Collider. Journal of Instrumentation 3(08) (2008) S08003

10.

11.

12.

13.
14.

15.

16.

17.
18.

Pereira, Onofre, and Proenga

Aad, G., et al.: Observation of a new particle in the search for the Standard Model
Higgs boson with the ATLAS detector at the LHC. Phys.Lett. B716 (2012) 1-29

. Oliveira, V., Pina, A., Castro, N., Veloso, F., Onofre, A.: Even Bigger Data:

Preparing for the LHC/ATLAS Upgrade. 6th Iberian Grid Infrastructure Confer-
ence (2012)

Pereira, A.: Efficient Processing of ATLAS Events Analysis in Homogeneous and
Heterogeneous Platforms. Master’s thesis, University of Minho (September 2013)
F. Rademakers and P. Canal and B. Bellenot and O. Couet and A. Naumann and
G. Ganis and L. Moneta and V. Vasilev and A. Gheata and P. Russo and R. Brun:
ROOT (November 2012)

Graham, S.L., Kessler, P.B., Mckusick, M.K.: Gprof: A Call Graph Execution
Profiler. SIGPLAN Not. 17(6) (June 1982) 120-126

Developers, V.: Callgrind: a call-graph generating cache and branch prediction
profiler (January 2013)

Intel: Profiling Runtime Generated and Interpreted Code with Intel VTune Am-
plifier. Technical report (January 2013)

Browne, S., Deane, C., Ho, G., Muccima, P.: PAPI: A Portable Interface to Hard-
ware Performance Counters. Proceedings of Department of Defense HPCMP Users
Group Conference (June 1999)

Intel: Intel Xeon Processor E5 v2 Family: Datasheet. Technical report (September
2013)

Matsumoto, M., Saito, M.: Mersenne Twister: A 623-dimensionally equidistributed
uniform pseudorandom number generator. ACM Transactions on Modeling and
Computer Simulations: Special Issue on Uniform Random Number Generation
(1998)

Board, O.A.R.: OpenMP Application Program Interface. Technical report (July
2013)

Dow, E.: Take charge of processor affinity. IBM developerWorks (September 2005)
Blackford, L.S., Demmel, J., Dongarra, J., Duff, I., Hammarling, S., Henry, G.,
Heroux, M., Kaufman, L., Lumsdaine, A., Petitet, A., Pozo, R., Remington, K.,
Whaley, R.C.: An Updated Set of Basic Linear Algebra Subprograms (BLAS).
ACM Trans. Math. Soft., 28-2 (2002)

Corporation, I.: Intel 64 and TA-32 Architectures Optimization Reference Manual.
Technical report, Intel Corporation (2013)

Corporation, I.: Intel 64 and IA-32 Architectures Software Developer’s Manual.
Technical report, Intel Corporation (February 2014)

Ott, D.: Optimizing Applications for NUMA. Technical report (February 2011)
Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: Starpu: A unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurr. Com-
put. : Pract. Exper. 23(2) (February 2011) 187-198

